agoncal fascicle o

Understanding
Quarkus

Antonio Goncalves
Foreword by Emmanuel Bernard

Understanding Quarkus
Quarkus

Antonio Goncalves

2020-10-27

Table of Contents

Foreword

About the Author
Acknowledgments
Introduction

Where Does This Fascicle Come From?

Who Is This Fascicle For?

How Is This Fascicle Structured?
Conventions

The Sample Application
Downloading and Running the Code
Getting Help

Contacting the Author

1. First Step with Quarkus
2. Understanding Quarkus

2.1. Understanding Microservices
2.1.1. Monolith
2.1.2. Microservices
2.1.3. Pros and Cons
2.2. Understanding Reactive
2.2.1. Reactive Manifesto
2.2.2. Reactive Systems
2.2.3. Reactive Streams
2.3. Understanding MicroProfile
2.3.1. Eclipse Foundation
2.3.2. SmallRye
2.3.3. MicroProfile Specifications
CDI
JAX-RS
JSON-B
JSON-P
Common Annotations
Configuration
Fault Tolerance
Health
Metrics
OpenAPI
REST Client
JWT

© © 0 00 OO U W

10
11
13
13
13
15
17
17
17
18
20
20
21
22
22
24
24
24
25
25
26
26
26
26
26
27
27
27
27
27
28

OpenTracing

2.3.4. Standalone Releases
Context Propagation
Reactive Messaging

Mutiny

2.4. Understanding Cloud Native Computing

2.4.1. Docker
2.4.2. Kubernetes

2.5. Understanding GraalVM

2.5.1. Architecture
2.5.2. A Brief History of GraalVM
2.5.3. Mandrel

2.6. Quarkus Overview

2.6.1. A Brief History of Quarkus

2.6.2. Architecture

2.6.3. Imperative and Reactive Programming
2.6.4. Augmentation

2.6.5. Extensions

2.7. Summary

3. Getting Started
3.1. Developing Your First Quarkus Application
3.2. Bootstrapping the Application

3.2.1. Web Interface

3.2.2. Intelli] IDEA Plugin

3.2.3. Maven Plugin

3.2.4. Generating Some Code
Generated Classes and Directory Structure
Generated Maven POM

3.3. Developing the Application

3.3.1. The Artist Resource

3.3.2. The Artist Class

3.3.3. Running the Application
3.3.4. Live Reload

3.3.5. Configuring the Application
3.3.6. Testing the Application
3.3.7. Debugging the Application

3.4. Running the Application

3.4.1. Building an Executable JAR
3.4.2. Executing the Executable JAR

3.5. Going Native

3.5.1. Building a Native Executable

28
28
28
28
28
29
29
31
32
32
34
34
34
35
35
36
37
38
40
43
43
43
43
44
45
46
46
47
52
52
53
54
35
56
56
58
60
60
60
61
61

3.5.2. Executing the Native Executable 62

3.5.3. Testing the Native Executable 63
3.6. Containerising the Application 64
3.6.1. Building the Native Executable Image 64
3.6.2. Executing the Container Image 66
3.7. Summary 67
4. Core Quarkus 68
4.1. Context and Dependency Injection 68
4.1.1. Understanding Beans 69
4.1.2. Injecting Beans 70
Injection Points 71
Default Injection 72
Injecting Qualified Beans 73
Injecting Alternative Beans 76
4.1.3. Scopes 77
4.1.4. Events 79
4.1.5. Configuring ArC 82
4.2. Eclipse MicroProfile Configuration 82
4.2.1. Understanding Configuration 83
4.2.2. Configuring Data 84
Injecting Configuration 84
Programmatic Configuration 87
Multiple Configuration Properties 88
4.2.3. YAML Support 90
4.2.4. Configuration Sources 90
4.2.5. Configuring Quarkus 91
4.3. Profiles 92
4.3.1. Configuring Profiles 93
4.4. Logging 94
4.4.1. Log Levels 95
4.4.2. Configuring Logging 95
4.4.3. Logging Categories 97
4.4.4. Logging Format 97
4.4.5. JSON Format 98
4.5. Application Initialisation and Termination 99
4.5.1. Entry Point 99
4.5.2. Application Life Cycle 100
4.6. Summary 102
5. Data, Transactions and ORM 104
5.1. Bean Validation 104

5.1.1. Understanding Constraints 106

5.1.2. Constraining Data
Built-in Constraints
Applying Built-in Constraints
Constraining Attributes
Constraining Methods

5.1.3. Validating Data
Validating Beans
Cascading Validation

5.1.4. Configuring Hibernate Validator

5.2.Java Persistence API

5.2.1. Understanding Object-Relational Mapping

Relational Databases
Entities
5.2.2. Mapping Entities
Customising Mappings
Advanced Mapping
5.2.3. Managing Entities
Persisting an Entity
Finding by Id
Removing an Entity
5.2.4. Querying Entities
Java Persistence Query Language
Dynamic Queries
5.2.5. Configuring Hibernate ORM
5.3.Java Transaction API
5.3.1. Understanding Transactions
5.3.2. Declarative Transaction Management
Exceptions and Transactions
5.3.3. Programmatic Transaction Management
5.3.4. Configuring Transactions
5.4. DataSource
5.4.1. Configuring DataSources
5.5. Hibernate ORM with Panache
5.5.1. Panache Entities
Mapping Panache Entities
Managing Panache Entities
Querying Panache Entities
State and Behaviour on Panache Entities
5.5.2. Panache Repositories
5.5.3. Transactions

Using Panache Entities

106
106
107
108
109
110
110
112
114
115
116
117
118
119
120
122
125
128
129
129
130
130
132
133
134
135
137
140
141
142
143
144
144
145
147
149
150
154
155
159
159

Using Panache Repositories
5.6. Summary
6. HTTP Microservices
6.1. Java API for RESTful Web Services
6.1.1. Understanding RESTful Web Services
6.1.2. Exposing RESTful Web Services
HTTP Method Matching
URI Definition and Binding URIs
Extracting Parameters
Consuming and Producing Content Types
Returned Types
6.1.3. Invoking RESTful Web Services
Bootstrapping the Client
Targets and Invocations
6.1.4. Configuring RESTEasy
6.2. Eclipse MicroProfile OpenAPI
6.2.1. Understanding OpenAPI v3 Specification
6.2.2. Exposing OpenAPI Contracts
Customising OpenAPI Contracts
Advanced Customisation
6.2.3. Swagger Ul
6.2.4. Configuring SmallRye OpenAPI
6.3. JSON Binding
6.3.1. Understanding Binding
6.3.2. Binding POJOs
Default Binding
Customising Binding
Advanced Customisation
6.3.3. Serialising and Deserialising
Programmatic Serialisation and Deserialisation
Automatic Serialisation and Deserialisation
6.4. JSON Processing
6.4.1. Understanding Processing
6.4.2. Building JSON
6.4.3. Reading and Writing JSON
6.4.4. Streaming JSON
6.5. Summary
7. Communication and Fault Tolerance
7.1. CORS
7.1.1. Understanding CORS
7.1.2. Configuring CORS

160
161
163
163
164
165
166
167
168
170
171
173
174
174
175
176
178
179
180
182
189
190
191
192
193
193
194
195
198
198
199
200
202
202
205
206
210
212
212
212
213

7.2. Eclipse MicroProfile REST Client

7.2.1. Understanding RESTful Web Services Invocation

7.2.2. Invoking RESTful Web Services
Client Proxies
Programmatic Invocation
Declarative Invocation
7.2.3. Configuring RestEasy Client Microprofile
7.3. Eclipse MicroProfile Fault Tolerance
7.3.1. Understanding Fault Tolerance
7.3.2. Falling Back
7.3.3. Timing Out
7.3.4. Circuit Breaker
7.4. Summary
8. Event-Driven Microservices
8.1. Reactive Programming
8.1.1. Uni and Multi
8.1.2. Events
8.2. Reactive Messaging
8.2.1. Understanding Messaging
Synchronous Programming
Asynchronous Messages
Broker Architecture
8.2.2. Sending Messages
8.2.3. Receiving Messages
8.2.4. Connectors
8.2.5. Configuring Reactive Messages
8.3. Summary
9. Observability
9.1. Eclipse MicroProfile Health
9.1.1. Understanding Health Checks
9.1.2. Checks
Liveness Checks
Readiness Checks
Built-In Quarkus Checks
9.1.3. Constructing a Response
9.1.4. Visualising Health Checks with Health-UI
9.1.5. Configuring SmallRye Health
9.2. Eclipse MicroProfile Metrics
9.2.1. Understanding Measures
9.2.2. Metrics

Base Metrics

214
215
215
216
219
219
221
222
223
224
226
229
231
232
232
233
235
236
237
237
239
239
240
243
245
247
248
249
249
250
250
251
252
253
254
256
256
256
257
258
258

Vendor Metrics
Application Metrics
9.2.3. Metrics Format
9.2.4. Visualising Metrics with Prometheus
9.2.5. Configuring SmallRye Metrics
9.3. Summary
10. Cloud Native
10.1. Packaging Quarkus Applications
10.1.1. JVM Mode
JAR
Fast-JAR
Uber-JAR
10.1.2. Native Mode
Native Executable
Linux Native Executable
10.1.3. Performances
Build and Execute
Executable Size
Time to First Request
Pros and Cons
10.1.4. Configuring Packaging
10.2. Docker
10.2.1. Dockerfiles
JVM Mode
Linux Native Executable
10.2.2. Building Docker Images
Building Manually with Docker
Building with the Docker Extension
Building with the Jib Extension
10.2.3. Running Docker Images
10.2.4. Pushing Docker Images
10.2.5. Configuring Containers
10.3. Kubernetes
10.3.1. Kubernetes Manifest Files
10.3.2. Building Kubernetes Manifest Files
Building with the Kubernetes Extension
Building with the Minikube Extension
10.3.3. Deploying to a Minikube Cluster
Recap
10.3.4. Configuring Kubernetes

10.4. Summary

260
261
265
266
267
267
269
269
270
270
271
272
272
273
274
275
275
275
276
276
277
278
278
279
280
280
281
282
283
284
285
288
288
289
291
292
292
293
294
295
296

11. Tests
11.1. Quarkus Tests
11.1.1. JUnit 5
Test Class
Fixtures
Test Methods
JUnit Assertions
11.1.2. JVM Mode Tests
11.1.3. Native Mode Tests
11.1.4. Transactional Tests
11.1.5. Configuring Quarkus Tests
11.2. Testing Frameworks
11.2.1. REST Assured
11.2.2. Hamcrest
11.2.3. Testing Resources
TestContainers
Quarkus Test Resource
11.3. Mocking
11.4. Quarkus Test Profiles
11.5. Summary
12. Putting It All Together
12.1. Developing the REST ISBN Number Microservice
12.1.1. Bootstrapping the ISBN Number Microservice
12.1.2. Maven Dependencies
12.1.3. Directories and Files
12.1.4. ISBN Number REST Endpoint
12.1.5. Injecting Configuration Value
12.1.6. Customising the JSON Output
12.1.7. OpenAPI
Customising the OpenAPI Contract of the Number REST Endpoint
Customising the IsbnNumbers POJO
Customising the OpenAPI Contract of the Application
The Customised OpenAPI Contract
Swagger Ul
12.1.8. Adding Liveness Health Check
12.1.9. Running the ISBN Number Microservice
Live Reload
Configuring Quarkus Listening Port
12.1.10. Testing the ISBN Number Microservice
12.2. Developing the REST Book Microservice
12.2.1. Bootstrapping the Book Microservice

297
297
298
298
299
299
300
301
304
309
310
311
311
313
315
315
318
319
322
324
326
326
326
327
328
329
330
331
332
333
334
334
335
337
338
339
339
340
340
342
342

12.2.2. Maven Dependencies 342

12.2.3. Directories and Files 343
12.2.4. Book REST Endpoint 344
12.2.5. Book Microservice Invoking the Number Microservice 345
12.2.6. Falling Back 347
12.2.7. Adding Metrics 349
12.2.8. Running the Book Microservice 349
12.2.9. Testing the Book Microservice 350
12.3. Summary 352
13. Summary 353
Appendix A: Setting up the Development Environment on macOS 354
A.1. Homebrew 354
A.1.1. A Brief History of Homebrew 354
A.1.2. Installing Homebrew on macOS 354
A.1.3. Checking for Homebrew Installation 354
A.1.4. Some Homebrew Commands 355
A2.Javall 355
A.2.1. Architecture 355
A.2.2. A Brief History of Java 356
A.2.3. Installing the JDK on macOS 356
A.2.4. Checking for Java Installation 358
A.3. GraalVM 20.2.0 359
A.3.1. Installing GraalVM on macOS 359
A.3.2. Installing the Native Image Generator 361
A.3.3. Checking for GraalVM Installation 361
A.4. Maven 3.6.xX 362
A.4.1. A Brief History of Maven 362
A.4.2. Project Descriptor 362
A.4.3. Managing Artifacts 363
A.4.4. Installing Maven on macOS 364
A.4.5. Checking for Maven Installation 364
A.4.6. Some Maven Commands 365
A.5.cURL 7.x 365
A.5.1. A Brief History of cURL 365
A.5.2. Installing cURL on macOS 366
A.5.3. Checking for cURL Installation 366
A.5.4. Some cURL Commands 366
A.5.5. Formatting the cURL JSON Output with JQ 367
A.6. Docker 368
A.6.1. A Brief History of Docker 368

A.6.2. Installing Docker on macOS 368

A.6.3. Checking for Docker Installation
A.6.4. Building, Running, Pushing and Pulling Images
Remote Docker Repository
Dockerfile
Building the Docker Image
Running the Docker Image
Pushing to a Docker Registry
Pulling from a Docker Registry
A.6.5. Some Docker Commands
A.7. VirtualBox
A.7.1. A Brief History of VirtualBox
A.7.2. Installing VirtualBox on macOS
A.7.3. Checking for VirtualBox Installation
A.8. Kubernetes
A.8.1. A Brief History of Kubernetes
A.8.2. Different Kubernetes Flavours
A.8.3. Installing Minikube on macOS
Installing Kubectl
Installing Minikube
A.8.4. Checking for Kubernetes Installation
A.8.5. Deploying a Docker Image to a Kubernetes Cluster
Starting the Kubernetes Cluster
Creating a Deployment
Creating a Service
Running the Docker Image
Cleaning Up
A.8.6. Kubernetes Manifest Files
A.8.7. Some Kubernetes Commands
A.9. Kafka
A.9.1. A Brief History of Kafka
A.9.2. Installing Kafka on macOS
A.9.3. Checking for Kafka Installation
A.9.4. Publishing and Receiving Events
Starting Kafka
Creating Topics
Publishing Events
Receiving Events
Cleaning Up
Stopping Kafka
A.9.5. Some Kafka Commands
A.10. Git

368
373
373
374
374
375
375
375
376
377
377
377
378
379
379
379
379
380
380
381
383
383
384
385
386
386
387
389
390
390
390
391
391
391
392
393
393
394
394
394
394

A.10.1. A Brief History of Git 395

A.10.2. Installing Git on macOS 395
A.10.3. Checking for Git Installation 395
A.10.4. Cloning Repository 395
Appendix B: Quarkus Versions 397
B.1. Quarkus 1.9 (October 2020) 397
B.2. Quarkus 1.8 (September 2020) 397
B.3. Quarkus 1.7 (August 2020) 397
B.4. Quarkus 1.6 (July 2020) 397
B.5. Quarkus 1.5 (June 2020) 398
B.6. Quarkus 1.4 (April 2020) 398
B.7. Quarkus 1.3 (March 2020) 398
B.8. Quarkus 1.2 (January 2020) 399
B.9. Quarkus 1.1 (December 2019) 399
B.10. Quarkus 1.0 (November 2019) 399
B.11. Quarkus 0.0.1 (November 2018) 400
Appendix C: Eclipse MicroProfile Specification Versions 401
C.1. MicroProfile 3.3 (February 2020) 401
C.2. MicroProfile 3.2 (November 2019) 401
C.3. MicroProfile 3.1 (October 2019) 401
C.4. MicroProfile 3.0 (June 2019) 401
C.5. MicroProfile 2.2 (February 2019) 402
C.6. MicroProfile 2.1 (October 2018) 402
C.7. MicroProfile 2.0.1 (July 2018) 402
C.8. MicroProfile 2.0 (June 2018) 402
C.9. MicroProfile 1.4 (June 2018) 403
C.10. MicroProfile 1.3 (January 2018) 403
C.11. MicroProfile 1.2 (September 2017) 403
C.12. MicroProfile 1.1 (August 2017) 404
C.13. MicroProfile 1.0 404
Appendix D: References 405
Appendix E: Fascicles by the Same Author 406
E.1. Understanding Bean Validation 2.0 406
E.2. Understanding JPA 2.2 406
E.3. Understanding Quarkus 406
E.4. Practising Quarkus 407

Appendix F: Printed Back Cover 408

Understanding Quarkus
Copyright © 2018-2020 by Antonio Goncalves

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in
any form or by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other non-commercial uses permitted by
copyright law. For permission requests, write to the publisher, addressed "Attention: Permissions
Coordinator," at the email address below:

agoncal.fascicle@gmail.com

Trademarked names, logos, and images may appear in this fascicle. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The distribution of the book is made through Amazon KDP (Kindle Direct Publishing).""

Any source code referenced by the author in this text is available to readers at https://github.com/
agoncal/agoncal-fascicle-quarkus/tree/1.0. This source code is available for reproduction and
distribution as it uses an MIT licence."”

* www.antoniogoncalves.org

* www.antoniogoncalves.org/category/books

* www.amazon.com/author/agoncal

Version Date: 2020-10-27

mailto:agoncal.fascicle@gmail.com
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://antoniogoncalves.org/
https://antoniogoncalves.org/category/books/
https://www.amazon.com/author/agoncal

To my wonderful kids, Eloise, Ligia and Ennio, who are the best thing life
has given me.

Foreword

Hi there, 'm Emmanuel Bernard, co-founder of Quarkus. I am Chief Architect at Red Hat
overseeing part of the Middleware portfolio. But, at heart, 'm an Open Source developer (of
projects and communities). I contributed to, and led, the Hibernate projects as well as many others.
Recently, I was lucky enough to be in the right place at the right time with the right people in order
to co-found Quarkus. Since then, I have been leading it since then on its mission to deliver Java for
the cloud era.

I've known Antonio for a long time now. We have watched the various evolutions of the Java
ecosystem together over the years. I trust his expertise in figuring out where technology is going
and avoiding the latest shiny object distraction. So when a seasoned developer like him jumps on
Quarkus, loves it and wants to invest his time in it, that, to me is a ringing endorsement that the
project is doing something right and addressing key problems.

Im really pleased Antonio embarked on this Quarkus book adventure. He has a deep
understanding of the developer community: from customers to community members, from
freelancers to big enterprise development teams. I trust his ability to explain technology in a
practical way and he offers readers the knowledge and building blocks to solve their problems.

Fun fact about Quarkus: we knew we needed to strike a balance between "new + revolutionary" and
"familiar + boring". One Kkey aspect of Quarkus is how it offers very familiar APIs and programming
concepts but it’s packaged with boosted usefulness. Antonio is one of the most expert people I know
on the APIs and technologies Quarkus exposes: CDI, RESTEasy, Hibernate, Eclipse MicroProfile and
many more.

One of Quarkus' philosophies is "Developer Joy". This is realised, in part, by making developers
deliver their applications faster, by being more practical. But it is also built on a very solid
technological foundation. This book is written with the same philosophy, it gets you to solve the
concrete problems you have while distilling the fundamental knowledge you need to go to the next
level.

When we released Quarkus to the community, we thought we were onto something. But what you
think and what the world thinks are often distinctly different. It’'s amazing how Quarkus caught
fire. More importantly, I am really happy when I hear users telling me how Quarkus has addressed
their key Cloud Native needs and concerns: short development cycles, the need for high density
deployments (less RAM per instance), and the need for fast startup times - for microservices or
functions. Even better, they love the experience of using it.

The future of Java as a solution for writing Cloud Native applications deployed in Kubernetes had
been questioned. This is no longer the case and I think Quarkus is the answer. I hope this book will
spread the word far and wide and help more developers and more teams be productive with Java
and our new way of writing modern applications.

Emmanuel Bernard
Co-founder of Quarkus at Red Hat
@emmanuelbernard

[1] KDP https://kdp.amazon.com

https://twitter.com/emmanuelbernard
https://kdp.amazon.com

[2] MIT licence https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT

About the Author

Antonio Goncalves is a senior software architect living in Paris. Having been focused on Java
development since the late 1990s, his career has taken him to many different countries and
companies where he now works as a recognised consultant. As a former employee of BEA Systems
(acquired by Oracle), he developed a very early expertise on distributed systems. He is particularly
fond of open source and is a member of the OSSGTP (Open Source Solution Get Together Paris).
Antonio loves to create bonds with the community. So, he created the Paris Java User Group in 2008
and co-created Devoxx France in 2012 and Voxxed Microservices in 2018.""

Antonio wrote his first book on Java EE 5, in French, in 2007. He then joined the JCP to become an
Expert Member of various JSRs (Java EE 8, Java EE 7, Java EE 6, CDI 2.0, JPA 2.0, and EJB 3.1) and
wrote Beginning Java EE 7 and Beginning Java EE 8 with Apress.”” Still hooked on sharing his
knowledge, Antonio Goncalves decided to then self-publish his later fascicles.

For the last few years, Antonio has given talks at international conferences, mainly on Java,
distributed systems and microservices, including JavaOne, Devoxx, GeeCon, The Server Side
Symposium, Jazoon, and many Java User Groups. He has also written numerous technical papers
and articles for IT websites (DevX) and IT magazines (Java Magazine, Programmez, Linux
Magazine). Since 2009, he has been part of the French Java podcast called Les Cast Codeurs."”’

In recognition of his expertise and all of his work for the Java community, Antonio has been elected
Java Champion."

Antonio is a graduate of the Conservatoire National des Arts et Métiers in Paris (with an
engineering degree in IT), Brighton University (with an MSc in object-oriented design), Universidad
del Pais Vasco in Spain, and UFSCar University in Brazil (MPhil in Distributed Systems). He also
taught for more than 10 years at the Conservatoire National des Arts et Métiers where he
previously studied.

Follow Antonio on Twitter (@agoncal) and on his blog (www.antoniogoncalves.org).

[3] Devoxx France https://devoxx.fr
[4] Amazon https://www.amazon.com/author/agoncal
[5] Les Cast Codeurs https://lescastcodeurs.com

[6] Java Champions https://community.oracle.com/community/groundbreakers/java/java-champions

https://twitter.com/agoncal
https://antoniogoncalves.org/
https://devoxx.fr
https://www.amazon.com/author/agoncal
https://lescastcodeurs.com
https://community.oracle.com/community/groundbreakers/java/java-champions

Acknowledgments

In your hands, you have a technical fascicle that comes from my history of writing, learning and
sharing. When writing, you need a dose of curiosity, a glimpse of discipline, an inch of
concentration, and a huge amount of craziness. And of course, you need to be surrounded by
people who help you in any possible way (so you don’t get totally crazy). And this is the space to
thank them.

First of all, I really want to thank my reviewer team. Most of them are part of the Quarkus team,
and I have to say, it was a real honour to have these knowledgeable developers reading through
this fascicle. And thanks for Youness for still being around (this is the 6th book he has reviewed)
and Nicolas who jumped in because he loved the topic.

Georgios Andrianakis is a Senior Software Engineer at Red Hat where he works on Quarkus and
Spring-related technologies.”” As one of the most active Quarkus contributors, Georgios has spoken
at various conferences, such as Devoxx, spreading his enthusiasm for Quarkus. Moreover, he is also
a co-organiser of the Athens Kubernetes Meetup. He lives in Athens, Greece.

Roberto Cortez is a professional Java Developer working in the software development industry for
more than 10 years.” He is involved within the Open Source Community in helping other
individuals spread the knowledge about Java technologies. He is a regular speaker at conferences
suc as JavaOne, Devoxx, Devnexus, JFokus and others. He leads the Coimbra JUG and founded the
JNation Conference in Portugal. When he is not working, he hangs out with friends, plays computer
games and spends time with his family. Currently, he leads the SmallRye initiative at Red Hat.

From deep in the Nice mountains, Stéphane Epardaud works for Red Hat on the Vert.x, RESTEasy,
MicroProfile Context Propagation and Quarkus projects.” He is a passionate hacker in Java, C, Perl
or Scheme. He likes web standards, languages and databases. Eager to share, he is a frequent
speaker at various conferences, co-leads the Riviera Java User Group and co-created the Riviera
DEV conference.

George Gastaldi is a Principal Software Engineer working remotely for Red Hat from Brazil."”

George has been an experienced Java developer and architect since 2000 and was introduced to the
Open Source world in 2006. Since 2019, he has enjoyed spending his time as a core developer in
Quarkus.

Youness Teimouri is currently a Senior Software Developer in Silicon Valley with over 15 years of
development experience, particularly in Java, across various countries.""! He has utilised Java stack
to help numerous companies scale in a variety of industries such as Telecoms, ERP systems, Mobile
Banking, and Payment systems, etc. He has co-authored and contributed to some papers on Cloud-
Computing and some of my previous books. Youness is fascinated by the endless possibilities of Java
in different industries and enjoys mentoring junior developers, inspiring them to develop their
own Java skill-set.

Nicolas Martignole is currently the CEO at Lunatech France in Paris."” He is also a Senior
Java/Scala developer. He co-created Devoxx France with Antonio after a few years as one of the
core members of the Paris JUG. He discovered Quarkus and with his strong background as a Play
Framework developer, he was really impressed by the ideas and the developer experience. With his
team at Lunatech, he authored TimeKeeper, an open-source project based on Quarkus, Keycloak

and React."”

Thanks to my proofreader, Gary Branigan, who added a Shakespearean touch to the fascicle.

I could not have written this fascicle without the help and support of the Java community: blogs,
articles, mailing lists, forums, tweets etc.

The fascicle you have in your hands uses a rich Asciidoctor 2.0.10 toolchain, making it possible to
create PDF, EPUB and MOBI files. I am really grateful to the entire Asciidoctor community, and to
Dan Allen and Marat Radchenko in particular, who helped me in sorting out a few things so that the
end result looks so great."” PlantUML is an amazing tool with a very rich syntax for drawing
diagrams... and sometimes, you need a bit of help. So, thanks to the PlantUML community."” As for
the text editor used to write this fascicle, you might have guessed: it’s an IDE! Thank you JetBrains
for providing me with a free licence for your excellent Intelli] IDEA."

Living in Paris, I also have to thank all the bars who have given me shelter so that I could write
while drinking coffee and talking to people: La Fontaine, Le Chat Bossu, La Grille, La Liberté and
Bottle Shop.

As you might have guessed, I have a passion for IT. But I have other passions such as science, art,
philosophy, cooking... and music (I even play jazz guitar). I cannot work without listening to music,
so while I was writing this fascicle, I spent most of my time listing to the best radio ever: FIP.""”
Thank you FIP.

And a big kiss to my wonderful kids, Eloise, Ligia and Ennio. They are the best present life has given
me.

Thank you all!

[7] Georgios Andrianakis https://twitter.com/geoand86
[8] Roberto Cortez https://twitter.com/radcortez

[9] Stéphane Epardaud https://twitter.com/unfromage
[10] George Gastaldi https://twitter.com/gegastaldi

[11] Youness Teimouri http://www.youness-teimouri.com
[12] Nicolas Martignole https://twitter.com/nmartignole
[13] TimeKeeper https://github.com/lunatech-labs/lunatech-timekeeper
[14] Asciidoctor http://asciidoctor.org

[15] PlantUML http://plantuml.com

[16] Intelli] IDEA https://www.jetbrains.com/idea

[17] FIP https://www.fip.fr

https://twitter.com/geoand86
https://twitter.com/radcortez
https://twitter.com/unfromage
https://twitter.com/gegastaldi
http://www.youness-teimouri.com
https://twitter.com/nmartignole
https://github.com/lunatech-labs/lunatech-timekeeper
http://asciidoctor.org
http://plantuml.com
https://www.jetbrains.com/idea
https://www.fip.fr

Introduction

In the late 90s, I was working on J2EE 1.2: the very first release of the Java Enterprise Edition. It was
also the time where companies started to realise the potential of the Internet for their business. For
a few months, I worked for a famous English airline company setting up their e-commerce website.
Yes, it was a time where you would usually buy a flight or train ticket at a travel agency. This
revolutionary move (buying flights online) came at a technical cost: a cluster for static content
(HTML, CSS, images), a cluster for the web tier (Servlets and JSPs), a cluster for Stateless E]Bs, a
cluster for Entity Beans, and a cluster for the database. And as you can imagine, load balancing,
failover and sticky sessions for every tier were loaded with application servers. This e-commerce
website went live... and it worked!

Then came Struts, Spring and Hibernate. Full J2EE application servers shrank down to servlet
containers such as Tomcat or Jetty. We could see things moving, such as architectures becoming
stateless, failover being abandoned, migrations from SOAP to REST and mobile devices taking over
web crawling. Then came the Internet of Things (10T), the cloud, microservices, Function as a Service
(Faa$S), and it never stops moving. Other things didn’t change, like the good old Gang of Four design
patterns, architecture design patterns, unit testing frameworks and building tools. We reinvented
some wheels and gave them different names, but we also learnt dozens of new promising
programming languages (running on top of the JVM or not) and agile techniques. Thanks to these
evolutions that I have witnessed, today you can sit down, read this fascicle and write some code.

Where Does This Fascicle Come From?

Involved in J2EE since 1998, I followed its evolution and joined the Java EE expert group from
version 6 to version 8. During that time, I wrote a book in French called "Java EE 5"."* The book was
published by a French editor and got noticed. I was then contacted by Apress, an American editor,
to work on an English version. I liked the challenge. So, I changed the structure of the book,
updated it, translated it, and I ended up with a "Beginning Java EE 6" book. A few years later, Java
EE 7 was released, so I updated my book, added a few extra chapters, and ended up with a
"Beginning Java EE 7" that was 500 pages long.""”. This process of writing got a bit painful (some text
editors shouldn’t be used to write books), inflexible (it’s hard to update a paper book frequently)
and I also had some arguments with my editor.””

Parallel to that, the history of Java EE 8 was also somewhat painful and long.”" I was still part of the
Expert Group, but nobody really knew why the experts' mailing list was so quiet. No real exchange,
no real vision, no real challenges. That’s when I decided not to work on a Java EE 8 book. But the
community said otherwise. I started receiving emails about updating my book. I used to always
meet someone at a conference going "Hey, Antonio, when is your next book coming out?" My answer
was "No way!"

I decided to take stock. What was holding me back from writing? Clearly it was my editor and Java
EE 8. So, I decided to get rid of both. I extracted the chapters I wanted from my Java EE 7 book and
updated them. That’s where the idea of writing "fascicles", instead of an entire book, came from.
Then, I looked at self-publishing, and here I am at Amazon Kindle Publishing.””

After self-publishing a few fascicles, I saw that Red Hat was working on a game changer: Quarkus. I
started to look at it at a very early stage, and got the idea of creating a workshop. I contacted the

Quarkus team to submit my idea: Emmanuel Bernard and Clement Escoffier liked it, and we put
together a workshop and gave it at a few conferences.”” This workshop inspired a first fascicle:
Practising Quarkus. I liked Quarkus so much that I started using it at customers for proof of
concepts and then bringing it to production. I started to write a few blogs, a few articles and then I
decided to write a fascicle on Quarkus. The fascicle you have in your hands is for you to have an
understanding of what Quarkus is and how you can use it for your microservice architecture.

I hope youw’ll find this fascicle useful.

Who Is This Fascicle For?

Quarkus has its genesis in the JBoss community. JBoss has a long expertise on running applications
on application servers (JBoss EAP, WildFly) or building reactive applications on the JVM (with
Eclipse Vert.x for example). Due to its extension mechanism, Quarkus supports several Java
frameworks (e.g. Hibernate, Camel, etc.) as well as specifications (e.g. a subset of Jakarta EE, or
MicroProfile which is a set of specifications to develop microservices in Java).

So, this fascicle is for the Java community as a whole and for those of you interested in
microservice architectures. The only requirement to follow and understand this fascicle is to know
Java and have some knowledge of relational databases and Docker.

How Is This Fascicle Structured?

This fascicle concentrates on Quarkus 1.9.0.Final. Its structure will help you to discover this
technology as well as helping you to further dive into it if you already have some experience of it.

This fascicle starts with Chapter 1, First Step with Quarkus by showing a few lines of Quarkus code.
That’s because, as developers, we like to read code first when learning a new technology.

Chapter 2, Understanding Quarkus sets up some terminology (Microservices, Reactive Systems,
MicroProfile, Cloud Native, GraalVM) and briefly presents Quarkus, the problems it addresses and
explains the common concerns discussed throughout the fascicle.

Chapter 3, Getting Started is all about showing some basic code running on Quarkus and explaining
how to run and test such application before building and packaging a native executable version of
it.

Quarkus has a powerful extension mechanism for integration with many technologies. Chapter 4,
Core Quarkus focuses on the core technologies of Quarkus such as injection, configuration and
profiles.

Microservices are trendy and use all sorts of design patterns. But all in all, most microservices need
to interact with data. Chapter 5, Data, Transactions and ORM covers data validation, object-
relational mapping and transactions. In this chapter, you will also see ORM with Panache which is
an easy way to manipulate persistent data.

When it comes to microservices, the first thing that comes to our minds is: HTTP microservices.
Chapter 6, HTTP Microservices presents most of the HTTP-related technologies such as RESTful web
services, OpenAPI v3 and JSON manipulation.

One microservice does not make a microservice architecture. You need several of them talking to
each other. Chapter 7, Communication and Fault Tolerance is all about microservices invoking each
other through HTTP and making sure they can fallback if communication does not work.

Reactive programming and reactive messaging are covered in Chapter 8, Event-Driven
Microservices.

When you have several microservices, observability becomes a real challenge. So you need to know
which microservices are alive and ready, and expose some metrics so you know they are
performing as expected. Chapter 9, Observability covers the MicroProfile specifications dealing with
observability: Health and Metrics.

When there are many microservices, you need to package them into containers and orchestrate
them with an orchestrator. In Chapter 10, Cloud Native you’ll see the different formats used by
Quarkus to package your code, and then how Quarkus extensions make it easy to interact with
Docker and Kubernetes.

One thing that Quarkus is really good at, is testing. Chapter 11, Tests digs into JVM and Native Mode
testing in Quarkus, as well as all the testing and mocking frameworks it supports.

In Chapter 12, Putting It All Together, youw’ll build a more complex application with several concepts
that have been introduced throughout this fascicle.

Chapter 13, Summary wraps up with a summary of what you’ve learnt in this fascicle.

Appendix A, Setting up the Development Environment on macOS highlights the tools used throughout
the fascicle and how to install them.

Appendix B, Quarkus Versions lists all the Quarkus releases.

Appendix C, Eclipse MicroProfile Specification Versions lists all the revisions of the MicroProfile
specification.

Appendix D points to some external references which are worth reading if you want to know more
about Quarkus.

This is not the only fascicle I have written. Yow’ll find a description of the other fascicles in
Appendix E:

* Understanding Bean Validation 2.0

* Understanding JPA 2.2

* Understanding Quarkus

* Practising Quarkus

Conventions

This fascicle uses a diverse range of languages, mostly Java, but also JSON, XML, YAML or shell
scripts. Each code example is displayed appropriately and appears in fixed-width font. All the
included code comes from a public Git repository and is continuously tested. Therefore, you

10

shouldn’t have any problem with code that is not syntactically correct. In some cases, the original
source code has been specially formatted to fit within the available page space, with additional line
breaks or modified indentation. To increase readability, some examples omit code where it is seen
as unnecessary. But always remember that you can find the entire code online at
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0.

Italics are used to highlight an important word for the first time, or to give the definition of an
abbreviation or acronym. Bold is rarely used.

o Some useful information.
o Something you really should do if you want the code to work properly.

A Warns you of a possible technical problem.

The Sample Application

Throughout the book, you will see snippets of code all belonging to the Vintage Store application. I
created this application for my very first book, and I still use it as an example. This application is an
e-commerce website allowing users to browse a catalogue of vintage stuff (vinyl, tapes, books and
CDs). Using a shopping cart, they can add or remove items as they browse the catalogue and then
check out so that they can pay and obtain a purchase order. The application has external
interactions with a bank system to validate credit card numbers.

The actors interacting with the system are:
* Employees of the company who need to manage both the catalogue of items and the customers'

details. They can also browse the purchase orders.

» Users who are anonymous persons visiting the website and who are consulting the catalogue of
books and CDs. If they want to buy an item, they need to create an account to become
customers.

* Customers who can login to the system, browse the catalogue, update their account details, and
buy items online.

* The external Bank to which the system delegates credit card validations.

Figure 1 depicts the use case diagram which describes the system’s actors and functionalities.

11

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0

/US

Create purchase order

er

L 1 =
S
L=
Customer\\

— Validate credit card

Bank Employee

Manage item catalogue

Figure 1. Use case diagram of the Vintage Store application

Manage customer

Browse purchase orders

The Vintage Store application manipulates a few domain objects that are described in Figure 2.
Vinyl, tapes, books and CDs, of course, but also chapters, authors, purchase orders, invoices and
shopping carts. Don’t spend too much time on this diagram for now as you will come across most of
these objects throughout this fascicle.

12

/\f\/\

@Chapter @Author @Artlst @Track

Figure 2. Class diagram of the Vintage Store application

The code you’ll see in this fascicle gets its inspiration from the Vintage Store
o application, but it’s not the original application per-se. You can download the code
of the original application if you want, but it’s not necessary in order to follow the

code of this fascicle.””

Downloading and Running the Code

The source code of the examples in the fascicle is available from a public Git repository and can be
cloned, downloaded or browsed online at https://github.com/agoncal/agoncal-fascicle-quarkus/tree/
1.0. The code has been developed and tested on the macOS platform but should also work on
Windows or Linux. The examples used in this fascicle are designed to be compiled with Java 11, to
be built with Maven 3.6.x and to be tested with JUnit 5.x and to store data in an H2 database.
GraalVM 20.2.0 is used to build native images. Appendix A shows you how to install all of these
software packages which will be used in most of the chapters to build, run and test the code.

Getting Help

Having trouble with the code, the content or the structure of the fascicle? Didn’t understand
something? Not clear enough? I am here to help! Do not hesitate to report issues or any questions at
https://github.com/agoncal/agoncal-fascicle-quarkus/issues. I'll do my best to answer them. This will
also allow me to improve the content of this fascicle, and upload a new version through Amazon
Kindle Publishing.

Contacting the Author

If you have any questions about the content of this fascicle, please use the instructions above and
use the GitHub issue tracker. But if you feel like contacting me, drop me an email at
agoncal.fascicle@gmail.com or a tweet at @agoncal. You can also visit my blog at:

13

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://github.com/agoncal/agoncal-fascicle-quarkus/issues
mailto:agoncal.fascicle@gmail.com
https://twitter.com/agoncal

* www.antoniogoncalves.org

* www.antoniogoncalves.org/category/books

[18] Autonio’s books http://amazon.com/author/agoncal

[19] My Java EE Books https://antoniogoncalves.org/category/books

[20] The Uncensored Java EE 7 Book https://antoniogoncalves.org/2014/09/16/the-uncensored-java-ee-7-book
[21] Opening Up Java EE https://blogs.oracle.com/theaquarium/opening-up-ee-update

[22] Amazon Kindle Publishing https://kdp.amazon.com

[23] Quarkus workshop https://quarkus.io/quarkus-workshops/super-heroes

[24] Code of the Vintage Store application https://github.com/agoncal/agoncal-application-cdbookstore

14

https://antoniogoncalves.org/
https://antoniogoncalves.org/category/books/
http://amazon.com/author/agoncal
https://antoniogoncalves.org/category/books
https://antoniogoncalves.org/2014/09/16/the-uncensored-java-ee-7-book
https://blogs.oracle.com/theaquarium/opening-up-ee-update
https://kdp.amazon.com
https://quarkus.io/quarkus-workshops/super-heroes
https://github.com/agoncal/agoncal-application-cdbookstore

Chapter 1. First Step with Quarkus

If you are reading this fascicle, it’s because you are a developer. And like most developers, when
you learn a new technology or framework, you like to see some code first. So here is the very first
step with Quarkus.

Listing 1 shows a Java class representing an Author REST resource. This resource "listens" to HTTP
requests on the /authors URL and has two methods: one returning the entire list of sci-fi authors,
and another one returning a single author giving the index of the array.

Listing 1. Java Class with JAX-RS Annotations

("/authors")
(MediaType.TEXT_PLAIN)
public class AuthorResource {

String[] scifiAuthors = {"Isaac Asimov", "Nora Jemisin", "Douglas Adams"};

public String getAl1ScifiAuthors() {
return String.join(", ", scifiAuthors);

}

("/{index}")
public String getScifiAuthor(("index") int index) {
return scifiAuthors[index];

}
}

If you look carefully at Listing 1, you can see a few JAX-RS annotations (@Path, @Produces, @GET, and
@PathParam) but no specific Quarkus code (don’t worry if you don’t know JAX-RS, Chapter 6 covers
it). So where is Quarkus?

Actually, you can find a little bit of Quarkus in Listing 2 (because most of the code is from REST
Assured, which you will see in Chapter 11). Here, we use the @QuarkusTest annotation to let Quarkus
test the Author REST resource. We target the URL /authors with an HTTP GET method (with and
without an index parameter), and we make sure the HTTP status code is 200-0K and that the content
of the HTTP body is correct.

15

Listing 2. Test Class with a Quarkus Annotation

public class AuthorResourceTest {

public void shouldGetAllAuthors() {
given()
.header (ACCEPT, TEXT_PLAIN).
when()
.get("/authors").
then()
.assertThat()
.statusCode(is(200))
.and()
.body(is("Isaac Asimov, Nora Jemisin, Douglas Adams"));

public void shouldGetAnAuthor() {
given()
.header (ACCEPT, TEXT_PLAIN)
.pathParam("index", 0).
when()
.get("/authors/{index}").
then()
.assertThat()
.statusCode(is(200))
.and()
.body(is("Isaac Asimov"));

You didn’t understand all the code? You did understand it but you feel there is more to it than that?
The fascicle you have in your hands is all about Quarkus. Thanks to the chapters that follow, you
will understand the basics of this technology and will have plenty of examples so that you can dive
into more complex topics.

16

Chapter 2. Understanding Quarkus

In the previous First Step with Quarkus chapter, you’ve already seen some code. But before going
further into more code, we need to step back and define some concepts. This Understanding chapter
gives you some terminology that will be used in the rest of the fascicle so you don’t get lost.

Quarkus is A Kubernetes Native Java stack tailored for Open]DK HotSpot & GraalVM, crafted from the
best of breed Java libraries and standards.”” In practice, Quarkus is an Open Source stack for
writing Java applications, specifically back end applications. So Quarkus is not limited to
microservices, even though it is highly suited for it.

Just by reading the definition of Quarkus, you can see that there are many technologies involved:
Java, of course, but also GraalVM, Reactive Systems and Kubernetes. For the standards, Quarkus
supports some Jakarta EE and MicroProfile specifications. Let’s have a look at all these pieces.

2.1. Understanding Microservices

Microservices is the most popular architecture style when creating cloud native applications. It
significantly shortens the time to market of new application features by changing, testing and
deploying each service, individually, without affecting other services. A well-designed and right-
sized microservice architecture can help engineer an application that is stable, scalable and fault
tolerant.

2.1.1. Monolith

When talking about microservices, we need to understand its counterpart: the monolith. A few
decades ago, it was common to develop an application that could fulfil all your business needs
while running isolated on a single machine. Such applications had a graphical interface, processed
business operations, stored data in a local database, accessed custom files, but also took advantage
of various remote code operations (e.g. accessing remote data stores, remote services, etc.). These
Monoliths, as shown in Figure 3, are built as a single unit and deployed as a single logical
executable.

17

User >» — > Catalog

A |
| |
I
|

|
|
|
____/ Y

Purchase k< - | Inventory
Order

Figure 3. Monolith

2.1.2. Microservices

The difficulties associated with developing, testing, fixing, and updating applications have relegated
big monolithic applications to the past. Today, application architecture must support agile and
continuous development by decomposing systems into smaller services focused on specific
business domains. These domain-specific services can then be developed and modified
independently according to evolving business needs, without impacting the system as a whole.

Decomposing a monolith into independent microservices (see Figure 4), on the whole or only
partially while leaving the remaining functionality unchanged, has many advantages. For example,
each microservice is easy to understand, develop and maintain. A microservice can be deployed,
scaled and run independently. Changes to one microservice can be done without the risk of side
effects on other microservices. Such advantages help shorten the time to market by facilitating
advanced agility.

18

User f — 1t> Catalog

A 2

Inventory

/

Purchase k|-] -
Order

Figure 4. Microservices

As shown in Figure 5, microservice architectures tend to use external services, possibly controlled
by a third-party provider. Examples would be delegating authentication to popular account

providers like Google, Facebook or Twitter, email processing to MailChimp or MailJet, payments to
Paypal or Strip, invoices to and.co, etc.

] (|
Single Sign-On [€ [F 1?1 Catalog | 1> Media

|
|
T
1

_/ Y
Purchase <|- - Inventory
Order
I
|
|
Y
1]
Banking

Figure 5. Microservices invoking external services

19

2.1.3. Pros and Cons

Like any architectural style, microservices bring costs and benefits.”” So before diving into
microservices, you have to understand these and apply them to your specific context. Microservices
provide the following benefits:

» Strong Module Boundaries: Microservices reinforce modular structure, which is particularly
important for larger teams.

* Independent Deployment: Simple services are easier to deploy, and since they are autonomous,
are less likely to cause system failures when they go wrong.

» Technology Diversity: You can mix multiple languages, development frameworks and data-
storage technologies (i.e. each team working on a microservice has more flexibility to employ
different technologies without affecting other teams).

But microservices also come with costs:

* Distribution: Distributed systems are harder to program since remote calls are slow and are
always at risk of failure.

* Eventual Consistency: Maintaining strong consistency is extremely difficult for a distributed
system, which means everyone has to manage eventual consistency.

* Operational Complexity: You need a mature operations team to manage lots of services which
are being redeployed regularly.

That’s when Quarkus comes into play. Quarkus brings a set of functionalities to reduce these costs
and lets you focus on the benefits of a microservice architecture. When reading about
microservices, you might come across the word Reactive Systems which embeds a few other
techniques. That’s because microservices and reactive systems go hand in hand. To help you in
building reactive microservices, Quarkus integrates reactive messaging and reactive programming.

2.2. Understanding Reactive

The term Reactive has been around for a few decades, but it has gained momentum lately with
cloud native microservices. Reactive means that you show a response to a stimulus. With this
definition, you can think of a keyboard that responds to a pressed key, a spreadsheet cell that
recalculates itself when another cell changes, etc. Reactive is everywhere. But Reactive often comes
associated with other words such as "Manifesto", "Systems", "Streams", "Programming", or
"Messaging":

* Reactive systems: Systems that are modelled to react to a stimulus, such as a message, a request,
a metric, etc.

* Reactive streams: Stream processing with non-blocking backpressure.

* Reactive programming: Programming model (based on Reactive streams) on which reactive

systems depend on.

Before defining these concepts, let’s first introduce the Reactive Manifesto.

20

2.2.1. Reactive Manifesto

The Reactive Manifesto is a document that defines the core principles of reactive systems.”” It was
first released in 2013 by a group of developers explaining the reasons behind the manifesto.”” The
four properties of reactive systems are: responsive, resilient, elastic and message-driven as shown
in Figure 6.

Responsive

A

Elastic < > Resilient

Message-Driven

Figure 6. Reactive Manifesto
The manifesto defines each property as:

* Elastic: Is the ability of an application to work with a variable number of instances. This is
useful as elasticity allows responding to traffic spikes by starting new instances, and load-
balancing traffic across instances.

* Resilient: When one instance in a group of elastic instances crashes, then traffic is redirected to
other instances (and a new instance can be started).

* Responsive: Is the result of combining elasticity and resiliency to respond in a timely manner.

* Message-Driven: Using asynchronous messages is the key enabler for elasticity and resiliency,
and this leads to responsivity.

Reactive Principles

The Reactive Principles is also an important source of inspiration for designing distributed
applications.”” This document is a companion to the Reactive Manifesto as it incorporates the
ideas, paradigms, methods and patterns from both Reactive Programming and Reactive
Systems into a set of practical principles.

With these definitions in mind, let’s see why and how we can apply them to an entire system.

21

2.2.2. Reactive Systems

Our world is changing! In 2005, an application would use a dozen servers hosted internally, the
response time would be counted in seconds, we would use a few hours a year for offline
maintenance, and we would handle a few gigabytes of data. Today we handle thousands of
multicore processors somewhere in a datacentre, response time is in milliseconds, we need 100%
uptime, and we have changed our metrics to petabytes for data. This all demands that applications
a written in a fundamentally different way than what most programmers were used to. Today,
systems are designed with multicore and cloud computing architectures, as well as user
requirements, low latency and higher throughput in mind. That’s when reactive systems can help.

AN
[~]~

User f — 1> Catalog
|
I

X =

A 2

Inventory

-/

Purchase kc
Order

'K
L K4
| K

Figure 7. Reactive microservices

As shown in Figure 7, reactive systems rely on asynchronous messages (a.k.a. events) to
communicate between microservices. This ensures loose coupling between microservices, but also
isolation and location transparency. Employing messages enables load management, elasticity, and
flow control by monitoring the message queues in the system and applying backpressure when
necessary. Messages can be dispatched to more instances (making the system elastic), and we can
control the flow between message producers and message consumers (this is backpressure).””
Location transparency makes it possible for the management of failure to work either across a
cluster or within a single host. Non-blocking communication allows recipients to only consume
resources while active, leading to less system overhead. This has an interesting impact on the code
where reactive streams and reactive programming are needed.

2.2.3. Reactive Streams

Everything in the reactive world is accomplished with the help of Reactive Streams.”" Reactive
streams is a standard specification created in 2013 as the reactive programming model was
beginning to spread, and more frameworks for reactive programming were starting to emerge in

22

various languages. It is now implemented across various frameworks and platforms. The core goal
is to standardise the exchange of asynchronous data between software components with non-
blocking backpressure.

Reactive streams is a very low-level contract, expressed as a handful of concepts applicable in many
languages, including Java:

Publisher: Publishes an unlimited number of sequenced messages according to the demand
received from its subscriber(s).

Subscriber: Subscribes to a given publisher and then receives messages.
» Subscription: Represents a one-to-one lifecycle of a subscriber subscribing to a publisher.

* Processor: If an entity is both a publisher and a subscriber, it is called a processor. A processor
commonly acts as an intermediary between another publisher and subscriber.

Figure 8 shows the sequence of interactions between a subscriber and a publisher. A subscriber
informs a publisher that it is willing to accept a given number of messages (a.k.a. events, items,
records). Then, the publisher notifies the subscriber of the subscription that was created. Once this
notification process is completed, the subscriber can inform the publisher that it is ready to receive
n number of messages. The publisher pushes the maximum receivable number of messages to the
subscriber. The process of restricting the number of messages that a subscriber is willing to accept
is called backpressure: it is essential in prohibiting overloading the subscriber.

Publisher Subscriber Subscription

|
|
Informs how many messages |
L itis willing to receive :

L =

E Notify subscriber E E

:r_Y_V_i_t_h Subscription ... \

| Sends messages 5 |

. ! .
Publisher Subscriber Subscription

Figure 8. Subscriber and publisher interacting

Reactive Streams interfaces have been added to the Java platform since version 9.

o They include basic interfaces for each of the fundamental Reactive Stream
concepts in the Flow concurrency library.”” This allows all Java applications to
depend on these interfaces rather than using a specific implementation.

23

In Chapter 8, you will see how Quarkus makes reactive programming easy with Mutiny and how it
handles reactive messages.

2.3. Understanding MicroProfile

Having an extension mechanism (described below), Quarkus implements many features and
integrates with many external frameworks. Furthermore, being microservices-oriented, Quarkus
integrates the entire set of specifications of Eclipse MicroProfile through SmallRye.

Eclipse MicroProfile addresses the need for enterprise Java microservices.”” It is a set of
specifications for handling microservices design patterns. MicroProfile enables Jakarta EE
developers to leverage their existing skill set while shifting their focus from traditional monolithic
applications to microservices. MicroProfile APIs establish an optimal foundation for developing
microservices-based applications by adopting a subset of the Jakarta EE standards and extending
them to address common microservices patterns. Eclipse MicroProfile is specified under the Eclipse
Foundation and is implemented by SmallRye.

Jakarta EE

Even if Quarkus does not rely on Jakarta EE, it supports some of its specifications, and so does
Eclipse MicroProfile. So it’s worth mentioning it.

Created in 1998, Java EE (Java Enterprise Edition) can be seen as an extension of the Java
Standard Edition (Java SE)." It is a set of specifications intended for enterprise applications
in order to facilitate the development of distributed, transactional, and secure applications. It
is developed using the Java Community Process, with contributions from industry experts and
commercial and open source organisations.””

In 2017, with version 8 of the platform, Java EE was donated to the Eclipse Foundation and
renamed Jakarta EE." Jakarta EE is the name of the platform governed by the Jakarta EE
Working Group.”” The first version is Jakarta EE 8, which is based on the Java EE 8
technologies. Future versions will not be driven by the JCP but through the open Eclipse
Foundation.

2.3.1. Eclipse Foundation

The Eclipse Foundation is an independent, non-profit entity that acts as a steward for the Eclipse
open source software development community.”* The Foundation focuses on key services such as:
intellectual property management, ecosystem development, development process, and IT
infrastructure. It was created by IBM in 2001 and is now supported by a consortium of several
software vendors (Red Hat, Huawei, Bosch, Fujitsu, SAP, Oracle, etc.).

2.3.2. SmallRye

SmallRye is an open source project that implements the Eclipse MicroProfile specifications.” It is
community-driven and everyone is welcome to contribute to it. SmallRye implementations are
tested against the Eclipse MicroProfile TCKs (Technology Compatibility Kits). Several open source

24

projects integrate SmallRye such as Thorntail, WildFly, WebSphere Liberty and Quarkus.

2.3.3. MicroProfile Specifications

Quarkus integrates version 3.3 of MicroProfile (see Appendix C if you want to see all the previous
revisions of the specification). MicroProfile 3.3 specifications are described in Table 1. Youwll find
specifications that come from Jakarta EE (e.g. CDI, JAX-RS, etc.) as well as brand new specifications
that were created with microservices in mind.

Table 1. MicroProfile 3.3 Specifications

Specification Version URL
Context and Dependency 2.0 https://jcp.org/en/jsr/detail?id=365
Injection (CDI)
Java API for RESTful Web 2.1 https://jcp.org/en/jsr/detail?id=370
Services (JAX-RS)
JSON Binding (JSON-B) 1.0 https://jcp.org/en/jsr/detail?id=367
JSON Processing (JSON-P) 1.1 https://jcp.org/en/jsr/detail?id=374
Common Annotations 1.3 https://jcp.org/en/jsr/detail?id=250
Configuration 14 https://microprofile.io/project/eclipse/microprofile-config
Fault Tolerance 2.1 https://microprofile.io/project/eclipse/microprofile-fault-
tolerance
Health 2.2 https://microprofile.io/project/eclipse/microprofile-health
JWT 11 https://microprofile.io/project/eclipse/microprofile-jwt-auth
Metrics 2.3 https://microprofile.io/project/eclipse/microprofile-metrics
OpenAPI 1.1 https://microprofile.io/project/eclipse/microprofile-open-api
OpenTracing 1.3 https://microprofile.io/project/eclipse/microprofile-
opentracing
REST Client 14 https://microprofile.io/project/eclipse/microprofile-rest-client
CDI

Context and Dependency Injection (CDI) is a central technology in Jakarta EE or in MicroProfile."” Its
programming model turns nearly every component into an injectable, interceptable and
manageable bean. CDI is built on the concept of "loose coupling, strong typing", meaning that beans
are loosely coupled, but in a strongly-typed way. Decoupling goes further by bringing interceptors,
decorators and events to the entire platform. CDI homogenises scopes among beans, as well as
context and life cycle management. Quarkus uses CDI extensively. However, it is not a full CDI
implementation verified by the TCK. CDI being runtime based and not compile time based, Quarkus
decided to only implement the most useful CDI features that could be generated at compile time.
Chapter 4 covers how to use CDI injection within Quarkus.

25

https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=367
https://jcp.org/en/jsr/detail?id=374
https://jcp.org/en/jsr/detail?id=250
https://microprofile.io/project/eclipse/microprofile-config
https://microprofile.io/project/eclipse/microprofile-fault-tolerance
https://microprofile.io/project/eclipse/microprofile-fault-tolerance
https://microprofile.io/project/eclipse/microprofile-health
https://microprofile.io/project/eclipse/microprofile-jwt-auth
https://microprofile.io/project/eclipse/microprofile-metrics
https://microprofile.io/project/eclipse/microprofile-open-api
https://microprofile.io/project/eclipse/microprofile-opentracing
https://microprofile.io/project/eclipse/microprofile-opentracing
https://microprofile.io/project/eclipse/microprofile-rest-client

JAX-RS

Java API for RESTful Web Services (JAX-RS) is a specification that provides support for creating web
services according to the Representational State Transfer (REST) architectural style."" JAX-RS
provides a set of annotations and classes/interfaces to simplify the development and deployment of
REST endpoints. It also brings a client API to programmatically invoke REST endpoints. Chapter 6
covers how to use JAX-RS to expose RESTful web services. In Chapter 7, you will see how HTTP
microservices can invoke each other using REST Client (which is based on JAX-RS).

JSON-B

JSON Binding (JSON-B) is a standard binding layer for converting Java objects to/from JSON
documents."” It defines a default mapping algorithm for converting existing Java classes to JSON
while enabling developers to customise the mapping process through the use of Java annotations.
JSON-B is used in Chapter 6 to customise the JSON output of RESTful web services.

JSON-P

JSON Processing (JSON-P), is a specification that allows JSON processing in Java.”” The processing
includes mechanisms to parse, generate, transform, and query JSON data. JSON-P provides a
standard to build a Java object in JSON using an API similar to DOM for XML. At the same time, it
provides a mechanism to produce and consume JSON by streaming in a manner similar to StAX
(Streaming API for XML) for XML."" JSON-P is also used in Chapter 6 to produce JSON output for
RESTful web services.

Common Annotations

Common Annotations provides annotations for common semantic concepts across a variety of
individual technologies in the Java SE, Jakarta EE and MicroProfile platforms. Table 2 lists a subset
of the most commonly used annotations.

Table 2. Main Common Annotations

Annotation Description

@DenyAll, @PermitAll, GRolesAllowed, Standard annotations based on a simple role-based

@RunAs security model

@Priority Can be applied to classes or parameters to indicate in what

order they should be used

@PostConstruct, @PreDestroy Used on a method that needs to be executed after being
created or before being removed by the container

@Generated Marks the source code that has been generated by some
other API

Configuration

In a microservice architecture, the fact that there is no central runtime implies that there is no
single point of configuration, but several points. Each microservice has its own configuration. But
sometimes two microservices might want to share a common configuration. In that case, it can be

26

helpful that they access configurations from multiple sources homogeneously and transparently.
Eclipse MicroProfile Configuration provides applications and microservices with the means to
obtain configuration properties through several sources (internal and external to the application),
through dependency injection or lookup.””’ Chapter 4 covers configuration in depth.

Fault Tolerance

As the number of services grows, the odds of any service failing also grows. If one of the involved
services does not respond as expected, e.g. because of fragile network communication, we have to
compensate for this exceptional situation. Eclipse MicroProfile Fault Tolerance allows us to build up
our microservice architecture to be resilient and fault tolerant by design. This means we must not
only be able to detect any issue but also to handle it automatically. Chapter 7 covers different fault
tolerance patterns.

Health

Eclipse MicroProfile Health provides the ability to probe the state of a computing node from another
machine."” The Eclipse MicroProfile Health APIs allow applications to provide information about
their state to external viewers which is typically useful in cloud environments where automated
processes must be able to determine whether the application should be discarded or restarted.
Chapter 9 is all about observability, so that’s where you will find Eclipse MicroProfile Health.

Metrics

Eclipse MicroProfile Metrics provides a unified way for MicroProfile servers to export monitoring
data to management agents."” Metrics will also provide a common Java API for exposing their
telemetry data. MicroProfile Metrics allows applications to gather various metrics and statistics that
provide insights into what is happening inside the application. The metrics can be read remotely
using a JSON or OpenMetrics format so that they can be processed by additional tools such as
Prometheus, and stored for analysis and visualisation. MicroProfile Metrics is covered in Chapter 9
as it is related to observing the performance of your microservices.

OpenAPI

Exposing RESTful APIs has become an essential part of all modern applications. From the
microservices developer’s point of view, it is important to understand how to interact with these
APIs and how to test that they are still valid and backward compatible. For that, there needs to be a
clear and complete contract. Therefore a standard API documentation mechanism is required and
can also be used for API testing. That’s when OpenAPI comes along."

Eclipse MicroProfile OpenAPI provides a Java API for the OpenAPI v3 specification that all
application developers can use to expose their API documentation.”” It aims to provide a set of Java
interfaces and programming models which allow Java developers to natively produce OpenAPI v3
documents from their JAX-RS endpoints. Chapter 6 covers OpenAPI as well as Swagger UL

REST Client

Eclipse MicroProfile REST Client provides a type safe approach using proxies and annotations for
invoking RESTful services over HTTP."” The Eclipse MicroProfile REST Client builds upon the JAX-
RS 2.1 APIs for consistency and ease-of-use. REST Client will be covered in Chapter 7. Meanwhile,

27

Chapter 6 covers JAX-RS and its client APIL

JWT

In a microservice architecture, we need a mechanism to handle distributed authentication and
authorisation. Eclipse MicroProfile JWT Auth provides Role-Based Access Control (RBAC) using
OpenID Connect (OIDC) and JSON Web Tokens (JWT)." Due to the stateless character of
microservices, the solution must offer security context propagation in an easy way. This is done by
passing tokens around microservices invocations.

OpenTracing

In a microservice architecture, requests often span multiple services (e.g. database queries,
publishing messages, etc.). Eclipse MicroProfile OpenTracing defines an API that allows services to
easily participate in a distributed tracing environment.”” But this API has been deprecated in
MicroProfile 3.3 and will be replaced by OpenTelemetry in a future release.

2.3.4. Standalone Releases

The previous specifications are part of MicroProfile. But under the MicroProfile umbrella, other
specifications are either being incubated or still in progress. Some might get into the future releases
of MicroProfile, while others might disappear. But some have made some notable progress and
made their way to Quarkus.

Context Propagation

When using a reactive model which executes upon completion of prior stages, the context under
which dependent stages execute is unpredictable. Dependent stages might run with the context of a
thread that awaits completion. Eclipse Context Propagation allows transferring thread context.”

Reactive Messaging

Eclipse Reactive Messaging is made for building event-driven, data streaming, and event-sourcing
applications.” It lets your application interact with various messaging technologies such as Apache
Kafka, AMQP or MQTT. The framework provides a flexible programming model bridging CDI and
event-driven APIs.

Mutiny

Eclipse Mutiny is a reactive programming library.”” Mutiny provides a guided API, making reactive
programming easy. It avoids having classes with hundreds of methods that are not always very
explicit (e.g. map() or flatmap() on other reactive frameworks). But Mutiny has several converters
from and to other reactive programming libraries, so you can always pivot and use the map()
method if you really wish.

Mutiny was designed years after existing reactive programming libraries. It is based on the
experience of many developers, lost in an endless sequence of map and flatMap operators. Mutiny
does not provide as many operators as the other reactive libraries, focusing instead on the most
used operators. Furthermore, it helps developers by providing a more guided API, which avoids
having classes with hundreds of methods to choose from. Chapter 8 covers both Mutiny and

28

Reactive Messaging.

2.4. Understanding Cloud Native Computing

The old way to deploy applications was to use physical hardware. Once this physical hardware was
purchased, it wouldn’t matter if we used all the machine resources or just a small amount. In most
cases, we wouldn’t care that much, as long as we could run the application. If we needed to scale,
we could either buy more physical hardware or install several copies of the same application in the
same box.

However, in the Cloud, we pay exactly for what we use. So we have become pickier with our
hardware usage. If the application takes 10 seconds to start, or consumes a lot of memory or CPU,
we have to pay for these resources. And if we need to scale, then we will pay for these 10 seconds,
memory and CPU again.

Cloud Native Computing is an approach that utilises cloud computing to build and run scalable
applications in modern, dynamic environments such as public, private, and hybrid clouds.”
Technologies such as containers, microservices, serverless functions, service meshes and
immutable infrastructure are common elements of this architectural style. These techniques enable
loosely coupled systems that are resilient, manageable, and observable. The Cloud Native
Computing Foundation (CNCF) seeks to drive adoption of this paradigm by fostering and sustaining
an ecosystem of open source, vendor-neutral projects.””

I would recommend having a look at the Cloud Native Interactive Landscape map.

o B4 1t is a very well designed and interactive map with all the cloud native,
serverless and member landscapes that make the CNCF. You will see how huge and
diverse this ecosystem is.

In Cloud Native Computing each (micro)service is packaged into its own container, and those
containers are then dynamically orchestrated in order to optimise resource utilisation. So let’s
focus on these last two technologies that we will be using in this fascicle: containers and
orchestrators. Or, if we want to name the implementations, Docker and Kubernetes.

2.4.1. Docker

Docker is a set of platform-as-a-service (PaaS) products that use OS-level virtualisation to deliver
software.” It makes it easier to create, deploy and run applications by using containers. Containers
are isolated from one another and bundle their own software, libraries and configuration files; they
can communicate with each other through well-defined channels. Containers allow developers to
package an application with all its dependencies and ship it all out as one package.

To understand why we created containers, we need to go back in history and see how running
applications has evolved. Figure 9 shows how we used to run applications on bare metal, then on
VMs, and today, containers. By 2000, we were mostly deploying one application per server. So when
a company needed a new application, you needed a new server, make sure the server was up and
running, administer it, etc. Because this was a new application, we didn’t really know how big the
server needed to be, how fast, how much memory, how many CPUs. So we usually ended up with an
expensive bhig server with this new application using 5% of the resources.

29

0s 0s os |

| Appl App2 App3
Operating System Hypervisor Operating System
Bare Metal Virtual Machine Container

Figure 9. From bare metal to VMs to containers

Then came virtualisation. With virtualisation, we could have multiple applications deployed on a
single server, totally isolated one from another. If a new application was coming along, we didn’t
need to buy a new server, we could just reuse an existing one. Servers were now more used (80%
instead of 5%) On a virtual machine, each application gets a percentage of the real server’s
resources and each virtual machine needs an operating system with a licence. So when you have
several virtual machines, you end up with several operating systems that need to be administered,
patched, etc.

A container runs on a physical server, it doesn’t need virtualisation (even if it can technically run
on a virtual machine, but doesn’t need to). Instead of installing several operating systems per
application, we install only one operating system per server, and then a container per application.
Therefore, each application starts quickly because there is no need to start the operating system, it’s
already started.

Docker has its own terminology when talking about packaging and running an application. A
Docker Image is a read-only template with instructions for creating a Docker container. It is a
combination of file system and parameters. Often, an image is based on another image with some
additional customisation. We can use existing images or create our own images. A Docker Container
is a runnable instance of an image. We can create as many containers as we want from an image. A
container is isolated from the host by default. We can modify its behaviour using network, volume,
etc. When a container is created, we can stop, restart or remove it.

Executing a container on a single machine is one thing, but having to execute dozens, hundreds of
containers, manage them, restart them if they fail, scale them if needed, that is another story. That’s
why you need an orchestrator such as Kubernetes.

30

2.4.2. Kubernetes

Kubernetes (a.k.a. K8s) is an orchestrator for containerised applications.””” It takes its name from a
Greek word meaning helmsman, or captain: if Docker packages applications inside containers,
Kubernetes is the captain sailing those containers. Kubernetes can schedule, scale, heal, update,
start or stop several containers.

Kubernetes is platform agnostic (bare metal, VM, cloud, etc.): as long as you can install an agent, it
works! Package your application in a container, declare the desired state of your application on a
manifest file, give the all lot to Kubernetes and it will manage it. It will decide on which node to run
the container (depending if the container needs a lot of CPU or ram) and also how many instances
of the container. That’s because Kubernetes is watching the state of the cluster, and instantiates
more containers (without a human getting involved) if the instances are under heavy load. If the
load gets lower, Kubernetes can get rid of containers, and if a node fails, it instantiates another one.

For this reason, as shown in Figure 10, a Kubernetes cluster is made up of a master, one or several
nodes where one or several pods are deployed. Kubernetes runs your application by placing
containers into Pods to run on Nodes. A pod is a sandbox to run multiple containers and contains a
network, kernel namespaces, volumes, etc. All containers in a single pod share the same pod
environment.

A node may be a virtual or physical machine, depending on the cluster.

..

API Server

Controller Manager

|
Scheduler |
|
Cluster Store |

Master

Figure 10. Kubernetes cluster

A Kubernetes cluster has a minimum of one Master. A master (a.k.a. master node) is not supposed to
run workload but, instead, it controls and manages a set of nodes (a.k.a. worker nodes). A master is
made of:

» API Server: Front controller to which we talk to (through a rest API, or command-line interface)
when managing the entire cluster.

31

* Scheduler: Watches the API Server for new pods, assigns work to nodes, etc.

* Controller Manager: Manages all the controllers (node controller, endpoint controller,
namespace controller, etc.).

* Cluster Store: Cluster storage, state and configuration (uses etcd, the open source key/value

store).'””
You will see in Chapter 10 how Quarkus helps you in packaging a microservice into
e a Docker image and deploying it to a Kubernetes cluster. Go to Appendix A if you
want to setup Docker and Kubernetes and learn how to manage a cluster using
Minikube.

It’s good to have orchestrators managing containers so our applications can scale and heal. But one
reason for them is also related to startup time: how fast can an orchestrator instantiate a container
and start a new instance of a Java application? The answer is usually that, no matter how fast the
orchestrator works, the JVM will always take long to startup. GraalVM is a technology that can
shorten this startup time by building native images out of Java code.

2.5. Understanding GraalVM

Quarkus targets the HotSpot VM, of course, but it was built with GraalVM in mind. GraalVM is an
extension of the Java Virtual Machine (JVM) to support more languages and several execution
modes."”” It is itself implemented in Java. GraalVM supports a large set of languages: Java, of course,
other JVM-based languages (such as Groovy, Kotlin etc.) but also JavaScript, Ruby, Python, R and
C/C++.

But it also includes a new high performance Java compiler, itself called Graal. Running your
application inside a JVM comes with startup and footprint costs. GraalvVM has a feature to create
native images for existing JVM-based applications. The image generation process employs static
analysis to find any code reachable from the main Java method and then performs full Ahead-Of-
Time (AOT) compilation on the Substrate VM. The resulting native binary contains the whole
program in machine code form for its immediate execution. This improves the performance of Java
to match the performance of native languages for fast startup and low memory footprint.

HotSpot’s execution engine has a Just-in-Time (JIT) compiler. HotSpot starts interpreting the code,
the methods are compiled at the client compilation level and then finally move to the server
compilation level. Even with the improvements in the compilation levels, HotSpot still starts
interpreting its bytecode and then moves on to JIT-ing it.

On the other hand, the Ahead-of-Time (AOT) compilation improves the startup time by loading pre-
compiled classes.”” This helps avoid running those classes in the interpreted mode or at a sub-
optimised compilation level.

2.5.1. Architecture
The major differentiators of GraalvVM compared to the base JDK are:

* Sulong: Guarantees memory safety for C/C++ and other LLVM-based languages (e.g. Fortran).

32

* Truffle Framework: A language implementation framework for creating languages and
instrumentations for GraalVM (e.g. R, Ruby, Python, NodeJs, etc.).

* Graal Compiler: Written in Java and supports both dynamic and static compilation.

» JVM Compiler Interface (JVMCI): Is part of the regular JDK and allows us to plug-in additional
Java compilers (such as Graal) to the JVM.

* Java HotSpot VM: Runtime with the GraalVM compiler enabled as the top tier JIT compiler for
JVM-based languages.

» Substrate VM: Allows AOT compilation for applications written in various languages.

Figure 11 depicts a high-level view of the GraalVM stack. The Graal Compiler is a high performance
JIT compiler written in Java. It accepts the JVM bytecode and produces the machine code. It uses the
new JVM Compiler Interface (JVMCI) to communicate with the Java HotSpot VM. On top of all that,
you will find the Truffle framework that enables you to build interpreters and implementations for
other languages except JVM-based languages (such as Java, Groovy or Scala). If you want to run a
new programming language, you will just have to integrate it with Truffle and the framework will
produce the optimised machine code for you. As you can see, there are already language
implementations for R, Ruby, or JavaScript. For LLVM-based languages (e.g. C/C++, Fortran), Sulong

guarantees memory safety.

((R a no@de Sulong (LLVM)

g

Jaﬁ !Scala % Truffle Framework

Graal Compiler

JVM Compiler Interface

Substrate VM
Java HotSpot VM

Figure 11. GraalVM architecture

GraalVM allows you to ahead-of-time compile Java code to a standalone executable, called a native
image. This executable includes the application classes, classes from its dependencies, runtime
library classes from the JDK and statically linked native code from the JDK. It does not run on the
Java VM, but includes necessary components like memory management and thread scheduling
from a different virtual machine, called Substrate VM. Substrate VM is the name for the runtime
components. Chapter 10 will cover native compilation. You will also see a glimpse of native
compilation in action in Chapter 3 and in more depth in Chapter 12.

33

2.5.2. A Brief History of GraalVM

The history of Graal dates back to the research works on MaxineVM in 2013, also known as a meta-
circular virtual machine because this JVM is actually written in Java itself.”” Oracle invested in this
research project and then released it under the name of GraalVM. GraalVM is a production-ready
software and is available as a Community Edition (open source license) and as an Enterprise Edition
(OTN License). Oracle Corporation announced the release of Oracle GraalVM Enterprise Edition in
May 2019. GraalVM has become an important part of the Quarkus story, and Red Hat is committed
to its success. Therefore, Red Hat sits on the GraalVM Project Advisory Board and regularly
contributes features and fixes to GraalVM."""

2.5.3. Mandrel

The history of GraalVM does not stop here. In June 2020 Red Hat announced the project Mandrel."™

Mandrel is a distribution of a regular Open]JDK with a specially-packaged GraalVM native image. On
the technical side, Mandrel’s GitHub repository represents a fork of GraalVM."” It is a downstream
distribution of GraalVM where Red Hat can continue to innovate in the open with an "upstream-
first" mentality, preferring not to deviate from the upstream GraalVM. The primary driver behind
Red Hat’s introduction of Mandrel is to drive the speed and efficiency of the Quarkus framework,
especially on the native-image feature.

2.6. Quarkus Overview

Java was born in 1995 and, at the time, was mostly used to write GUI applications and Applets. The
language was based on the available hardware using single cores and multi-threads. Quickly, the
language moved to the servers, and we started developing monolithic applications, designed to run
on huge machines 24/7 for months (even years), with lots of CPU and memory. The JVM startup time
was not an issue, the memory used by the JVM was huge, but we just let the JIT optimise the
execution over time and left the GC manage the memory efficiently. Slow startup time and resource
consumption don’t fit well in our new environment where we need to deploy hundreds of
microservices into the cloud, move them around and stop and start them quickly. Instead of scaling
an application by adding more CPU and memory, we now scale microservices dynamically by
adding more instances. That’s where Quarkus, GraalVM, Kubernetes and other projects come into

play.

Quarkus tailors applications for GraalVM and HotSpot. The result is that your application will have
amazingly fast boot time and incredibly low RSS memory offering high density memory utilisation
in container orchestration platforms like Kubernetes.

From a developer’s point of view, Quarkus proposes a nice developer experience: it gives you fast
live reload, unified configuration and hides the complexity of GraalVM, allowing you to easily
generate native executables. All this without reinventing the wheel by proposing a new
programming model, Quarkus leverages your experience in standard libraries that you already
know (e.g. CDI, JPA, Bean Validation, JAX-RS, etc.) as well as many popular frameworks (e.g. Eclipse
Vert.x, Apache Camel, etc.).

34

If you like the format of this fascicle and are interested in Quarkus, check out the

o references for my Practising Quarkus fascicle in Appendix E. In the Practising
fascicle, you will develop, test, build, package and monitor an entire microservice
application.

2.6.1. A Brief History of Quarkus

Quarkus made its debut in 2019 and is driven by Red Hat. But to tell the history of Quarkus, we first
need to quickly go through the history of Red Hat; or I should say JBoss.

JBoss was created in 1999 and started developing the JBoss Application Server (later known as JBoss
EAP, or Enterprise Application Platform).”” JBoss EAP is a runtime environment, implemented in
Java, supporting all the Jakarta EE (a.k.a. Java EE or Java Enterprise Edition) specifications.”" The
company acquired expertise in the middleware industry by supporting JBoss EAP and developing
other middleware-related services. Thanks to this expertise, JBoss was acquired by Red Hat in 2006.

Red Hat, known for its enterprise operating system Red Hat Enterprise Linux (RHEL), built on JBoss
expertise by developing a lighter application server (WildFly Swarm, renamed as Thorntail %),
getting involved in the MicroProfile consortium, and being a committer on the Java HotSpot project.
Red Hat continued developing and contributing to the monolithic world of application servers, but
also knew how to reinvent itself by creating a family of containerisation software called OpenShift
Container Platform.”

Moving to the cloud made sense for Red Hat. They had a Linux operating system, a JVM they
contributed to, and a container platform. But the cloud environment has some costs and constraints
that typical application servers do not handle well (slow startup time, heavy memory consumption,
mutable environments, etc.). So the company decided to create a runtime environment that would
fit well in this cloud environment: Quarkus.

Even if Quarkus was created in 2019, it came from a company that had a long history with open
source, the Java ecosystem, distributed environments (Jakarta EE), ORM mapping (Hibernate),
reactive programming (Vert.x), microservices (MicroProfile), and so on. If you come from this
history, you can say that you have a few decades of expertise in Quarkus.

e The code in this fascicle relies on Quarkus 1.9.0.Final. Appendix B lists all the
revisions and major changes of Quarkus since its very first release.

2.6.2. Architecture

Let’s have a look at the internal architecture of Quarkus. As you will see in this fascicle, Quarkus
does a lot of things! From persistence, to transactions, to fault-tolerance, to reactive messaging, etc.,
you might think of it as a huge application server that implements hundreds of features. Well, this
is not the case. As shown in Figure 12, Quarkus is made of a small core that orchestrates the other
pieces. And that’s all. The power of Quarkus is its extension mechanism. Persistence, transactions,
fault-tolerance, etc. are all external extensions that can be added to your application only if needed.
This extension mechanism is heavily based on ArC, a lightweight dependency injection framework.

35

Quarkus Extensions

Configuration
Validation
ORM
Transaction
JAX-RS
Open API
JSON Binding
JSON Processing
Fault Tolerance
Metrics
Health

Quarkus Core

Hot Spot GraalvVM

Figure 12. Quarkus internal architecture

The core component of Quarkus also does the hard work of rewriting applications in the build
phase so that native executable and Java-runnable applications can be generated. For that it uses a
set of tools such as Jandex, a Java annotation indexer and reflection library, to optimise annotation
processing.”? Gizmo is a library used to produce Java bytecode.”” Also, to overcome other
limitations of GraalVM, thanks to the Graal SDK API, Quarkus uses a single-pass, single class loader
and dead-code elimination mechanism (substantially cutting down the size of the executable file).

2.6.3. Imperative and Reactive Programming

One of the goals of Quarkus is to unify both imperative and reactive programming models
seamlessly. Thanks to its reactive core based on Netty and Eclipse Vert.x, everything in Quarkus is
non-blocking. That means that the same thread can handle multiple concurrent requests: while a
process is waiting for some IO, the thread is released and so can be used to handle another request.
With non-blocking 10, the number of cores becomes the essential setting as it defines the number of
I0 threads you can run in parallel. Used properly, it efficiently dispatches the load on the different
cores, handling more with fewer resources.

But that requires the application code to be non-blocking and avoid blocking the IO thread. This is a
very different development model and you would have to use reactive programming in your code,
not imperative. That would mean that you would not be able to use any of your legacy imperative
code such as REST endpoints, database access or file systems. So having the ability to mix both
reactive and imperative code is essential for Quarkus.

The secret behind this is to use a single reactive engine for both imperative and reactive code as
shown in Figure 13. Quarkus uses Eclipse Vert.x and Netty at its core. Netty is an asynchronous
event-driven framework. That means that every request is handled by an event loop (the IO thread)
and then, depending on the destination, it can invoke the imperative code on a worker thread (e.g.
servlet, Jax-RS) or the reactive code on an IO thread (reactive route). Thus, Quarkus is also a

36

solution that lets you write imperative code and/or non-blocking code in the same application.
Specific solutions such as non-blocking database drivers can be used, but they’re not mandatory.

Servlets REST Endpoints || Reactive Routes
Worker
Threads
Routing Layer
Event Vert.x / Netty

0 0O O OO0

Figure 13. Quarkus reactive core

Reactive programming and reactive messaging are covered in Chapter 8.

2.6.4. Augmentation

If you come from the Jakarta EE or Spring world, you know that most of the work of an application
server is performed at runtime. You compile and package an application into a JAR file, deploy it,
and then wait for the application server to do all the XML parsing, annotation discovery, classpath
scanning, and so on. Then, finally, the application is ready.

Quarkus goes the other way round and proposes to generalise ahead-of-time techniques.”” When a
Quarkus application is built, some work that usually happens at runtime is moved to the build time.
Thus, when the application runs, most of it has been pre-computed, and all the annotation
scanning, XML parsing, and so on won’t be executed anymore. This is called "augmentation" as
shown in Figure 14. This means that Quarkus brings an infrastructure for other frameworks to
embrace build time metadata discovery (like annotations), declares which classes need reflection at
runtime and generates static proxies to avoid reflection (not to be confused with dynamic proxies
that are created by traditional servers at runtime). This has two direct benefits: faster startup time
and lower memory consumption.

37

Classes and

Resources ? ,
: Quarkus Augmentation

Y

Augmented Classes
and Resources

Runner JAR

Figure 14. Quarkus augmentation

But Quarkus can also use GraalVM to generate native executables. Thanks to an aggressive dead-
code elimination process (see Figure 15), the final executable is smaller, faster to start and uses a

smaller amount of memory. This makes Quarkus a great runtime for containers, as well as cloud
native and serverless deployments.

AN
Runner JAR [—>

Dead-Code elimination

Native Executablelj(f é

Compilation

Figure 15. Native compilation

2.6.5. Extensions

As you’ve seen, Quarkus uses an extension mechanism. But not every external framework or

38

library is an extension. In fact, Quarkus works with any external library in JVM mode, so you are
not restricted to Quarkus extensions. An extension integrates seamlessly into the Quarkus
architecture as it can be processed at build time and be built in native mode. Then, you only pick
the extensions you need on your application and Quarkus will make sure it works.

Quarkus has hundreds of extensions, and every release brings new ones. One way
o to keep up to date is to go to https:/code.quarkus.io and check if the

technology/framework that you are looking for has been integrated as a Quarkus

extension. You can also use the Maven command mvn quarkus:list-extensions

I won’t go through all the Quarkus extensions, just the ones used directly or indirectly in this
fascicle:

Agroal is the datasource connection pool implementation that integrates with transactions,
security and other systems."”

Hibernate ORM is the open source Object/Relational Mapping (ORM) framework implementing
Java Persistence APL"

Hibernate Validator is the open source reference implementation of Bean Validation."””

Narayana is the premier open source transaction manager with over 30 years of expertise in the
area of transaction processing."”

SmallRye Mutiny is the reactive programming library.”"

Vert.x is an event-driven and non-blocking tool-kit for building reactive applications on the JVM.
[82]

When it comes to implementing MicroProfile, Quarkus uses several implementations that come
either from Jakarta EE or SmallRye. The MicroProfile implementations used by Quarkus are the
following ones:

ArC is the Context and Dependency Injection implementation.™

[84]

RESTEasy is the Java API for RESTful Web Services implementation.

Yasson is the JSON Binding implementation.””

[86]

Glassfish JSON-P is the JSON Processing implementation.

[87]

RestEasy Client Microprofile is the implementation of Eclipse MicroProfile REST Client.

SmallRye Config is the implementation of Eclipse MicroProfile Configuration.”

SmallRye Fault Tolerance is the implementation of Eclipse MicroProfile Fault Tolerance.””
SmallRye Health is the implementation of Eclipse MicroProfile Health.”

SmallRye JWT is the implementation of Eclipse MicroProfile JWT Auth.”"

[92]

SmallRye Metrics is the implementation of Eclipse MicroProfile Metrics.

SmallRye OpenAPI is the implementation of Eclipse MicroProfile OpenAPIL."

39

https://code.quarkus.io

2.7. Summary

This Understanding chapter gave you most of the required terminology around Quarkus. There is
less code in this chapter than in the following ones, but we needed to make sure you understand all
the concepts around Quarkus before going any further.

Quarkus is not just about microservices but it was built with microservices in mind. So this chapter
started introducing this architectural style, its pros and cons, and put it in perspective with the
monolithic approach. Microservices are not just HTTP based (more in Chapter 6, HTTP
Microservices), so this chapter also had to introduce reactive systems that you will be developing in
Chapter 8, Event-Driven Microservices.

When it comes to microservices, Quarkus tends to integrate with the MicroProfile set of
specifications. Supported by the independent Eclipse Foundation, MicroProfile adopts a small
subset of Jakarta EE standards (CDI, JAX-RS, JSON-B and JSON-P), and adds new ones to address
common microservices patterns (Configuration, Fault Tolerance, Health, Metrics, etc.).

Microservices are perfect for cloud native applications. So this chapter also had to explain what
containers and orchestrators are, so you will have all the knowledge to follow Chapter 10, Cloud
Native. But using Docker and Kubernetes might not be enough for certain application constraints.
By using GraalVM, you can take your Quarkus microservice, build a native image out of it so you
can get fast startup time and lower resource consumption.

This chapter finishes with an overview of what Quarkus is, what it brings you as a developer, and
how its internal structure is based on a powerful and rich extension mechanism.

The next chapter Getting Started is about setting up your development environment to make sure
you can follow the samples of all the following chapters. You will develop a very simple example,
but you will use most of the technology presented here: bootstrapping a Quarkus application,
testing it, building a native image with GraalVM and packaging it in a Docker container.

[25] Quarkus https://quarkus.io

[26] Microservice Trade-offs https://martinfowler.com/articles/microservice-trade-offs.html

[27] Reactive Manifesto https://www.reactivemanifesto.org

[28] Why Do We Need a Reactive Manifesto? https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto
[29] Reactive Principles https://principles.reactive.foundation

[30] Backpressure explained https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-
2350b3e77ce?

[31] Reactive Streams http://www.reactive-streams.org

[32] Flow Concurrency library https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
[33] MicroProfile https://microprofile.io

[34] Jakarta EE https://en.wikipedia.org/wiki/Jakarta_EE

[35] JCP https://jcp.org

[36] Eclipse Foundation https://www.eclipse.org/org/foundation/
[37] Jakarta EE https://jakarta.ee

[38] Eclipse Foundation https://www.eclipse.org/org/foundation
[39] SmallRye https://github.com/smallrye

[40] CDI https://jcp.org/en/jsr/detail?id=365

[41] JAX-RS https://jcp.org/en/jsr/detail?id=370

[42] JSON-B https://jcp.org/en/jsr/detail?id=367

40

https://quarkus.io
https://martinfowler.com/articles/microservice-trade-offs.html
https://www.reactivemanifesto.org
https://www.lightbend.com/blog/why-do-we-need-a-reactive-manifesto
https://principles.reactive.foundation
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
http://www.reactive-streams.org
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/Flow.html
https://microprofile.io
https://en.wikipedia.org/wiki/Jakarta_EE
https://jcp.org
https://www.eclipse.org/org/foundation/
https://jakarta.ee
https://www.eclipse.org/org/foundation
https://github.com/smallrye
https://jcp.org/en/jsr/detail?id=365
https://jcp.org/en/jsr/detail?id=370
https://jcp.org/en/jsr/detail?id=367

[43] JSON-P https://jcp.org/en/jsr/detail?id=374

[44] StAX https://en.wikipedia.org/wiki/StAX

[45] Configuration https://microprofile.io/project/eclipse/microprofile-config

[46] Health https://microprofile.io/project/eclipse/microprofile-health

[47] Metrics https://microprofile.io/project/eclipse/microprofile-metrics

[48] OpenAPI Specification https://github.com/OAI/OpenAPI-Specification

[49] OpenAPI https://microprofile.io/project/eclipse/microprofile-open-api

[50] REST Client https://microprofile.io/project/eclipse/microprofile-rest-client

[51] JWT https://microprofile.io/project/eclipse/microprofile-jwt-auth

[52] OpenTracing https://microprofile.io/project/eclipse/microprofile-opentracing

[53] Context Propagation https://microprofile.io/project/eclipse/microprofile-context-propagation
[54] Reactive Messaging https://github.com/eclipse/microprofile-reactive-messaging
[55] Mutiny https://github.com/smallrye/smallrye-mutiny

[56] Cloud Native Computing https://github.com/cncf/toc/blob/master/DEFINITION.md
[57] CNCF https://www.cncf.io

[58] CNCF Landscape https://landscape.cncf.io

[59] Docker https://www.docker.com

[60] Kubernetes https://kubernetes.io

[61] etcd https://etcd.io

[62] GraalVM https://www.graalvm.org

[63] SubstrateVM https://github.com/oracle/graal/tree/master/substratevm

[64] AOT JEP 295 https://openjdk.java.net/jeps/295

[65] JVM Compiler Interface https://openjdk.java.net/jeps/243

[66] MaxineVM https://dl.acm.org/doi/10.1145/2400682.2400689

[67] GraalVM Project Advisory Board https://www.graalvm.org/community/advisory-board

[68] Red Hat announces Mandrel https://developers.redhat.com/blog/2020/06/05/mandrel-a-community-distribution-of-graalvm-for-
the-red-hat-build-of-quarkus

[69] Mandrel repository https://github.com/graalvm/mandrel

[70] JBoss https://en.wikipedia.org/wiki/JBoss_(company)

[71] JBoss EAP https://en.wikipedia.org/wiki/JBoss_Enterprise_Application_Platform
[72] Thorntail https://thorntail.io

[73] OpensShift https://www.openshift.com

[74] Jandex https://github.com/wildfly/jandex

[75] Gizmo https://github.com/quarkusio/gizmo

[76] Ahead-of-Time https://www.graalvm.org/docs/reference-manual/native-image
[77] Agroal https://agroal.github.io

[78] Hibernate https://hibernate.org/orm

[79] Hibernate Validator http://hibernate.org/validator

[80] Narayana https://github.com/jbosstm/narayana

[81] SmallRye Mutiny https://github.com/smallrye/smallrye-mutiny

[82] Vert.x https://github.com/eclipse-vertx/vert.x

[83] ArC https://github.com/quarkusio/quarkus/tree/master/independent-projects/arc
[84] RESTEasy https://github.com/resteasy/Resteasy

[85] Yasson https://projects.eclipse.org/projects/ee4j.yasson

[86] Glassfish JSON-P https://github.com/eclipse-ee4j/jsonp

[87] RestEasy Client Microprofile https://github.com/resteasy/Resteasy/tree/master/resteasy-client-microprofile
[88] SmallRye Config https://github.com/smallrye/smallrye-config

[89] SmallRye Fault Tolerance https://github.com/smallrye/smallrye-fault-tolerance
[90] SmallRye Health https://github.com/smallrye/smallrye-health

[91] SmallRye JWT https://github.com/smallrye/smallrye-jwt

41

https://jcp.org/en/jsr/detail?id=374
https://en.wikipedia.org/wiki/StAX
https://microprofile.io/project/eclipse/microprofile-config
https://microprofile.io/project/eclipse/microprofile-health
https://microprofile.io/project/eclipse/microprofile-metrics
https://github.com/OAI/OpenAPI-Specification
https://microprofile.io/project/eclipse/microprofile-open-api
https://microprofile.io/project/eclipse/microprofile-rest-client
https://microprofile.io/project/eclipse/microprofile-jwt-auth
https://microprofile.io/project/eclipse/microprofile-opentracing
https://microprofile.io/project/eclipse/microprofile-context-propagation
https://github.com/eclipse/microprofile-reactive-messaging
https://github.com/smallrye/smallrye-mutiny
https://github.com/cncf/toc/blob/master/DEFINITION.md
https://www.cncf.io
https://landscape.cncf.io
https://www.docker.com
https://kubernetes.io
https://etcd.io
https://www.graalvm.org
https://github.com/oracle/graal/tree/master/substratevm
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/243
https://dl.acm.org/doi/10.1145/2400682.2400689
https://www.graalvm.org/community/advisory-board
https://developers.redhat.com/blog/2020/06/05/mandrel-a-community-distribution-of-graalvm-for-the-red-hat-build-of-quarkus
https://developers.redhat.com/blog/2020/06/05/mandrel-a-community-distribution-of-graalvm-for-the-red-hat-build-of-quarkus
https://github.com/graalvm/mandrel
https://en.wikipedia.org/wiki/JBoss_(company
https://en.wikipedia.org/wiki/JBoss_Enterprise_Application_Platform
https://thorntail.io
https://www.openshift.com
https://github.com/wildfly/jandex
https://github.com/quarkusio/gizmo
https://www.graalvm.org/docs/reference-manual/native-image
https://agroal.github.io
https://hibernate.org/orm
http://hibernate.org/validator
https://github.com/jbosstm/narayana
https://github.com/smallrye/smallrye-mutiny
https://github.com/eclipse-vertx/vert.x
https://github.com/quarkusio/quarkus/tree/master/independent-projects/arc
https://github.com/resteasy/Resteasy
https://projects.eclipse.org/projects/ee4j.yasson
https://github.com/eclipse-ee4j/jsonp
https://github.com/resteasy/Resteasy/tree/master/resteasy-client-microprofile
https://github.com/smallrye/smallrye-config
https://github.com/smallrye/smallrye-fault-tolerance
https://github.com/smallrye/smallrye-health
https://github.com/smallrye/smallrye-jwt

[92] SmallRye Metrics https://github.com/smallrye/smallrye-metrics
[93] SmallRye OpenAPI https://github.com/smallrye/smallrye-open-api

42

https://github.com/smallrye/smallrye-metrics
https://github.com/smallrye/smallrye-open-api

Chapter 3. Getting Started

In the previous Understanding Quarkus chapter, you learnt about Quarkus, Microservices,
MicroProfile, GraalVM and Cloud Native. You’ve also looked at what Quarkus is and where it comes
from. Time to see some code.

To get started with a new technology, there is nothing better than a simple "Hello World" kind of
example. In this Getting Started chapter, you will be developing your very first Quarkus sample
application. It is a simple application made up of only a few classes with not much technical
complexity. The idea is to develop something simple to understand and to set up so that you are
sure you have the basis to follow the chapters coming up.

Make sure your development environment is set up to execute the code in this
chapter. You can go to Appendix A to check that you have all the required tools
o installed, in particular JDK 11.0.8 or higher, GraalvVM 20.2.0, Maven 3.6.x and
Docker. The code in this chapter can be found at https://github.com/agoncal/
agoncal-fascicle-quarkus/tree/1.0/getting-started

3.1. Developing Your First Quarkus Application

Let’s develop a simple application that highlights some of the key features of Quarkus. In this
chapter, we’ll use the Quarkus Maven Plugin to generate a simple Quarkus application. We will
end-up with a Maven directory structure with a set of test classes and business classes that define a
RESTful web service which produces a JSON representation of an Artist. We’ll use cURL to interact
with this RESTful web service (see Appendix A for more information on cURL). Finally, thanks to
GraalVM, we will build an executable out of our code and containerise it with Docker. We use
Maven to build this project because it is the most commonly used build system these days.”" Plus,
we can use Maven in the command line and most IDEs support it.

3.2. Bootstrapping the Application

Let’s first bootstrap a Quarkus application. For that, we have different ways to start a project with a
minimum amount of code: a web interface, an IDE plugin, or a Maven plugin. Let’s quickly see
these different options before bootstrapping the application with the Maven plugin.

3.2.1. Web Interface

If you want to use a web interface, go to https://code.quarkus.io. As shown in Figure 16, you can
choose your build tool (Maven or Gradle), set the groupId and artifactId, but most importantly,
select the extensions you need. For our first application, we just need a REST endpoint and some
JSON Binding, so we can tick two boxes, set all the Maven coordinates, and click on the "Generate
your application" button. This action will download a zip file containing enough code to bootstrap
an application.

43

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/getting-started
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/getting-started
https://code.quarkus.io

) QUARKUS

Configure your application details

Group org.agoncal.fascicle.quarkus Version 1.0

Artifact getting-started Package Name org.agoncal.fasci..

Build Tool Maven 1.4.2 Final

Pick your extensions eb

RESTEasy JAX-RS | INCLUDED

Q

RESTEasy JSON-B

RESTEasy Jackson

Selected Extensions Hibernate Validator

RESTEasy JSON-B REST Client
REST Client JAXB

REST Client JSON-B
REST Client Jackson

RESTEasy JAXB

Figure 16. Web application generating Quarkus code

3.2.2. Intelli] IDEA Plugin

< Back to quarkus.io | " Available with Enterprise Support

Kl CLOSE Generate your application (T + +J)

REST endpoint framework implementing JAX-RS and more

JSON-B serialization support for RESTEasy

Jackson serialization support for RESTEasy

Validate object properties (field, getter) and method parameters fo... $
Call REST services

Enable XML serialization for the REST Client

Enable JSON-B serialization for the REST client

Enable Jackson serialization for the REST Client

XML serialization support for RESTEasy

If you want to use your IDE, you will find that Quarkus is integrated into many of them.” Here, I
am showing how to bootstrap an application in Intelli] IDEA, but IDEs such as VSCode or Eclipse
can do the same. In fact, the Intelli] IDEA plugin is based on https://code.quarkus.io. So if you invoke
the menus File -~ New — Module —» Quarkus you end up with a wizard shown in Figure 17.

New Module

= Java Module SDK: % Project SDK

m Java Enterprise
Choose Quarkus Code endpoint URL.

e) Default:

JBoss
Spring

Custom:
Quarkus ustom

© Spring Initializr
2A MicroProfile
Maven
Gradle
Groovy
& Grails
@ Application Forge
¥ Kotlin
Ruby
Gem
Ruby on Rails
RailsApps Sample
Rails API
JavaScript

' Yeoman

Help Cancel

Figure 17. Creating a new Quarkus module in Intelli] IDEA

https://code.quarkus.io

The project wizard will guide you through the selection of the Maven coordinates of your project
(shown in Figure 18) and the extensions you want to have included in it.

Tool:
Group:
Artifact:

Version:

Class name:

Path:

Maven
org.agoncal.fascicle.quarkus
getting-started

1.0

org.agoncal.fascicle.quarkus.gettingstarted

/artists|

Cancel

Figure 18. Setting the Maven coordinates

3.2.3. Maven Plugin

New Module

Previous

We can also bootstrap a Quarkus application by means of its Maven plugin.”” This plugin provides
a set of goals that can be executed to create an application, compile, build it and even extend the
project with some features. The Quarkus plugin is based on the following Maven coordinates:
io.quarkus:quarkus-maven-plugin. You can check the available goals and the latest version of it with
the following command:

45

$ mvn -Dplugin=io.quarkus:quarkus-maven-plugin help:describe

This plugin has 12 goals:
quarkus:add-extension
quarkus:add-extensions
quarkus:analyze-call-tree
quarkus:build
quarkus:create
quarkus:create-extension
quarkus:dev
quarkus:generate-config
quarkus:help
quarkus:list-extensions
quarkus:native-image
quarkus:remote-dev

Another way to bootstrap a Quarkus application is to use the Quarkus blueprint
o for the JHipster generator.”” This is a community-driven effort to be able to
generate an entire application, the JHipster way, using Quarkus.

3.2.4. Generating Some Code

As you’ve just seen, we have several choices to bootstrap a Quarkus application, but let’s use the
Maven plugin from the command line. The following command uses the Quarkus Maven plugin to
generate a REST endpoint called ArtistResource located at the /artists path. Because we will need
some JSON Binding, we add the JSON-B extension:

mvn io.quarkus:quarkus-maven-plugin:1.9.0.Final:create \
-DplatformVersion=1.9.0.Final \
-DprojectGroupId=org.agoncal.fascicle.quarkus \
-DprojectArtifactId=getting-started \
-DprojectVersion=1.0-SNAPSHOT \
-DclassName="org.agoncal.fascicle.quarkus.gettingstarted.ArtistResource" \
-Dpath="/artists" \
-Dextensions="resteasy-jsonb"

Generated Classes and Directory Structure

As a result of the preceding command, the following directory structure has been generated in the
getting-started folder:

46

— README.md

F— mvnw
— mvnw.cmd

| F— docker
| | F— Dockerfile.jvm
| | — Dockerfile.native
| F— java
| | ' org/agoncal/fascicle/quarkus/gettingstarted
| L— ArtistResource.java
| — resources
| — META-INF
| | — resources
| | L— index.html
| — application.properties
L— test
L— java
l— org/agoncal/fascicle/quarkus/gettingstarted
— ArtistResourceTest.java
L— NativeArtistResourceIT.java

The Maven directory structure ensures we put the business code under src/main/java while the test
code goes under src/test/java. But the Quarkus Maven plugin goes further as it also includes a set
of files and configurations to package the application in a Docker image and to generate a native
executable using GraalVM. You will find:

A readme file,

A Maven wrapper file (mvnw and mvnw.cmd) to allow execution of Maven goals without installing
it,

A Maven pom.xml file (Project Object Model) with the project configuration and dependencies,
Docker files so that we can create a container out of our application,

A sample REST service named ArtistResource.java and its test class named
ArtistResourceTest.java, as well as a wrapper class named NativeArtistResourcelT.java for
executing the test against the native executable application,

A configuration file called application.properties,

An index.html file to indicate where we can add static web content.

Generated Maven POM

At the root of the generated code, you will find the pom.xml file. The pom.xml is the fundamental unit
of work in Maven that will be used to build our project. Next, I am going to break down the pom.xml
file into several parts so you can understand it better. First, Listing 3 shows the header of the
pom.xml with the groupld and artifactId. It also defines the properties used in the project. This is

47

where you find the version of Quarkus, for example.

Listing 3. Header of the pom.xml

<project xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://maven.apache.org/POM/4.0.0"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.agoncal.fascicle.quarkus</groupId>
<artifactId>getting-started</artifactId>
<version>1.0-SNAPSHOT</version>

<properties>
<compiler-plugin.version>3.8.1</compiler-plugin.version>
<maven.compiler.parameters>true</maven.compiler.parameters>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<quarkus-plugin.version>1.9.0.Final</quarkus-plugin.version>
<quarkus.platform.artifact-id>quarkus-universe-bom</quarkus.platform.artifact-id>
<quarkus.platform.group-id>io.quarkus</quarkus.platform.group-id>
<quarkus.platform.version>1.9.0.Final</quarkus.platform.version>
<surefire-plugin.version>3.0.0-M5</surefire-plugin.version>

</properties>

o Notice that Quarkus version 1.9.0.Final is used in this fascicle.

Then comes the dependencyManagement section, shown in Listing 4, which imports Quarkus' Bill of
Materials. This allows us to automatically link the exact version of each Quarkus extension.

Listing 4. Quarkus Bill of Materials

<dependencyManagement>
<dependencies>
<dependency>
<groupId>${quarkus.platform.group-id}</groupId>
<artifactId>${quarkus.platform.artifact-id}</artifactId>
<version>${quarkus.platform.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

The dependencies section in Listing 5 gives us all of the required dependencies to compile and
execute the ArtistResource REST API. This section declares the following dependencies:

48

» quarkus-resteasy: REST framework implementing JAX-RS.

* quarkus-resteasy-jsonb: JSON-B serialisation support for RESTEasy.

Listing 5. Maven Dependencies

<dependencies>
<dependency>
<groupIld>io.quarkus</groupld>
<artifactId>quarkus-resteasy</artifactId>
</dependency>
<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jsonb</artifactId>
</dependency>

Testing an application with Quarkus is very easy. For that, you need to add the dependencies listed
in Listing 6:

* quarkus-junit5: JUnit 5 support in Quarkus.

* rest-assured: Framework to easily test REST endpoints.

o If you want to know more about JUnit and REST Assured, you can check out
Chapter 11, Tests.

Listing 6. Test Dependencies

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-junit5</artifactld>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.rest-assured</groupId>
<artifactId>rest-assured</artifactId>
<scope>test</scope>

</dependency>

The next parts of the pom.xml in Listing 7 and Listing 8 show the plugins needed to execute and test
our code:

» quarkus-maven-plugin: The Quarkus plugin is responsible for creating the final jar and for
running the development mode.
* maven-compiler-plugin: The Maven compiler plugin is used to compile the sources of the project.

* maven-surefire-plugin: The Surefire plugin is used during the test phase to execute the unit tests
of the application.

* maven-failsafe-plugin: The Failsafe plugin is used during the integration test phase to execute
the integration tests of the application.

49

Listing 7. Building Steps

<build>
<plugins>
<plugin>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-maven-plugin</artifactId>
<version>${quarkus-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>generate-code</goal>
<goal>generate-code-tests</goal>
<goal>build</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>${compiler-plugin.version}</version>
</plugin>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<configuration>
<systemPropertyVariables>
<java.util.logging.manager>
org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</plugin>
</plugins>
</build>

Notice that we also set the java.util.logging system property to make sure that the tests will use
the correct logging manager. With all these test dependencies and plugins in place, a simple mvn
compile will compile the Java code, and mvn test will execute the Quarkus tests.

The last part of the pom.xml shown in Listing 8 declares the native profile that will execute the test
on the native executable. It configures the maven-failsafe-plugin so it runs the integration tests

against the native executable.

50

Listing 8. Maven Profile to Test Native Images

<profiles>
<profile>
<id>native</id>
<activation>
<property>
<name>native</name>
</property>
</activation>
<build>
<plugins>
<plugin>
<artifactId>maven-failsafe-plugin</artifactId>
<version>${surefire-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
<configuration>
<systemPropertyVariables>

<native.image.path>${project.build.directory}/${project.build.finalName}-
runner</native.image.path>
<java.util.logging.manager>
org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</confiquration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<properties>
<quarkus.package.type>native</quarkus.package.type>
</properties>
</profile>
</profiles>

o At this point, you can import the Maven project into an IDE (most modern Java
IDEs include built-in support for Maven).

If you now run mvn dependency:tree, you will see in Listing 9 that several dependencies were not
explicitly defined in the pom.xml in Listing 5 and Listing 6. That’s because Maven transitively pulls
all the required dependencies automatically. That’s why we end up with the Eclipse Vert.x or Netty
APIs, for example.

31

Listing 9. Simplified Maven Dependencies Tree

— 1o.quarkus:quarkus-resteasy-deployment:jar:1.9.0.Final
| |— 1o.quarkus:quarkus-resteasy-server-common-deployment:jar:1.9.0.Final
| | | io.quarkus:quarkus-resteasy-common-deployment:jar:1.9.0.Final
| | — do.quarkus:quarkus-resteasy-server-common:jar:1.9.0.Final
| L— jakarta.validation:jakarta.validation-api:jar:2.0.2
| | 1o.quarkus:quarkus-undertow-spi:jar:1.9.0.Final
| | |— io.quarkus.http:quarkus-http-servlet:jar:3.0.15.Final
| | | ' do.quarkus.http:quarkus-http-core:jar:3.0.15.Final
| | | jakarta.servlet:jakarta.servlet-api:jar:4.0.3
| | — org.jboss.metadata:jboss-metadata-web:jar:11.0.0.Final
— jo.quarkus:quarkus-resteasy-jsonb-deployment:jar:1.9.0.Final
— do.quarkus:quarkus-resteasy-jsonb:jar:1.9.0.Final
| — do.quarkus:quarkus-jsonb:jar:1.9.0.Final
| | F— org.eclipse:yasson:jar:1.0.8
| | ' djo.quarkus:quarkus-jsonp:jar:1.9.0.Final
| F— org.jboss.resteasy:resteasy-json-binding-provider:jar:4.5.8.Final
| | '— jakarta.json.bind:jakarta.json.bind-api:jar:1.0.2
| — commons-io:commons-io:jar:2.8.0
L— jo.quarkus:quarkus-jsonb-deployment:jar:1.9.0.Final
L— jo.quarkus:quarkus-jsonp-deployment:jar:1.9.0.Final

Appendix A has an entire chapter on Maven, explaining the scopes (runtime, test
etc.) and the goals you can use on a pom.xml. Please refer to it if you need more in-
depth information on Maven.

3.3. Developing the Application

It’s time to develop our simple REST endpoint that will return a JSON representation of artists. For
that, we need to change the generated code of the ArtistResource class as well as its test class
ArtistResourceTest.

3.3.1. The Artist Resource

The ArtistResource in Listing 10 uses some JAX-RS annotations (more on Java API for RESTful Web
Services in Chapter 6). As you can see, ArtistResource is a very simple REST endpoint, returning a
JSON representation of artists on the /artists path (that we previously defined in the Quarkus
Maven plugin). It first declares an ArrayList of four artists, and then defines a few methods:

* getAllArtists(): Returns the entire list of artists in a JSON format.

e countArtists(): Returns the number of artists in a text format.

32

Listing 10. REST Endpoint Returning Artists

("/artists")
public class ArtistResource {

private static List<Artist> artists = List.of(
new Artist().id(UUID.randomUUID()).firstName("John").lastName("Lennon"),
new Artist().id(UUID.randomUUID()).firstName("Paul").lastName("McCartney"),
new Artist().id(UUID.randomUUID()).firstName("George").lastName("Harrison"),
new Artist().id(UUID.randomUUID()).firstName("Ringo").lastName("Starr")

(MediaType.APPLICATION_JSON)
public Response getAllArtists() {
return Response.ok(artists).build();

}

("/count™)
(MediaType.TEXT_PLAIN)
public Integer countArtists() {
return artists.size();

}
}

3.3.2. The Artist Class

The getAllArtists() method of the ArtistResource returns a list of Artist objects defined in Listing
11. As you can see, Artist is just a simple POJO (Plain Old Java Object) with attributes, getters and
setters. It holds the values of a music artist.

Listing 11. Java Class Holding Artists

public class Artist {

private UUID 1id;
("first_name")

private String firstName;
("last_name")

private String lastName;

// Constructors, getters, setters

}

If you look carefully at Listing 11, you will see some JSON-B mapping annotations. The
@JsonbProperty annotation tells the JSON-B provider to change the name firstName to first_name. As
for @JsonbTransient, it prevents the identifier from being present on the JSON output. Don’t worry

33

about JSON-B (JSON Binding) for now, Chapter 6 covers it.

3.3.3. Running the Application

Time to run the application. For that, it’s just a matter of executing the quarkus:dev goal. This builds
and runs the application:

getting-started$./mvnw quarkus:dev

After a few seconds, the application will be compiled and executed, as shown in Listing 12.

Listing 12. Quarkus Starting Up

Listening for transport dt_socket at address: 5005

-~/ __ NN
VAV A AV A A VY AR O A B AV AN

NN\ N___ SN N

INFO [io0.quarkus] getting-started 1.0 started in 0.817s. Listening on:
http://0.0.0.0:8080

INFO [io0.quarkus] Profile dev activated. Live Coding activated.

INFO [io0.quarkus] Installed features: [cdi, resteasy, resteasy-jsonb]

You can stop the application with Ctrl + C, but leave it running as we will be testing the hot reload
feature soon! Now, execute the following cURL commands to invoke our two methods:

54

$ curl http://localhost:8080/artists/count
4

$ curl http://localhost:8080/artists | jq

[
{
"first_name": "John",
"last_name": "Lennon"
H
{
"first_name": "Paul",
"last_name": "McCartney"
I
{
"first_name": "George",
"last_name": "Harrison"
b
{
"first_name": "Ringo",
"last_name": "Starr"
b
]

If you get the same output for these commands, that means that everything is running correctly. But
let’s go further with hot reloading the application and testing our endpoint.

o jq is a nice tool to manipulate JSON in the shell. If you want to know more about jq
and install it, see Appendix A.

3.3.4. Live Reload

So far we’ve been using mvn quarkus:dev to execute our application. This command runs Quarkus in
development mode. This enables hot reload with background compilation, which means that when
you modify your Java files and/or your resource files and invoke a REST endpoint, these changes
will automatically take effect. This works also for resource files like the configuration property and
HTML files. Invoking a cURL command or refreshing the browser triggers a scan of the workspace,
and if any changes are detected, the Java files are recompiled and the application is redeployed;
your request is then serviced by the redeployed application. Let’s see this live reload in action. For
that, make sure mvn quarkus:dev is still running.

With Quarkus running, update the artists list in ArtistResource. Remove two or three artists from
the ArraylList, and execute the cURL command again. As you can see, the output has changed
without you having to stop and restart Quarkus:

55

$ curl http://localhost:8080/artists | jq

[
{
"first_name": "Paul",
"last_name": "McCartney"
I
{
"first_name": "Ringo",
"last_name": "Starr"
}
]

Undo your changes, you get your four artists back, access the endpoint with cURL again, the JSON
representation of the four artists is back.

3.3.5. Configuring the Application

As you will see in Chapter 4, Quarkus is highly configurable. You can configure its core mechanism
as well as most of its extensions in the single application.properties file located under the
src/main/resources directory. To configure Quarkus logs, just add the properties listed in Listing 13
to the application.properties file. No need to stop and restart Quarkus: re-execute the cURL
command and the new log format will automatically be applied.

Listing 13. Configuring Quarkus Logs

quarkus.log.level=DEBUG
quarkus.log.console.format=%d{HH:mm:ss} %-5p [%c{2.}] %s%e%n
quarkus.log.console.level=DEBUG

3.3.6. Testing the Application

So far so good, but wouldn’t it be better with a few tests, just in case? In Listing 14, we use the
QuarkusTest runner to instruct JUnit to start the application before the tests. We then have two test
methods:

* The shouldGetAllArtists() method checks the HTTP response status code (200) and the size of
the JSON array.

* The shouldCountArtist() method checks that the response contains the number 4 (because we
have four artists).

Notice that these tests use REST Assured.”” More on REST Assured, Hamcrest and testing Quarkus
applications in Chapter 11.

36

Listing 14. Testing the Artist REST Endpoint

@QuarkusTest
public class ArtistResourceTest {

@Test
public void shouldGetAllArtists() {
given().
when()
.get("/artists").
then()
.assertThat()
.statusCode(is(200))
.and()
.body("size()", equalTo(4));
}

@Test
public void shouldCountArtist() {
given().
when()
.get("/artists/count").
then()
.assertThat()
.statusCode(is(200))
.and()
.body(is("4"));

Now execute the test with ./mvnw test or from your IDE. The test should pass and you should see
similar logs to those in Listing 15.

57

Listing 15. Tests Successful Output

[INFO] ------------=--=--------

[INFO] Building Getting Started

[INFO] ---------------==-mm---

[INFO]

[INFO] --- maven-compiler-plugin:3.8.71:compile (default-compile)

[INFO]

[INFO] --- maven-surefire-plugin:2.22.1:test (default-test)

[INFO]

[INFO] --------------=-ommmmm oo

[INFO] TESTS

[INFO] ---------------=--------

[INFO] Running org.agoncal.fascicle.quarkus.gettingstarted.ArtistResourceTest
[INFO] [i1o0.quarkus] Quarkus started in 1.100@s. Listening on: http://0.0.0.0:8081
[INFO] [io.quarkus] Profile test activated.

[INFO] [1o.quarkus] Installed features: [cdi, resteasy, resteasy-jsonb]
[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: @, Time elapsed: 2.642 s - in
org.agoncal.fascicle.quarkus.gettingstarted.ArtistResourceTest

[INFO] [io.quarkus] (main) Quarkus stopped in 0.032s

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 0

[INFO]

[INFO] -----------=--—=mmmmmm -

[INFO] BUILD SUCCESS

[INFO] -----------=--mmmmmmmm oo

[INFO] Total time: 5.945 s

[INFO] -----------=--mmmmmmmm o

There are a few interesting pieces of information in these logs. First of all, you’ll notice that
Quarkus starts and runs the application. Thanks to @QuarkusTest you get real integration tests with
the Quarkus runtime. And when you look at the timestamps, you can see that starting and shutting
down the application is quite quick. Quarkus makes your integration tests run quickly. While
Quarkus will listen on port 8080 by default, when running tests it defaults to 8081. This allows you
to run tests while having the application running in parallel.

3.3.7. Debugging the Application

If you look carefully at the logs in Listing 12, you’ll notice that Quarkus, by default, uses the port
5005 for debugging purposes. The port 5005 is where Quarkus, through JPDA (Java Platform
Debugger Architecture), listens to the socket transport dt_socket allowing communication between a
debugger and the virtual machine that is being debugged.”” When running in development mode
(./mvnw quarkus:dev), Quarkus will configure the JVM to automatically listen on this port. You can
check that the debugging is active with the following shell command:

38

$ 1sof -i tcp:5005

COMMAND PID USER FD TYPE NAME
java 70796 agoncal 4u IPv4 *:avt-profile-2 (LISTEN)

Now, it’s just a matter of attaching the IDE to the debugger. The process is different for each IDE but
I'll show you how to do it with Intelli] IDEA. In order to attach Intelli] IDEA to the debugger, add a
new configuration called Remote, and set all the required values as shown in Figure 19.

Run/Debug Configurations

+ — B F ” Name: Remote Debug Allow parallel run Store as project file

Application
JUnit Configuration Logs

| 2

| 2

> Maven
> Quarkus (Maven) Debugger mode: | Attach to remote JVM ~
¥ 2! Remote

=1Remote Debug Host: localhost Port: 5005

> / Templates Command line arguments for remote JVM:

—agentlib: jdwp=transport=dt_socket,server=y,suspend=n,address=x:5005

Use module classpath: getting-started

v Before launch

Show this page V| Activate tool window

Figure 19. Remote debugging in Intelli] IDEA

Select the Remote Debug configuration and click on Debug while Quarkus is still up and running.
Place a breakpoint somewhere in the ArtistResource and invoke the application (using cURL). From
the debugger prompt, you can inspect the class and method variables from its console. You can also
control the execution path (Step Over, Step Into, etc.) by clicking on the buttons located on the
Debugger Console.

Intelli] IDEA has a nice integration with Quarkus that eases debugging. The

Quarkus plugin goes through all the configuration that we’ve done, with just one
click. Don’t hesitate to check the Quarkus plugins if you are using Intelli] IDEA."""

39

3.4. Running the Application

So far we’ve been running the ArtistResource endpoint using ./mvnw quarkus:dev. This development
mode is really handy as it brings us live reload: we can execute the application, change some code,
and Quarkus automatically restarts taking into account our changes. But this has a cost as the
startup time is slower.

3.4.1. Building an Executable JAR
To execute our endpoint in production mode, first, we need to package it with the ./mvnw package

command. If we do so, it produces 2 jar files in the target directory:

getting-started$ 1s -1h target/getting-started*

-rw-r--r-- 222K getting-started-1.0-runner.jar
-rw-r--r-- 5.7K getting-started-1.0.jar

As you can see, these two JAR files have different sizes (more on executable JARs in Chapter 10),
therefore their content is different:

* getting-started-1.0.jar: Contains just the classes and resources of the projects, it’s the regular
artifact produced by the Maven build.

* getting-started-1.0-runner.jar: Is an executable jar.

3.4.2. Executing the Executable JAR

With an executable JAR, you can run the application using the following command:
getting-started$ java -jar target/getting-started-1.0-runner.jar

But be aware that getting-started-1.0-runner.jar is an executable JAR, not an Uber-JAR.""! An
Uber-JAR contains both the code of our application and all its dependencies in one single JAR file.
This is not the case here. Quarkus copies all the dependencies into the target/1ib directory and
getting-started-1.0-runner.jar depends on this target/1ib directory. If you remove the target/1ib
and re-run the application with java -jar target/getting-started-1.0-runner.jar it won’t work (as
you will get a ClassNotFoundException).

By executing the executable JAR, you will get traces that look like the ones in Listing 16.

60

Listing 16. Startup with Production Profile

getting-started$ java -jar target/getting-started-1.0-runner.jar

-~/ __ N/ N\
AV AV AV A VR R S AV AV AV AN

NN\ N____ /NSNS N

INFO [io0.quarkus] getting-started 1.0 started in 0.612s. Listening on:
http://0.0.0.0:8080

INFO [io0.quarkus] Profile prod activated.

INFO [io0.quarkus] Installed features: [cdi, resteasy, resteasy-jsonb]

Youw’ll notice a few things here. First of all, the application has started slightly faster than in
development mode. Then, Port 5005 is not opened by default. Also notice that the logs show the
message "Profile prod activated" and the message "Live Coding activated" has disappeared (more on
profiles in Chapter 4). Invoke a cURL command on the following URL http://localhost:8080/artists
and you will get the same JSON representation of artists as before.

3.5. Going Native

Let’s now produce a native executable for our REST endpoint. Thanks to GraalVM, Quarkus is able
to generate native executables. Just like Go, native executables don’t need a Virtual Machine (VM) to
run, they contain the whole application, like an .exe file on Windows. Native executables improve
the startup time of the application, memory consumption, and produce a minimal disk footprint.
The executable has everything to run the application including the JVM (shrunk to be just enough
to run the application), and the application itself.

3.5.1. Building a Native Executable

Building an executable JAR, as we just did, is one thing. But Quarkus, with the help of GraalVM, can
go further: it can build a native executable. Before building the executable, verify that you have set
GRAALVM_HOME in your environment, as described in Appendix A.

Thanks to the built-in Maven native profile, you can easily create a native executable using the
following command.

getting-started$./mvnw package -Pnative

The plugin will start analysing the classes and packaging what’s used by the application. By
executing this command, you should have a similar output:

61

http://localhost:8080/artists

[getting-started-1.0-runner] classlist: 3 179,28 ms
[getting-started-1.0-runner] (cap): 1 238,43 ms
[getting-started-1.0-runner] setup: 2 226,59 ms
[getting-started-1.0-runner] (typeflow): 9 376,87 ms
[getting-started-1.0-runner] (objects): 12 031,39 ms
[getting-started-1.0-runner] (features): 553,82 ms
[getting-started-1.0-runner] analysis: 23 048,54 ms
[getting-started-1.0-runner] (clinit): 680,90 ms
[getting-started-1.0-runner] universe: 1 445,67 ms
[getting-started-1.0-runner] (parse): 982,12 ms
[getting-started-1.0-runner] (inline): 3 537,58 ms
[getting-started-1.0-runner] (compile): 16 089,81 ms
[getting-started-1.0-runner] compile: 22 338,84 ms
[getting-started-1.0-runner] image: 2 984,38 ms
[getting-started-1.0-runner] write: 729,42 ms
[getting-started-1.0-runner] [total]: 56 189,06 ms

[INFO] Quarkus augmentation completed in 58205ms

In addition to the regular files, the build also produces the getting-started-1.0-runner file (notice
that there is no .jar file extension). It is an executable that contains just a thin JVM layer (slim
enough to just execute the application) and the application itself. And if you check the permissions
of the files, you can notice that getting-started-1.0-runner is executable (x allowing executable
permissions).

getting-started$ 1s -1h target/getting-started*

-rwxr-xr-x 29M getting-started-1.0-runner*
-rw-r--r-- 222K getting-started-1.0-runner.jar
-rw-r--r-- 5.7K getting-started-1.0.jar

Creating a native executable requires a lot of memory and CPU. It also takes a few
minutes, even for a simple application like the ArtistResource REST endpoint. Most
of the time is spent during the dead-code elimination, as it traverses the whole
closed-world."""”

A

3.5.2. Executing the Native Executable

Now you can simply execute the file like any other native executable with ./target/getting-
started-1.0-runner.

62

getting-started$./target/getting-started-1.0-runner

A AV AV N VY RV A B AV AN
N\ N\NN___ SN N
INFO [io0.quarkus] getting-started 1.0 native started in 0.068s. Listening on:
http://0.0.0.0:8080
INFO [io0.quarkus] Profile prod activated.

INFO [io0.quarkus] Installed features: [cdi, resteasy, resteasy-jsonb]

One thing to notice when doing so is the startup time. Depending on your machine, starting the
native executable is 4 to 6 times faster that executing the executable JAR. The memory footprint is
also smaller. And also notice that the log displays getting-started 1.0 native: we know it’s the
native executable that is being executed.

3.5.3. Testing the Native Executable

Interestingly, native executable code can be tested. Producing a native executable can lead to a few
issues, and so it’s also a good idea to run some tests against the application running in the native
file. In the pom.xml file in Listing 8, the native profile instructs the failsafe-maven-plugin to run
integration-test and indicates the location of the produced native executable."” When we
generated our project, a NativeArtistResourcelT class name was included in the test folder. As you
can see in Listing 17, this class extends our original test (ArtistResourceTest) and is annotated with
the @NativeImageTest annotation.

Listing 17. Native Test

public class NativeArtistResourcelIT extends ArtistResourceTest {

// Execute the same tests but in native mode.

Now, you can test the native executable application by using the native profile in the following
Maven command:

63

getting-started$./mvnw integration-test -Pnative

[INFO] --- maven-surefire-plugin:2.22.7:test (default-test)

[INFO]

[INFO] --------mmmmm oo

[INFO] TESTS

[INFO] ---------mmm o

[INFO] Running org.agoncal.fascicle.quarkus.gettingstarted.ArtistResourceTest
[INFO]

[INFO] Results:

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 0

[INFO]

[INFO] --- maven-failsafe-plugin:2.22.1:integration-test (integration-test)
[INFO]

[INFO] -------mmmmmm oo

[INFO] TESTS

[INFO] --------mmmmm oo

[INFO] Running org.agoncal.fascicle.quarkus.gettingstarted.NativeArtistResourcelIT
[INFO] Results:

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 0

Great! We have just managed to test our application in both scenarios: JVM and native executable.

3.6. Containerising the Application

When we bootstrapped our application, the Quarkus Maven plugin generated a few Dockerfiles for
us under the src/main/docker directory:

* Dockerfile.fast-jar: Containerises the application using the Fast-JAR produced by the Quarkus
Maven Plugin.

* Dockerfile.jvm: Containerises the application using the generated JAR.

* Dockerfile.native: Containerises the application using the native executable.

We could containerise the application using the executable JAR (using Dockerfile.jvm), but let’s
focus on creating a container image using the produced native executable.

3.6.1. Building the Native Executable Image

The native executable we just built is specific to the operating system we are on (Linux, macOS,
Windows etc.). Because the container may not use the same executable format as the one produced
by your operating system, we first need to instruct the Maven build to produce an executable from
inside a container. This is done wusing the following command which sets the
quarkus.native.container-build attribute to true:

64

getting-started$./mvnw package -Pnative -Dquarkus.native.container-build=true

[INFO] --- quarkus-maven-plugin:1.6.0.Final:build (default)

[INFO] Building native image from target/getting-started-1.0-native-image-source-
jar/getting-started-1.0-runner.jar

[INFO] Pulling image quay.io/quarkus/ubi-quarkus-native-image:20.2.0-javall
[INFO] Status: Downloaded newer image for quay.io/quarkus/ubi-quarkus-native-
image:20.2.0-javall

[INFO]

[INFO] Running Quarkus native-image plugin on GraalVM

[INFO] docker run -v target/getting-started-1.0-native-image-source-jar
[INFO] Quarkus augmentation completed in 136499ms

[INFO] -----------mmmmmmrmm e -

[INFO] BUILD SUCCESS

[INFO] -----------mmmmmmmmm e

The produced executable target/getting-started-1.0-runner is a 64-bit Linux executable, so
depending on your operating system it may no longer be runnable. For example, if you try to
execute this file on macOS you will get the following error:

getting-started$./target/getting-started-1.0-runner

Failed to execute process './target/getting-started-1.0-runner’

Reason: exec: Exec format error

The file './target/getting-started-1.0-runner' is marked as an executable but could
not be run by the operating system

However, it’s not an issue as we now have to build a Docker image with this 64-bit Linux
executable. That’s the purpose of the generated Dockerfile.native described in Listing 18. Notice
the Dockerfile FROM statement. UBL, or Red Hat Universal Base Image, is a subset of the Red Hat
Enterprise Linux operating system, stripped down to the bare essentials, and is perfect for
containers."""

Listing 18. Dockerfile for the Native Image

FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1
WORKDIR /work/
RUN chown 1001 /work \
&& chmod "g+rwX" /work \
&& chown 1001:root /work
COPY --chown=1001:root target/*-runner /work/application

EXPOSE 8080
USER 1001

CMD ["./application”, "-Dquarkus.http.host=0.0.0.0"]

65

To build the image, use the following docker image build command:

getting-started$ docker image build -f src/main/docker/Dockerfile.native -t
quarkus/getting-started .

Step 1/6 : FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1
Step 2/6 : WORKDIR /work/

Step 3/6 : COPY --chown=1001:root target/*-runner /work/application
Step 4/6 : EXPOSE 8080

Step 5/6 : USER 1001

Step 6/6 : CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]
Successfully built 1e28e9a16045

Successfully tagged quarkus/getting-started:latest

If you want to check that the image has been successfully created, use the docker image 1s
command as follows:

getting-started$ docker image 1s | grep getting-started

REPOSITORY TAG IMAGE ID SIZE
quarkus/getting-started Tlatest 1e28e9a16045 136MB

3.6.2. Executing the Container Image

Now that we have built a 64-bit Linux executable of our application, and created a Docker image
out of it, let’s run it. For that, we use the following docker container run command to execute our
image and expose the port 8080:

getting-started$ docker container run -i --rm -p 8080:8080 quarkus/getting-started

--/ __\/ / /7 _ / \/ 11_1 1717 __/

-/ /1 1]/ |/, _/ </ /_/ /\\
——________/_/ | [1/ 1 _IN____/___/

INFO [io0.quarkus] getting-started 1.0 native
INFO [io0.quarkus] Profile prod activated.

INFO [io0.quarkus] Installed features: [cdi, resteasy, resteasy-jsonb]

Like previously, notice the log getting-started 1.0 native: it’s the native executable that is being
executed. Now, execute the following cURL commands to invoke our ArtistResource endpoint:

$ curl http://localhost:8080/artists/count
4

Good! Everything is running as expected. If you want further information on packaging, native
image, performances and containers, you can check out Chapter 10.

66

3.7. Summary

If you’'ve managed to execute all the code in this chapter, then it means that your development
environment is all setup. You are ready to follow the next chapters and execute the samples.

In this chapter, we went through our first Quarkus project, which was generated through the
quarkus-maven-plugin. The default bootstrapped application is a REST endpoint with minimal
functionalities, a pom.xml, a few test classes as well as Docker files. We’ve progressively enriched
this default application to develop a REST endpoint that would return a JSON representation of
artists. After developing with live reload, debugging with remote debug and testing our code, we’ve
executed our application in several flavours (development environment and executable JAR). We
turned the Java code into a thin native executable using the appropriate native profile of quarkus-
maven-plugin, we ended up containerising and executing it with Docker.

Now that you know the basis of Quarkus, microservices, MicroProfile, and GraalVM, and have run a
"Hello World" example from code to a native executable, let’s use the following chapters to dig more
into Quarkus. Next, Core Quarkus focuses on some core technologies that most applications or
extensions get out of the box. That is, injection (with Context and Dependency Injection),
configuration, profiles, logs and application lifecycle.

[94] Maven https://maven.apache.org

[95] Quarkus support in IDEs https://quarkus.io/blog/march-of-ides

[96] Quarkus Maven plugin https://github.com/quarkusio/quarkus/tree/master/devtools/maven
[97] JHipster Quarkus https://github.com/jhipster/jhipster-quarkus

[98] REST Assured http://rest-assured.io

[99] JPDA https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html

[100] Quarkus Intelli] IDEA Plugin https://plugins.jetbrains.com/plugin/14242-quarkus-integration
[101] Uber-JAR https://stackoverflow.com/questions/11947037/what-is-an-uber-jar

[102] Closed-World Assumption https://www.graalvm.org/community/opensource

[103] Maven Failsafe Plugin https://maven.apache.org/surefire/maven-failsafe-plugin

[104] UBI https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

67

https://maven.apache.org
https://quarkus.io/blog/march-of-ides
https://github.com/quarkusio/quarkus/tree/master/devtools/maven
https://github.com/jhipster/jhipster-quarkus
http://rest-assured.io
https://docs.oracle.com/en/java/javase/11/docs/specs/jpda/jpda.html
https://plugins.jetbrains.com/plugin/14242-quarkus-integration
https://stackoverflow.com/questions/11947037/what-is-an-uber-jar
https://www.graalvm.org/community/opensource
https://maven.apache.org/surefire/maven-failsafe-plugin
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

Chapter 4. Core Quarkus

In the previous Getting Started chapter, you made sure you could run a Quarkus application. This
means that your environment is up and running and you’ve already caught a glimpse of what
Quarkus does. As explained in the Understanding Quarkus chapter, Quarkus has a powerful
extension mechanism for integrating many technologies. The chapters coming up will show you
some of these extensions and how to use them.

This Core Quarkus chapter focuses on the core technologies that you first need to know because
they will be used throughout this fascicle. First, Context and Dependency Injection, because Quarkus
makes heavy use of injection. Injection is actually used in Eclipse MicroProfile Configuration which
configures most parts of Quarkus, including its profile mechanism or logging. This chapter will end
explaining the lifecycle of a Quarkus application and how it initialises and terminates.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/core

4.1. Context and Dependency Injection

Injection is at the core of Quarkus. From injecting a bean into another one, injecting configuration
into a component, or injecting a resource to a component, injection is everywhere. CDI is the
MicroProfile specification taking care of dependency injection. But CDI comes with other features
that are heavily used in Quarkus: scopes or event management.

Quarkus is based on a CDI implementation called ArC."™ ArC does not fully
o implement CDI, only the most commonly used subset of the specification is
implemented. Therefore, there are a few limitations that you need to take into
account if you come from a full-CDI world."""
Context and Dependency Injection (CDI) is a central technology in Jakarta EE or in MicroProfile.""””
Its programming model turns nearly every component into an injectable, interceptable and
manageable bean. CDI is built on the concept of "loose coupling, strong typing", meaning that beans
are loosely coupled, but in a strongly-typed way. Decoupling goes further by bringing interceptors,
decorators and events to the entire platform. CDI homogenises scopes among beans, as well as
context and life cycle management.

The Context and Dependency Injection APIs and annotations are defined under several root
packages: javax.inject, javax.enterprise and javax.interceptor. Table 3 lists the main subpackages
defined in CDI 2.0.

Table 3. Main CDI Subpackages

Subpackage Description

javax.inject Root package of the CDI APIs
javax.enterprise.inject Core dependency injection APIs
javax.enterprise.context Scope and contextual APIs

68

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/core
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/core

Subpackage Description

javax.enterprise.event Event and observer APIs
javax.enterprise.util Utility package
javax.interceptor Interceptor APIs (JSR 318)

Along with APIs, CDI comes with a set of annotations. Table 4 lists a subset of the most commonly
used annotations.

Table 4. Main CDI Annotations

Annotation Description

@Inject Identifies injectable constructors, methods, and fields
@Qualifier Identifies qualifier annotations

@ApplicationScoped, Set of annotations defining the life cycle of a bean
@SessionScoped,

©RequestScoped,

@Singleton, @Dependent

@0bserves Identifies the event parameter of an observer method

CDI is part of the core of Quarkus and most extensions need it. So, most of the time, you don’t have
to explicitly add the CDI extension, it will be resolved recursively. But if you need it, you must add
the extension defined in Listing 19 to your pom.xml

Listing 19. CDI Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-arc</artifactId>
</dependency>

4.1.1. Understanding Beans

Java SE has JavaBeans."" JavaBeans are just POJOs (Plain Old Java Object) that follow certain

patterns (e.g. a naming convention for accessors/mutators (getters/setters) for a property, a default
constructor...) and are executed inside the JVM. In a managed environment such as Quarkus, we
have Managed Beans.

Managed Beans are container-managed objects that support only a small set of basic services:
resource injection, life cycle management, and interception. They provide a common foundation
for the different kinds of components that exist in managed platforms (such as Spring, Jakarta EE
or MicroProfile). For example, a RESTful web service can be seen as a Managed Bean with extra
services. A transactional service can also be seen as a Managed Bean with extra services (different
from the RESTful web service), and so on.

CDI Beans (or Beans for short) are objects that are built on this basic Managed Bean model. Beans
have an improved life cycle for stateful objects; are bound to well-defined contexts; bring a typesafe

69

approach to dependency injection, interception, and decoration; are specialised with qualifier
annotations; and can be used in Expression Language (EL)."*" In fact, with very few exceptions,
potentially every Java class that has a default constructor and runs inside a container is a Bean.

4.1.2. Injecting Beans

In a managed environment, you don’t need to construct dependencies by hand but can leave the
container to inject a reference for you. In a nutshell, CDI dependency injection is the ability to inject
beans into others in a typesafe way, which means annotations rather than XML. With CDI, you can
inject nearly anything anywhere thanks to the @Inject annotation.

Listing 20 shows how you would inject a reference of the NumberGenerator into the BookService using
the CDI @Inject.

Listing 20. BookService Using @Inject to Get a Reference of NumberGenerator

public class BookService {

NumberGenerator numberGenerator;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
return book;

}
}

As you can see in Listing 20, a simple @Inject annotation on the property will inform the container
that it has to inject a reference of a NumberGenerator implementation into the numberGenerator
property. This is called the injection point (the place where the @Inject annotation is). Listing 21
shows the IsbnGenerator implementation. As you can see, there are no special annotations and the
class implements the NumberGenerator interface.

Listing 21. The IsbnGenerator Bean
public class IsbnGenerator implements NumberGenerator {

public String generateNumber() {
return "13-84356-" + Math.abs(new Random().nextInt());
}
}

70

Quarkus is designed with GraalVM in mind so it can build native executables. One
of the limitations of GraalVM is the use of reflection. Reflective operations are

o supported in Quarkus, but all relevant members must be explicitly registered for
reflection (which results in a bigger native executable). And if you use injection in
a private member, reflection is used. For this reason, you are encouraged to use
package-private scope instead of private when using injection.

Injection Points

The @Inject annotation defines an injection point that is injected during bean instantiation.
Injection can occur via three different mechanisms: property, setter, or constructor.

Property injection is when you annotate an attribute (a.k.a. property) with @Inject.

NumberGenerator numberGenerator;

Notice that it isn’t necessary to create a getter and a setter method on an attribute to use injection.
CDI can access an injected field directly (even if it’s private), which sometimes helps eliminate some
wasteful code. But instead of annotating the attributes, you can add the @Inject annotation on a
constructor as follows:

public LegacyBookService(NumberGenerator numberGenerator) {
this.numberGenerator = numberGenerator;

But the rule is that you can only have one constructor injection point. The container is the one
doing the injection, not you (you can’t invoke a constructor in a managed environment); therefore,
there is only one bean constructor allowed so that the container can do its work and inject the right
references.

The other choice is to use setter injection, which looks like constructor injection. You just need to
annotate the setter with @Inject.

public void setNumberGenerator (NumberGenerator numberGenerator) {
this.numberGenerator = numberGenerator;

You may ask, "When should I use a field over a constructor or setter injection?" There is no real
technical answer to that question; it’s a matter of your own personal taste. In a managed
environment, the container is the one doing all the injection’s work; it just needs the right injection
points.

Quarkus simplifies the injection model even more. When using constructor or setter injection, you

71

can even skip the @Inject annotation. Quarkus will know how to inject the reference of
NumberGenerator automatically.

public PrestigiousBookService(NumberGenerator numberGenerator) {
this.numberGenerator = numberGenerator;

}

Default Injection

Assume that, as shown in Figure 20, the NumberGenerator interface only has one implementation:
IsbnGenerator. CDI will then be able to inject it simply by using @Inject on its own.

NumberGenerator numberGenerator;

This is termed default injection. Whenever a bean or injection point does not explicitly declare a
qualifier, the container assumes the qualifier @javax.enterprise.inject.Default. In fact, the
following code is identical to the previous one:

NumberGenerator numberGenerator;

@Default is a built-in qualifier that informs CDI to inject the default bean implementation. If you
define a bean with no qualifier, the bean automatically has the qualifier @Default. So the code in
Listing 22 uses @Default but it could be omitted.

Listing 22. The IsbnGenerator Bean with the @Default Qualifier

public class IsbnGenerator implements NumberGenerator {

public String generateNumber() {
return "13-84356-" + Math.abs(new Random().nextInt());

}
}

If you only have one implementation of a bean to inject, the default behaviour applies and a
straightforward @Inject will inject the implementation. The class diagram in Figure 20 shows the
@Default implementation (IsbnGenerator) as well as the default injection point (@Inject @Default).

72

@ BookService @Inject @Default @ NumberGenerator

© createBook(): Book © generateNumber(): String

Figure 20. Class diagram with @Default injection

But sometimes you have to choose between several implementations. That’s when you need to use
qualifiers.

Injecting Qualified Beans

At system initialisation time, the container must validate that exactly one bean satisfying each
injection point exists. Meaning that, if no implementation of NumberGenerator is available, the
container will inform you of an unsatisfied dependency and will not deploy the application. If there
is only one implementation, injection will work using the @Default qualifier. If more than one
default implementation were available, the container would inform you of an ambiguous
dependency and would not deploy the application. That’s because the typesafe resolution algorithm
fails when the container is unable to identify exactly one bean to inject.

So how does a component choose which implementation (IsbnGenerator or IssnGenerator) is to get
injected? Most frameworks heavily rely on external XML configuration to declare and inject beans.
CDI uses qualifiers, which are basically Java annotations that bring typesafe injection and
disambiguate a type without having to fall back on String-based names.

There are several book number formats, the most common are:

» ISBN (International Standard Book Number): Thirteen-digit book identifier
o which is intended to be unique.

* ISSN (International Standard Serial Number): Eight-digit serial number used to
uniquely identify a serial publication.

Let’s say we have an application with a BookService that creates books with a 13-digit ISBN number
and a LegacyBookService that creates books with an 8-digit ISSN number. As you can see in Figure
21, both services inject a reference of the same NumberGenerator interface. The services distinguish
between the two implementations by using qualifiers.

73

© BookService @Inject @ThirteenDigits @ NumberGenerator @Inject @EightDigits @LegacyBookService

© createBook(): Book © generateNumber(): String © createBook(): Book

/ﬁ D\

/

\
/ \
@IsbnGenerator @IssnGenerator

Figure 21. Services using qualifiers for non-ambiguous injection

A qualifier represents some semantics associated with a type that is satisfied by some
implementation of that type. It is a wuser-defined annotation, itself annotated with
@javax.inject.Qualifer. For example, we could introduce qualifiers to represent 13- and 8-digit
number generators, both shown in Listing 23 and Listing 24.

Listing 23. The ThirteenDigits Qualifier

(RUNTIME)
({FIELD, TYPE, METHOD})
public ThirteenDigits {

}

Listing 24. The EightDigits Qualifier

(RUNTIME)
({FIELD, TYPE, METHOD})
public EightDigits {
}

Once you have defined the required qualifiers, they must be applied on the appropriate
implementation. As you can see in both Listing 25 and Listing 26, the @ThirteenDigits qualifier is
applied to the IsbnGenerator bean and @EightDigits to IssnGenerator.

Listing 25. The IsbnGenerator Bean with the @ThirteenDigits Qualifier

public class IsbnGenerator implements NumberGenerator {

public String generateNumber() {
return "13-84356-" + Math.abs(new Random().nextInt());
}
}

74

Listing 26. The IssnGenerator Bean with the @EightDigits Qualifier

public class IssnGenerator implements NumberGenerator {

public String generateNumber() {
return "8-" + Math.abs(new Random().nextInt());

}
}

These qualifiers are then applied to injection points to distinguish which implementation is
required by the client. In Listing 27, the BookService explicitly defines the 13-digit implementation
by injecting a reference of the @ThirteenDigits number generator and, in Listing 28, the
LegacyBookService injects the 8-digit implementation.

Listing 27. BookService Using the @ThirteenDigits NumberGenerator Implementation

public class BookService {

NumberGenerator numberGenerator;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
return book;

}
}

Listing 28. LegacyBookService Using the @EightDigits NumberGenerator Implementation

public class LegacyBookService {

NumberGenerator numberGenerator;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
return book;

}
}

For this to work, you don’t need external configuration; that’s why CDI is said to use strong typing.

75

You can rename your implementations to whatever you want and rename your qualifier - the
injection point will not change (that’s loose coupling). As you can see, CDI is an elegant way to have
typesafe injection.

As shown in Listing 29, Quarkus simplifies the CDI specification by allowing you to inject qualified
beans without using the @Inject annotation.

Listing 29. Injecting Qualified Beans without @Inject

public class LegacyBookService {

NumberGenerator numberGenerator;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
return book;

}
}

Injecting Alternative Beans

Qualifiers let you choose between multiple implementations of an interface at development time.
But sometimes you want to inject an implementation depending on a particular deployment
scenario. For example, you may want to use a mock number generator in a testing environment.

Alternatives are beans annotated with the special qualifier javax.enterprise.inject.Alternative. By
default, alternatives are disabled and need to be enabled to make them available for instantiation
and injection. Listing 30 shows a mock number generator alternative.

Listing 30. A Mock Generator Alternative

public class MockGenerator implements NumberGenerator {

public String generateNumber() {
return "MOCK";

}
}

As you can see in Listing 30, the MockGenerator implements the NumberGenerator interface as usual. It
is annotated with @Alternative, meaning that CDI treats it as the default alternative of the

NumberGenerator. This default alternative could have used the @Default built-in qualifier as shown in
Listing 31.

76

Listing 31. A Default Mock Generator Alternative

public class MockGenerator implements NumberGenerator {

public String generateNumber() {
return "MOCK";

}
}

Instead of a default alternative, you can specify the alternative by using qualifiers. For example, the
following code tells CDI that the alternative of a 13-digit number generator is the mock:

public class MockGenerator implements NumberGenerator {...}

By default, @Alternative beans are disabled and you need to explicitly enable them using
configuration. For that, declare the alternative using the property quarkus.arc.selected-
alternatives in the application.properties file as shown in Listing 32.

Listing 32. Enabling an Alternative

quarkus.arc.selected-
alternatives=org.agoncal.fascicle.quarkus.core.cdi.alternatives.MockGenerator

In terms of injection point, nothing changes. So your client code is not impacted. The code that
follows injects the default implementation of a number generator. If the alternative is enabled, then
the MockGenerator defined in Listing 30 will be injected.

private NumberGenerator numberGenerator;

You can have several alternatives enabled in the application.properties configuration file.

4.1.3. Scopes

By now you’ve seen a few @ApplicationScoped annotations and you might wonder what it means.
CDI is about Dependency Injection but also Context (the "C" in CDI). Every bean has a well-defined
scope and life cycle that is bound to a specific context. In Java, the scope of a POJO is pretty simple:
you create an instance of a class using the new keyword and you rely on the garbage collection to get
rid of it and free some memory. With CDI, a bean is bound to a context and it remains in that
context until the bean is destroyed by the container. There is no way to manually remove a bean
from a context. CDI defines the following scopes:

* Normal scopes:

77

o Application scope (@ApplicationScoped): Spans for the entire duration of an application. The
bean is created only once for the duration of the application and is discarded when the
application is shut down. This scope is useful for utility or helper classes, or objects that
store data shared by the entire application (but you should be careful about concurrency
issues when the data have to be accessed by several threads).

o Session scope (@SessionScoped): Spans across several HTTP requests or several method
invocations for a single user’s session. The bean is created for the duration of an HTTP
session and is discarded when the session ends. This scope is for objects that are needed
throughout the session such as user preferences or login credentials.

o Request scope (@RequestScoped): Corresponds to a single HTTP request or a method
invocation. The bean is created for the duration of the method invocation and is discarded
when the method ends. It is used for service classes that are only needed for the duration of
an HTTP request.

* Pseudo scopes:

o Dependent scope (@Dependent): The life cycle is the same as that of the client. A dependent
bean is created each time it is injected and the reference is removed when the injection
target is removed. This is the default scope for CDI.

o Singleton scope (@Singleton): Identifies a bean that CDI only instantiates once.

As you can see, all the scopes have an annotation you can use on your beans (all these annotations
are in the javax.enterprise.context package). The first three scopes are well known. For example, if
you have a session scoped shopping cart bean, the bean will be automatically created when the
session begins (e.g. the first time a user logs in) and automatically destroyed when the session ends.

public class ShoppingCart implements Serializable {...}

An instance of the ShoppingCart bean is bound to a user session and is shared by all requests that
execute in the context of that session. If you don’t want the bean to sit in the session indefinitely,
consider using another scope with a shorter life span, such as the request scope.

If a scope is not explicitly specified, then the bean belongs to the dependent pseudo-scope
(eDependent). Beans with this scope are never shared between different clients or different injection
points. They are dependent on some other bean, which means their life cycle is bound to the life
cycle of that bean. A dependent bean is instantiated when the object it belongs to is created, and
destroyed when the object it belongs to is destroyed. The code that follows shows a dependent
scoped ISBN generator with a qualifier:

public class IsbnGenerator implements NumberGenerator {...}

Being the default scope, you can omit the @Dependent annotation and write the following:

78

public class IsbnGenerator implements NumberGenerator {...}

Scopes can be mixed. A @SessionScoped bean can be injected into a @RequestScoped or
@ApplicationScoped bean and vice versa.

4.1.4. Events

In a few sections, you will learn about Quarkus life cycle, which is based on CDI events. So let’s first
discover CDI events. CDI events allow beans to interact with no compile time dependency at all. One
bean can define an event (using the javax.enterprise.event.Event interface), another bean can fire
the event (by calling the fire() method), and yet another bean can handle the event (using the
@0bserves annotation). The beans can be in separate packages and even in separate JARs of the
application. This basic schema follows the observer/observable design pattern from the Gang of
Four.""

Event producers fire events using the javax.enterprise.event.Event interface. A producer raises
events by calling the fire() method, passes the event object, and is not dependent on the observer.
In Listing 33, the BookService fires an event (bookAddedEvent) each time a book is created. The code
bookAddedEvent.fire(book) fires the event and notifies any observer methods observing this
particular event. The content of this event is the Book object itself that will be carried from the
producer to the consumer.

Listing 33. The BookService Fires an Event Each Time a Book Is Created

public class BookService {

NumberGenerator numberGenerator;

Event<Book> bookAddedEvent;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
bookAddedEvent.fire(book);
return book;

}
}

Events are fired by the event producer and subscribed to by event observers. An observer is a bean
with one or more observer methods. Each of these observer methods takes an event of a specific
type as a parameter that is annotated with the @0bserves annotation and optional qualifiers. The
observer method is notified of an event if the event object matches the event type and all the
qualifiers. Listing 34 shows the inventory service whose job is to keep the inventory of available
books by increasing the book stock. It has an addBook () method that observes any event typed with

79

Book. The annotated parameter is called the event parameter. So once the event is fired from the
BookService bean, the CDI container pauses the execution and passes the event to any registered
observer. In our case, the addBook() method in Listing 34 will be invoked and the inventory
updated, and the container will then continue the code execution where it paused in the
BookService bean. This means that events in CDI are not treated asynchronously.

Listing 34. Service Observing the Book Event

public class InventoryService {
List<Book> inventory = new ArraylList<>();

public void addBook(Book book) {
inventory.add(book);
}
}

Like with most of CDI, event production and subscription are typesafe and allow qualifiers to
determine which events observers will be observing. An event may be assigned one or more
qualifiers, which allows observers to distinguish it from other events of the same type. Listing 35
revisits the BookService bean by adding an extra event. When a book is created, it fires a
bookAddedEvent and when a book is removed it fires a bookRemovedEvent, both of type Book. To
distinguish both events, each is qualified either by @Added or by @Removed. The code of these
qualifiers is identical to the code in Listing 23: an annotation with no members annotated with
@Qualifier.

80

Listing 35. The BookService Firing Several Events

@ApplicationScoped
public class BookService {

@Inject
NumberGenerator numberGenerator;

@Inject @Added
Event<Book> bookAddedEvent;

@Inject @Removed
Event<Book> bookRemovedEvent;

public Book createBook(String title, Float price, String description) {
Book book = new Book(title, price, description);
book.setIsbn(numberGenerator.generateNumber());
bookAddedEvent.fire(book);
return book;

}

public void deleteBook(Book book) {
bookRemovedEvent.fire(book);
}
}

The InventoryService in Listing 36 observes both events by declaring two separate methods
observing either the book added event (@0bserves @Added Book) or the book removed event
(e0Observes @Removed Book).

81

Listing 36. The InventoryService Observing Several Events
public class InventoryService {

Logger logger;
List<Book> inventory = new ArraylList<>();

public void addBook(Book book) {
logger.info("Adding book " + book.getTitle() + " to inventory");
inventory.add(book);

}

public void removeBook(Book book) {
logger.info("Removing book " + book.getTitle() + " to inventory");
inventory.remove(book);
}
}

4.1.5. Configuring ArC

What you’'ve just seen is the default behaviour of CDI in Quarkus. But being highly configurable,
you can tweak the CDI behaviour a little bit by changing the properties in the
application.properties file. In the application.properties file, you can use several quarkus.arc.*
H}“l?perties defined in Table 5 to change the behaviour of ArC (the CDI implementation in Quarkus).

Table 5. Some Quarkus ArC Configuration Properties

Property Default

quarkus.arc.remove-unused-beans all
If set to all the container will attempt to remove all unused beans

quarkus.arc.transform-unproxyable-classes true
If set to true, the bytecode of unproxyable beans will be transformed

quarkus.arc.config-properties-default-naming-strategy kebab-case
The default property naming strategy (from-config, verbatim, kebab-case)

quarkus.arc.selected-alternatives
The list of selected alternatives for an application

quarkus.arc.auto-producer-methods true
If true then javax.enterprise.inject.Produces is automatically added to all
methods that are annotated with a scope annotation

4.2. Eclipse MicroProfile Configuration

You’ve just seen that Quarkus allows some sort of configuration through the application.properties

82

file. But it goes way beyond that. SmallRye Config implements Eclipse MicroProfile Configuration
for configuring applications (and profiles as youwll see in next section). In a microservice
architecture, the fact that there is no central runtime implies that there is no single point of
configuration, but several points. Each microservice has its own configuration. But sometimes two
microservices might want to share a common configuration. In that case, it can be helpful that they
access configurations from multiple sources homogeneously and transparently. Eclipse MicroProfile
Configuration provides applications and microservices with the means to obtain configuration
properties through several sources (internal and external to the application), through dependency
injection or lookup.""”

The Eclipse MicroProfile Configuration APIs and annotations are all defined under the
org.eclipse.microprofile.config package. Table 6 lists the main subpackages defined in Eclipse
M;']croProfile Configuration version 1.4 (under the root org.eclipse.microprofile.config package).

Table 6. Main org.eclipse.microprofile.config Subpackages

Subpackage Description

root Root package of the Configuration APIs
inject CDI support
spi Internal SPIs (Service Provider Interfaces) implemented by the provider

Along with APIs, Configuration comes with a set of annotations. Table 7 lists a subset of the most
commonly used annotations.

Table 7. Main Configuration Annotations
Annotation Description

@ConfigProperty Binds the injection point with a configured value

There is no Quarkus extension per-se for configuration as it is part of its core. So you have
configuration for free in all Quarkus extensions and applications. But Quarkus comes with YAML
support that needs the extension defined in Listing 37 to be added to your pom.xml.

Listing 37. Configuration Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-config-yaml</artifactId>
</dependency>

4.2.1. Understanding Configuration

An application usually needs to change some data or behaviour depending on some technical or
business requirements, or based on the running environment. You might want to change the VAT
percentage depending on the country where you deploy your application; or depending on your
environment (development, production, etc.) you might need to change the URL of a database or
the credentials of an external service. It must be possible to modify configuration data from outside
an application so that the application itself does not need to be repackaged. So, hard coding these

83

values is not a good idea.

As shown in Figure 22, the configuration data can come from different locations and in different
formats (e.g. system properties, system environment variables, external files, databases,
.properties, .xml, .yaml). We call these configuration locations configuration sources.

Config File k) Environment Variable k) D System Properties k)
) > ~ \\ // - <
S \ / -7
S~ - \ / Phg
NN P

SO
Melrge
|
: Configure
|
Y

Microservice

Figure 22. Several sources configuring a microservice

4.2.2. Configuring Data

Eclipse MicroProfile Configuration allows you to easily configure an application either
programmatically or using injection. It also allows you to have several configuration sources, from
environment variables to external files.

Injecting Configuration

Let’s say we have an invoice. And depending on the country within which the application is
deployed, the invoice has a different VAT rate, allows discounts or not, and has different terms and
conditions or penalties. For that, Eclipse MicroProfile Configuration can inject an external
configuration thanks to the @ConfigProperty annotation. As seen in Listing 38, Invoice is a bean
containing several attributes, and some of these attributes are configurable. The semantics are:

* subtotal is not a configurable attribute,

* vatRate is configurable and its default value is 10,

 terms is configurable but it has no default value.

84

Listing 38. Bean Injecting Configuration
package org.agoncal.fascicle;
public class Invoice {

Float subtotal;

(defaultValue = "10")
Float vatRate;
Float vatAmount;
Float total;

(defaultValue = "true")

Boolean allowsDiscount;
(defaultValue = "2.5")
Float discountRate;

String terms;

String penalties;

Then it’s just a matter of configuring these attributes. Listing 39 shows an external property file. By
default, the configuration key uses dot-separated blocks to prevent name conflicts and is similar to
the Java package namespacing: <fully qualified package name>.<bean name>.<attribute name>.

Listing 39. Configuration File

org.agoncal.fascicle.Invoice.vatRate=10
org.agoncal.fascicle.Invoice.allowsDiscount=false
org.agoncal.fascicle.Invoice.terms=Payment upon receipt
org.agoncal.fascicle.Invoice.penalties=Penalty in case of late payment

As shown in Listing 40, the @ConfigProperty annotation actually has two optional members:

* The key of the configuration property used to look up the configuration value (e.g.
invoice.vatRate or invoice.terms),

* The default value if the configured property value does not exist.

So if you want to change the key of the configuration property, you can easily customise it as shown
in Listing 40.

85

Listing 40. Injecting Configuration Using Different Keys
public class Invoice {
Float subtotal;
(name = "invoice.vatRate", defaultValue = "10")
Float vatRate;
Float vatAmount;

Float total;

(name = "invoice.allowsDiscount", defaultValue = "true")
Boolean allowsDiscount;

"invoice.discountRate", defaultValue = "2.5")

(name
Float discountRate;

"invoice.terms")

(name
String terms;

(name = "invoice.penalties")
String penalties;

}

Then you rename the properties accordingly in the configuration file (see Listing 41).

Listing 41. Configuration File

invoice.vatRate=10

invoice.allowsDiscount=false
invoice.terms=Payment upon receipt
invoice.penalties=Penalty in case of late payment

If you do not provide a value for a property (as a default value or as an external property), the
application startup fails with a deployment exception. That is because CDI cannot inject a value:

Failed to start application: javax.enterprise.inject.spi.DeploymentException:
No config value of type [java.lang.String] exists for: invoice.terms

By default, Quarkus reads the application.properties file. In the Maven directory structure, the file
isunder src/main/resources

@ConfigProperty is a CDI qualifier. As we’ve seen in the previous section, Quarkus simplifies
injection by allowing us to inject a qualified bean without using the @Inject annotation. So, when
injecting a configured value, you can use @Inject @ConfigProperty or just @ConfigProperty as seen in
Listing 40.

86

Listing 42. Injecting Configuration without @Inject
public class Invoice {

Float subtotal;

(name = "invoice.vatRate", defaultValue = "10")
Float vatRate;
Float vatAmount;
Float total;

(name = "invoice.allowsDiscount", defaultValue = "true")
Boolean allowsDiscount;

(name = "invoice.discountRate", defaultValue = "2.5")
Float discountRate;

(name = "invoice.terms")

String terms;

(name
String penalties;

"invoice.penalties")

Programmatic Configuration

Configuration can be accessed programmatically. This can be handy when classes are not CDI beans
and cannot use injection, for example. Programmatic configuration is accessed from the Config API,
either by injection, or via the ConfigProvider API.

Listing 43 shows how to get an instance of Config using the ConfigProvider. Once you have an
instance of Config, it’s just a matter of invoking the method getValue() passing the configuration
key and the datatype of the value (e.g. String, Float, etc.) as parameters.

Listing 43. Programmatic Configuration Using ConfigProvider
Config config = ConfigProvider.getConfig();
invoice.vatRate = config.getValue("invoice.vatRate", Float.class);
invoice.allowsDiscount = config.getValue("invoice.allowsDiscount", Boolean.class);

invoice.terms = config.getValue("invoice.terms", String.class);
invoice.penalties = config.getValue("invoice.penalties", String.class);

In a bean, you can use injection. So a simple @Inject will give you an instance of Config as shown in
Listing 44.

87

Listing 44. Programmatic Configuration Using Injection

Config config;

public void calculateInvoice() {
invoice.vatRate = config.getValue("invoice.vatRate", Float.class);
invoice.allowsDiscount = config.getValue("invoice.allowsDiscount”, Boolean.class);
invoice.terms = config.getValue("invoice.terms", String.class);
invoice.penalties = config.getValue("invoice.penalties", String.class);

}

If a property is optional (e.g. Optional<String> terms instead of String terms), you can instead use
the getOptionalValue() method as shown in Listing 45.

Listing 45. Optional Values

invoice.terms = config.getOptionalValue("invoice.terms", String.class);
invoice.penalties = config.getOptionalValue("invoice.penalties”, String.class);

Multiple Configuration Properties

As an alternative to injecting configured values in a bean, you can use the @ConfigProperties
annotation to group the configuration in a separate class or interface. So let’s take our Invoice bean
again, and get rid of all the @ConfigProperty annotations. We end up with the code shown in Listing
46: a bean with attributes and no annotations, that’s all.

Listing 46. Invoice with No Configuration
public class Invoice {

Float subtotal;

Float vatRate;

Float vatAmount;

Float total;

Boolean allowsDiscount;
Float discountRate;
String terms;

String penalties;

To externalise the configuration, it’s just a matter of creating a new class called
InvoiceConfiguration (which is the name of the class to configure, here, Invoice, suffixed with
Configuration) and only having the configured attributes. Listing 47 shows the configuration class
annotated with @ConfigProperties. Notice that the class doesn’t necessarily have to declare getters
and setters. Having simple public non-final fields is valid.

88

Listing 47. Invoice Configuration

(prefix = "inv", namingStrategy = NamingStrateqgy.VERBATIM)
public class InvoiceConfiguration {

public Float vatRate;

public Boolean allowsDiscount;
public Float discountRate;
public String terms;

public String penalties;

The prefix member of @ConfigProperties is optional. If set, the configuration keys will use this
prefix (see Listing 48), if not, then the prefix to be used will be determined by the class name (e.g.
invoice.vatRate instead of inv.vatRate).

Listing 48. Property File

inv.vatRate=10

inv.allowsDiscount=false

inv.discountRate=2.5

inv.terms=Payment upon receipt
inv.penalties=Penalty in case of late payment

Notice the namingStrategy member in Listing 48 that is set to VERBATIM. Actually there are two
naming strategies you can use:

» VERBATIM: takes the attribute name as it is for the configuration key (e.g. the attribute vatRate has
a configuration key called vatRate).

» KEBAB_CASE: hyphenates the attribute name (e.g. the attribute vatRate has a configuration key
called vat-rate).

If you change the naming strategy to KEBAB_CASE as shown in Listing 49, then all your properties will
be hyphenated (see Listing 50).

Listing 49. Kebab Case

(prefix = "inv", namingStrategy = KEBAB_CASE)

Listing 50. Kebab Case Property File

inv.vat-rate=10

inv.allows-discount=false
inv.discount-rate=2.5

inv.terms=Payment upon receipt
inv.penalties=Penalty in case of late payment

89

4.2.3. YAML Support

You might want to use YAML over properties for configuration. In fact, Quarkus will choose an
application.yaml over an application.properties (but make sure to keep just one configuration type
to avoid errors). Listing 51 shows an example of YAML file to configure the application.

Listing 51. application.yaml File

app:
invoice:
vatRate: 10
allowsDiscount: false
terms: Payment upon receipt
penalties: Penalty in case of late payment

Then, as shown in Listing 52, it’s just a matter of using @ConfigProperty to inject a property (or using
programmatic configuration).

Listing 52. Injecting YAML Configuration
public class Invoice {

Float subtotal;

(name .invoice.vatRate", defaultValue = "10")

11
Q
o
o

Float vatRate;
Float vatAmount;
Float total;
(name = "app.invoice.allowsDiscount", defaultValue = "true")
Boolean allowsDiscount;

(name = "app.invoice.discountRate", defaultValue = "2.5")
Float discountRate;

(name = "app.invoice.terms")
String terms;

(name = "app.invoice.penalties")
String penalties;

4.2.4. Configuration Sources

By default, Quarkus reads the configuration of an application by reading the
application.properties file located under the src/main/resources directory. Eclipse MicroProfile
Configuration also allows you to configure the application by using several sources for configured
values, a.k.a. ConfigSource. A ConfigSource provides configuration values from a specific place, from
files to system properties. Each configuration source has a specified ordinal, which is used to
determine the importance of the values taken from the associated source. A higher ordinal means
that the values taken from this source will override values with a lower priority. Properties can be
set (in decreasing ordinal priority) as:

» System properties (-Dinvoice.vatRate=50)

90

¢ Environment variables (INVOICE_VATRATE=50)
* Environment file named .env placed in the current working directory (INVOICE_VATRATE=50)
» External config directory under the current working directory (config/application.properties)

* Resources src/main/resources/application.properties

If the same property is defined in multiple configuration sources, a policy to specify which one of
the values will effectively be used is applied. Therefore, the default values can be specified in a file
packaged with the application, and the value can be overwritten later for each deployment, using
system properties for example. And of course, you can create your own source. Eclipse MicroProfile
Configuration has a set of APIs for that.

4.2.5. Configuring Quarkus

We’ve just seen how to configure our application. But Quarkus itself is configured via the same
mechanism. In fact, Quarkus is highly configurable with hundreds of configuration keys you can
tweak. Quarkus reserves the quarkus. namespace for its own configuration. Table 8 shows a very
small subset of these configuration keys, but you can easily find the ones you are looking for on the
Quarkus website."""

Table 8. Some Quarkus Configurations

Property Default
quarkus.http.root-path /

The HTTP root path. All web content will be served relative to this root path.
quarkus.http.port 8080

The HTTP port

quarkus.http.test-port 8081

The HTTP port used to run tests

quarkus.http.ssl.protocols TLSv1.3,TLSv1.2
The list of protocols to explicitly enable.

quarkus.http.auth.form.login-page /1login.html
The login page

quarkus.http.auth.form.error-page /error.html

The error page

quarkus.http.auth.form.landing-page /index.html
The landing page to redirect to if there is no saved page to redirect back to

quarkus.http.cors false
Enables the CORS filter

To access these configuration keys, you can use injection or programmatic configuration as shown
in Listing 53.

91

Listing 53. Getting Quarkus Properties
Config config = ConfigProvider.getConfig();

LOGGER. info(config.getValue("quarkus.banner.enabled", Boolean.class));
LOGGER.info(config.getValue("quarkus.default-locale", String.class));
LOGGER.info(config.getValue("quarkus.http.port", String.class));
LOGGER.info(config.getValue("quarkus.http.test-port", String.class));
LOGGER.info(config.getValue("quarkus.http.ssl.protocols", String.class));
LOGGER. info(config.getValue("quarkus.http.read-timeout", String.class));
LOGGER.info(config.getValue("quarkus.log.level", String.class));

LOGGER. info(config.getValue("quarkus.log.min-level", String.class));

4.3. Profiles

Quarkus supports the notion of configuration profiles. This allows you to have multiple
configurations in the same file and to select them via a profile name.

By default, Quarkus has three profiles, although it is possible to create your own and use as many
as you like. The built-in profiles are:

* dev: Activated when in development mode (When running mvn quarkus:dev).
* test: Activated when running tests.

* prod: The default profile when not running in development or test mode.

The syntax is %{profile}.config.key=value. So if our application needs a variable called isbn.prefix
(see Listing 54) specific to the development mode, it needs to be defined as %dev.isbn.prefix in the
application.properties file.

Listing 54. Injecting a Property Key

public class IsbnGenerator implements NumberGenerator {

(name = "isbn.prefix")
String prefix;

public String generateNumber() {

return prefix + Math.abs(new Random().nextInt());

}
}

As we’ve seen in the previous section, for this property injection to work, it’s just a matter of
defining the key isbn.prefix and a value in the application.properties file.

isbn.prefix=13

92

But if we need to have different values depending on the environment, profiles are here to help.
Let’s say we want a different prefix in development mode. When executing mvn quarkus:dev, the dev
profile is automatically enabled, so we prefix all the configuration keys with %dev. Notice how we
can use profiles to have different log levels as well.

%dev.isbn.prefix=DEV
%dev.quarkus.log.category."org.agoncal".level=INFO

Accordingly, when you run your tests, the test profile is enabled, and the prod profile is enabled
when building an executable JAR or a native executable.

%test.isbn.prefix=TST
%test.quarkus.log.category."org.agoncal".level=DEBUG

%prod.isbn.prefix=PRD

Quarkus comes with 3 profiles (dev, test, prod) but you might need other profiles. This is quite easy
to do as Quarkus will simply use the quarkus.profile system property (or the QUARKUS_PROFILE
environment variable). Let’s say you have a staging environment and want to set some specific
values for this environment. It’s just a matter of adding these variables with the prefix %staging in
the application.properties:

%staging.isbn.prefix=STAG
%staging.quarkus.log.category."org.agoncal".level=INFO

Then, you set the system variable depending on your needs:

» Usemvn -Dquarkus.profile=staging quarkus:dev if you are developing,

* Or java -Dquarkus.profile=staging -jar profiles-1.0-runner.jar if you are running your
executable JAR.

4.3.1. Configuring Profiles

Quarkus being really highly configurable, you can even tweak some properties so the configuration
strategy is changed accordingly. Table 9 shows some properties related to the profiles configuration.
Table 9. Some Quarkus Profile Configuration Properties

Property Default

quarkus.profile prod
Profile that will be active when Quarkus launches

quarkus.test.native-image-profile prod
The profile to use when testing the native image

quarkus.test.profile test
The profile to use when testing using @QuarkusTest

93

4.4. Logging

When developing an application, we know that there are chances that it won’t work as expected. In
order to check what went wrong, we can use debuggers while developing, but not in production
(most debuggers won’t be available in production). Hence, adding logging statements in the source
code to help finding potential bugs is handy.

Logging is so common, that Java provides a built-in framework in the java.util.logging package.
But throughout the history of the Java platform, many more logging frameworks have appeared,
making it difficult sometimes to integrate well with each other. Quarkus acknowledges this
diversity and integrates the following APIs for logging:

« JDK JUL (Java Util Logging)."""

[115]

* JBoss Logging.
« SLF4].M""

« Apache Commons Logging.""”

Listing 55 shows some code that uses all these supported logging frameworks.

Listing 55. Using Several Loggers

org.jboss.logging.Logger JBOSS_LOGGER =
org.jboss.logging.Logger.getLogger(LoggingResource.class);
java.util.logging.Logger JUL_LOGGER =
java.util.logging.Logger.getlLogger(LoggingResource.class.getName());
org.apache.commons.logging.Log COMMONS_LOGGING =
org.apache.commons.logging.LogFactory.getLog(LoggingResource.class);
org.slf4j.Logger SLF4]_LOGGER =
org.slf4j.LoggerFactory.getLogger(LoggingResource.class);

JBOSS_LOGGER.info("Trace produced by JBoss Logger");
JUL_LOGGER.info("Trace produced by JUL");
COMMONS_LOGGING.info("Trace produced by Commons Logging");
SLF4]_LOGGER.info("Trace produced by SLF41");

No matter which one you use, or which one a third-party framework uses, all the logs will be
merged by Quarkus:

[INFO] Trace produced by JBoss Logger
[INFO] Trace produced by JUL

[INFO] Trace produced by Commons Logging
[INFO] Trace produced by SLF4]

The fact that Quarkus supports all these loggers is very important. When you build an application,
you tend to embed third-party libraries, and each one of them uses one of these logger frameworks.
And if within your own application you use one of these loggers, you know your traces will be
handled by Quarkus. If you start an application from scratch, you might as well use the JBoss

94

Logger.

4.4.1. Log Levels

Log levels provide a way to categorise logs by their severity, or their impact on the overall health
and stability of the application. JBoss Logger provides different levels described in Table 10.

Table 10. JBoss Logger Levels
Level Description
FATAL A critical service failure/complete inability to service requests of any kind

ERROR A significant disruption in a request or the inability to service a request

WARN A non-critical service error or problem that may not require immediate correction

INFO Service lifecycle events or important related very-low-frequency information

DEBUG Messages that convey extra information regarding lifecycle or non-request-bound events
which may help debug

TRACE Messages that convey extra per-request debugging information that may be very high
frequency

The way to use these levels is quite simple. The API has several methods (e.g. fatal(), info(), etc.),
each one corresponding to one level (e.g. FATAL, INFO, etc.). As shown in Listing 56, it’s just a matter
of invoking these methods and passing a message (with or without parameters).

Listing 56. Invoking Log Levels Methods
Logger LOGGER = Logger.getlLogger(LoggingResource.class);

LOGGER. fatal("Fatal", exception);
LOGGER.error("Error");
LOGGER.warn("Warning");
LOGGER.info("Information");
LOGGER.debug("Debug");
LOGGER.trace("Trace");

4.4.2. Configuring Logging

You can configure how Quarkus logs. In fact, you can configure almost everything: from the format
of the log entry, the format of the date of the log entry, to the appender to use. Quarkus can even
integrate with external formats or systems such as GELF "'?, Sentry "'” or Syslog."”” The logging
configuration is under the quarkus.log. namespace."'" Table 11 shows only a subset of the
properties you can use to customise logging.

Table 11. Some Quarkus Logging Configuration Properties
Property Default

quarkus.log.handler.gelf.enabled false
Determine whether to enable the GELF logging handler

95

Property

quarkus.log.console.json

Determine whether to enable the JSON console formatting

quarkus.log.console.json.pretty-print
Enable "pretty printing" of the JSON record

quarkus.log.level

The log level of the root category (FATAL, ERROR, WARN, INFO, DEBUG, TRACE)

quarkus.log.min-level
The default minimum log level

quarkus.log.category."categories".level
The log level for this category

quarkus.log.category."categories".handlers
The names of the handlers to link to this category

quarkus.log.handler.console."console-handlers".enable
If console logging should be enabled

quarkus.log.handler.console."console-handlers".format
If console logging should be enabled

quarkus.log.handler.console."console-handlers".enable
If console logging should be enabled

Default

true

false

INFO

INFO

inherit

true

true

true

Logging configuration uses the same configuration mechanism we just saw in the previous section.
So Listing 57 shows some code where we programmatically get the value of these property keys.

Listing 57. Getting Logging Configuration

Config config = ConfigProvider.getConfig();

LOGGER.info(config.getValue("quarkus.log.level", String.class));
LOGGER.info(config.getValue("quarkus.log.min-1level", String.class));

LOGGER.info(config.getValue("quarkus.log.console.json", Boolean.class));
LOGGER. info(config.getValue("quarkus.log.console.json.pretty-print", Boolean.class));

The logging configuration goes in the application.properties file. The configuration below displays

log entries up to DEBUG to the console, in a specific format using colours:

quarkus.log.console.enable=true
quarkus.log.console.level=DEBUG

quarkus.log.console.format=%d{HH:mm:ss} %-5p [%c{2.}] %s%e%n

quarkus.log.console.color=true

The following configuration writes the log entries up to INFO to the /tmp/quarkus.log file, with a

different format:

96

quarkus.log.file.enable=true
quarkus.log.file.path=/tmp/quarkus.log
quarkus.log.file.level=INFO
quarkus.log.file.format=%d %-5p [%c{2.}] (%t) %s%e%n

4.4.3. Logging Categories

Logging is done on a per-category basis and each category can be independently configured. The
root logger category (quarkus.log) sits at the top of the logger hierarchy, and then you can have zero
or several categories, depending on your needs. For example, the configuration below sets a
different log level to different categories (notice that the quotes shown in the property name are
required, as categories normally contain '.' which must be escaped):

quarkus.log.level=TRACE
quarkus.log.category."org.agoncal".level=INFO
quarkus.log.category."io.quarkus.resteasy".level=DEBUG
quarkus.log.category."io.quarkus.arc".level=DEBUG
quarkus.log.category."org.jboss".level=WARN

A configuration which applies to a category will also apply to all sub-categories of that category,
unless there is a more specific matching sub-category configuration.

4.4.4. Logging Format

By default, the log entry displays the timestamp, the log level, the class name, the thread id and the
message. But this logging string can be customised through a set of symbols. Only a subset of these
symbols is listed in Table 12 (you can find the entire list on the Quarkus website)."""

Table 12. Some Logging Format Symbols

Symbol Description

o

c Category name

o

C Source class name

%d{xxx} Date with the given date format string defined by java.text.SimpleDateFormat "'**

o
D

Renders the thrown exception, if any

o
0

System host name

o°
—

Current process PID

o°
—

Source location (source file name, line number, class name, and method name)

o
=

Source line number

o
3

Renders the log message plus exception (if any)

o
=

Source method name

o
o

Renders the platform-specific line separator string

97

Symbol Description

o°
©

Log level of the message

o
(7]

Renders just the log message, with no exception trace

oe
—+

Thread name

Then it’s just a matter of using these symbols in the .format configuration key. Below we configure
the log entry to display the timestamp, the level, the class name and the message, and we add a
newline at the end of the entry:

quarkus.log.console.format=%d %p %c %s %n

2020-06-09 09:40:36,013 INFO org.agoncal.fascicle.quarkus.core.logging.LoggingResource
Information

The date (%d) follows the java.text.SimpleDateFormat. So below we only display the hour, minute
and second of the log entry date:

quarkus.log.console.format=%d{HH:mm:ss} %p %c %s %n

09:41:08 INFO org.agoncal.fascicle.quarkus.core.logging.LoggingResource Information

We can also add text symbols, if we want, or use a regular expression. Below we add square
brackets to the log level, and we only display the first 2 characters of the package name:

quarkus.log.console.format=%d{HH:mm:ss} [%p] [%c{2.}] %s %n

09:42:38 [INFO] [or.ag.fa.qu.co.lo.LoggingResource] Information

Below we add the method name and line number of where the log is produced:

quarkus.log.console.format=%d{HH:mm:ss} [%p] [%c{2.}] [%M:%L] %s %n

09:42:58 [INFO] [or.ag.fa.qu.co.lo.LoggingResource] [displaylLogs:40] Information

4.4.5. JSON Format

It is possible to change the output format to JSON. This can be useful in environments where the
logs of the application are captured by a service which can, for example, process and store the log
information for later analysis. With JSON, a log entry can be read by any number of JSON
interpreters as parsing a JSON log is far easier than parsing a plain text log. To do that, it’s just a
matter of adding a specific dependency to your pom. xml

98

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-logging-json</artifactId>
</dependency>

The presence of this extension means that you will be able to activate and configure the JSON
format output. The configuration below activates the JSON logging and the pretty-print:

quarkus.log.console.json=true
quarkus.log.console.json.pretty-print=true

This will produce the following log entry:

"timestamp": "2020-06-08716:53:13.304+02:00",

"sequence": 8658,

"loggerClassName": "org.jboss.logmanager.Logger",

"loggerName": "org.agoncal.fascicle.quarkus.core.logging.LoggingResource",
"level": "INFO",

"message": "Trace produced by Commons Logging",

"threadName": "executor-thread-159",

"threadId": 279,

"mde": {

¥

ndc": ,
"hostName": "imac-pro-de-antonio.local"”,
"processName": "logging-dev.jar",
"processId": 94651

4.5. Application Initialisation and Termination

In the Getting Started chapter, we developed a REST endpoint and Quarkus executed it: we didn’t
code an entry point per-se, the application is executed as a whole. But sometimes you need to
specify such an entry point. You also often need to execute custom actions when the application
starts and clean up everything when the application stops. Quarkus lets you take control of the
initialisation and termination of an application.

4.5.1. Entry Point

There is a way in Quarkus to develop an entry point. In fact, if no main class is specified, then one is
generated automatically that will simply wait to exit after Quarkus is booted. Listing 58 shows what
an entry point looks like. The Main class is annotated with @QuarkusMain and implements
QuarkusApplication. This annotation indicates the default entry point of the application. By
implementing the interface you need to override the run() method. This is where you can add any
custom code and then launch Quarkus with the waitForExit() method, otherwise it will just exit

99

without starting Quarkus.

Listing 58. Entry Point

public class Main implements QuarkusApplication {

public int run(String... args) throws Exception {
System.out.println("Running main method...");
Quarkus.waitForExit();
return 0;
}
}

Another convenient way to start Quarkus is by having a public static void main entry point and
starting Quarkus with a run() method (see Listing 59). Notice that this method is not supposed to be

used for packaging or production, it is just a convenient way to execute or debug an application
from an IDE.

Listing 59. Convenient Main for IDEs
public class ConvenientMain {

public static void main(String... args) {
System.out.println("Convenient to run inside an IDE");
Quarkus.run(args);
}
}

The io0.quarkus.runtime.Quarkus API has several methods to start Quarkus in different ways.

* run() starts a Quarkus application, that will run until it either receives a signal (e.g. pressing
CTRL+C) or one of the exit methods is called,

* waitForExit() blocks until the Quarkus shutdown process is initiated.
4.5.2. Application Life Cycle

You can be notified when the application starts/stops by observing specific CDI events. Thanks to
the CDI @0bserves annotation, the ApplicationLifecycle in Listing 60 can observe events and react in
a certain way. That’s because Quarkus fires CDI events at startup and shutdown:

* On startup with the StartupEvent so it can execute code when the application is starting,

* On shutdown with the ShutdownEvent before the application is terminated.

100

Listing 60. Listening to Events

public class ApplicationLifecycle {

private static final Logger LOGGER = Logger.getlLogger(ApplicationlLifecycle.class);

void onStart(StartupEvent ev) {
LOGGER.info("The application is starting...");

}

void onStop(ShutdownEvent ev) {
LOGGER.info("The application is stopping...");

}

}

There is another way to execute custom code at startup: by using the @Startup annotation (see
Listing 61). The behaviour of the @Startup annotation is similar to a declaration of a StartupEvent
observer. The value of this annotation is an integer and is used to specify the priority of the
observer and thus affect observer ordering.

Listing 61. Startup with Priority
(Interceptor.Priority.LIBRARY_BEFORE)
public class LibraryStartupBefore {
private static final Logger LOGGER = Logger.getlLogger(LibraryStartupBefore.class);

public LibraryStartupBefore() {
LOGGER. info("LIBRARY_BEFORE");
}
}

@javax.interceptor.Interceptor.Priority takes an integer that can take any value. The rule is that
values with a lower priority are called first. The javax.interceptor.Interceptor annotation defines
the following set of constants:

» PLATFORM_BEFORE = 0: Start of range for early interceptors defined by the platform,

LIBRARY_BEFORE = 1000: Start of range for early interceptors defined by extension libraries,

APPLICATION = 2000: Start of range for interceptors defined by applications,

LIBRARY_AFTER = 3000: Start of range for late interceptors defined by extension libraries, and

PLATFORM_AFTER = 4000: Start of range for late interceptors defined by the platform.

If we execute the Main class with the ApplicationLifecycle and LibraryStartupBefore classes, we get
the following output. The Main class is executed first ("Running main method"), then comes the
library priority ("LIBRARY_BEFORE") and then the StartupEvent ("The application is starting..."):

101

Running main method

AV AV VA VA VY R AV AV AV AN

NN/ N

INFO [org.LibraryStartupBefore] LIBRARY_BEFORE

INFO [org.ApplicationLifecycle] The application is starting...

INFO [io0.quarkus] Quarkus on JVM started in 1.384s. Listening on: http://0.0.0.0:8080
INFO [io0.quarkus] Profile dev activated. Live Coding activated.

INFO [io0.quarkus] Installed features: [cdi]

INFO [org.ApplicationLifecycle] The application is stopping...

INFO [io0.quarkus] Quarkus stopped in 0.002s

4.6. Summary

In this chapter, you saw some core functionalities of Quarkus. Why are they called core? Because
you will see injection, configuration and profiles in most of the following chapters.

First, Context and Dependency Injection. CDI, with its implementation ArC, is used in Quarkus to
inject beans into other beans, or configuration values into beans. CDI qualifiers and events are also
heavily used in MicroProfile and in Quarkus.

As for Eclipse MicroProfile Configuration, Quarkus can be configured through several sources, but
comes with a default one: the application.properties file. This is where you will be configuring
logs, datasources, database creation or the URL of external microservices. And of course, you can
have other configuration sources to override any property, such as passing system variables, for
example. And remember that these sources can make use of the Quarkus profiles where the same
property can have different values in dev, test or prod.

Quarkus also allows you to hook business code at different stages of the application lifecycle: before
it starts, after, or before shutting down. You can even have a main entry point to execute your
Quarkus application programmatically.

The next chapter is about Data, Transactions and ORM. Yes, Quarkus is not only about
microservices. As you will see, it also integrates a set of specifications and technology to easily map
your object into a relational database in a transactional way.

[105] ArC https://github.com/quarkusio/quarkus/tree/master/independent-projects/arc
[106] CDI limitations https://quarkus.io/guides/cdi-reference#limitations

[107] CDI https://jcp.org/en/jsr/detail?id=365

[108] JavaBeans https://en.wikipedia.org/wiki/JavaBeans

[109] Expression Language https://jakarta.ee/specifications/expression-language

[110] Observer Pattern https://en.wikipedia.org/wiki/Observer_pattern

[111] Quarkus Configuration https://quarkus.io/guides/all-config

[112] Configuration https://microprofile.io/project/eclipse/microprofile-config

[113] Configuration GitHub https://github.com/eclipse/microprofile-config

[114] JUL https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html
[115] JBoss Logging https://github.com/jboss-logging/jboss-logging

[116] SLF4] http://www.slf4j.org/

102

https://github.com/quarkusio/quarkus/tree/master/independent-projects/arc
https://quarkus.io/guides/cdi-reference%23limitations
https://jcp.org/en/jsr/detail?id=365
https://en.wikipedia.org/wiki/JavaBeans
https://jakarta.ee/specifications/expression-language
https://en.wikipedia.org/wiki/Observer_pattern
https://quarkus.io/guides/all-config
https://microprofile.io/project/eclipse/microprofile-config
https://github.com/eclipse/microprofile-config
https://docs.oracle.com/en/java/javase/11/docs/api/java.logging/java/util/logging/package-summary.html
https://github.com/jboss-logging/jboss-logging
http://www.slf4j.org/

[117] Commons Logging https://commons.apache.org/proper/commons-logging
[118] GELF https://www.graylog.org/features/gelf

[119] Sentry https://sentry.io

[120] Syslog https://en.wikipedia.org/wiki/Syslog

[121] Logging format string https://quarkus.io/guides/logging#format-string

[122] SimpleDateFormat https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

103

https://commons.apache.org/proper/commons-logging
https://www.graylog.org/features/gelf
https://sentry.io
https://en.wikipedia.org/wiki/Syslog
https://quarkus.io/guides/logging%23format-string
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/text/SimpleDateFormat.html

Chapter 5. Data, Transactions and ORM

The previous Core Quarkus chapter gave you a good understanding of what makes up the basis for
Quarkus. From what you’ve already read in the previous chapters, Quarkus is about microservices,
Kubernetes, Cloud Native or GraalVM. But not only. Quarkus is built by the open source company
that created transaction management in JBoss EAP, the object-relational mapping tool Hibernate
ORM, and specified Bean Validation from their Hibernate Validator implementation. So Quarkus
integrates well with all these tools.

Your applications usually manipulate data, validate data and store it in relational databases in a
transactional way. You can use Quarkus as a runtime environment for data centric applications.
This chapter starts with Bean Validation and shows how to constrain data so it’s valid. Java
Persistence API with Java Transaction API and datasources make a perfect environment to map
objects into a relation database with transactions. Last but not least, this chapter will illustrate how
Hibernate ORM with Panache makes database access easier.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/data

5.1. Bean Validation

As you will see in this chapter, JPA, JTA and Hibernate ORM with Panache are about accessing data
from a relational database. Bean Validation has nothing to do with databases, but it does with data:
valid data. You want your REST endpoints to process valid data or your databases to store valid
data. So let’s start this chapter with Bean Validation.

Validating data is a common task that developers have to do and it is spread throughout all layers of
an application (from client to database). This common practice is time-consuming, error prone, and
hard to maintain in the long run. Besides, some of these constraints are so frequently used that they
could be considered standard (checking for a null value, size, range, etc.). It would be good to be
able to centralise these constraints in one place and share them across layers. That’s where Bean
Validation comes into play.

Bean Validation allows you to write a constraint once and reuse it in different application layers.!"””

It is layer agnostic, meaning that the same constraint can be used from the presentation to the
business model layer. Bean Validation is available for server-side applications as well as rich Java
client graphical interfaces (Swing, Android, JavaFX etc.).

Bean Validation allows you to apply already-defined common constraints to your application, and
also to write your own validation rules in order to validate beans, attributes, constructors, method
return values and parameters. The API is very easy to use and flexible as it encourages you to
define your constraints using annotations or XML descriptors.

The Bean Validation APIs and annotations are all defined under the javax.validation package.
Table 13 lists the main subpackages defined in Bean Validation 2.0 (under the root javax.validation
package).!"”"

Table 13. Main javax.validation Subpackages

104

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/data
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/data

Subpackage Description

root Root package of the Bean Validation APIs

bootstrap Classes used to bootstrap Bean Validation and to create a provider agnostic
configuration

constraints This package contains all the built-in constraints

constraintvalidation Ppackage containing constructs specific to constraint validators

executable Package related to the control and execution of validation on constructors
and methods

groups Bean Validation groups for defining a subset of constraints

metadata Metadata repository for all defined constraints and query API

spi Internal SPIs (Service Provider Interfaces) implemented by the provider
valueextraction Package dedicated to extracting values to validate container elements

Along with APIs, Bean Validation comes with a set of annotations. Table 14 lists a subset of the most
commonly used annotations.

Table 14. Main Bean Validation Annotations

Annotation Description

@Constraint Marks an annotation as being a Bean Validation constraint

@Email The string has to be a well-formed email address

@Max, @Min The annotated element must be a number whose value is lower or equal, or

higher or equal to the specified value

@Null, @NotNull The annotated element must be null or not null

@Past, @Future The annotated element must be an instant, date or time in the past or in the
future

@valid Marks a property, method parameter or method return type for validation

If you like the format of this fascicle and are interested in Bean Validation, check
o out the references for my Understanding Bean Validation 2.0 fascicle in Appendix
E.

To have access to all the Bean Validation APIs and annotations, you need to add the appropriate
extension to your pom.xml (see Listing 62).

Listing 62. Bean Validation Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-hibernate-validator</artifactId>
</dependency>

105

5.1.1. Understanding Constraints

Application developers spend a considerable amount of time making sure the data they process and
store is valid. They write data constraints, apply these constraints to their logic and model, and
make sure the different layers validate these constraints in a consistent manner. This means
applying these constraints in their client application (e.g. web browser, JavaFX etc.), presentation
layer, business logic layer, domain model (a.k.a. business model), database schema, and, to some
degree, the interoperability layer (see Figure 23). And, of course, for consistency, they have to keep
all these rules synchronised across all layers.

Database
Client

Application

Presentation Business Logic Domain Model

Interoperability

Figure 23. Validation occurs in several layers

In heterogeneous applications, developers have to deal with several technologies and languages. So
even a simple validation rule, such as "this piece of data is mandatory and cannot be null," has to be
expressed differently in Java, JavaScript, database schema, or XML schema.

5.1.2. Constraining Data

Bean Validation solves the problem of code duplication by allowing developers to write a constraint
once, use it, and validate it in any layer. Bean Validation implements a constraint in plain Java code
and then defines it by an annotation (metadata). This annotation can then be used on your bean,
properties, constructors, method parameters, and return value. In a very elegant yet powerful way,
Bean Validation exposes a simple API to help developers write and reuse business logic constraints.

Built-in Constraints

Bean Validation is a specification that allows you to write your own constraints and validate them.
But it also comes with some common built-in constraints. Table 15 gives you an exhaustive list of all

106

the built-in constraints (i.e. all the constraints that you can use out of the box in your code without
developing any annotation or implementation class). All of the built-in constraints are defined in
the javax.validation.constraints package. Being part of the specification, you can use them in a
portable way across all the Bean Validation implementations.

Table 15. Exhaustive List of Built-in Constraint Annotations

Constraint Accepted Types Description
@Null, eNotNull Object The annotated element must be null or not
@NotBlank CharSequence The element must not be null and must contain
at least one non-whitespace character
@NotEmpty CharSequence, Collection, Map, The annotated element must not be null or
arrays empty
@Size CharSequence, Collection, Map, The element size must be between the specified
arrays boundaries
@Max, @Min BigDecimal, BigInteger, byte, The element must be greater or lower than the
short, int, long, and their specified value
wrappers
@DecimalMax, BigDecimal, BigInteger, The element must be greater or lower than the
@ecimalMin CharSequence, byte, short, specified value
int, long, and their
respective wrappers
@Negative, BigDecimal, BigInteger, byte, The element must be negative or positive,
@NegativeOrZero, short, int, long, and their including zero or not
@Positive, wrappers
@PositiveOrZero
@Digits BigDecimal, BigInteger, The annotated element must be a number
CharSequence, byte, short, within the accepted range
int, long, and respective
wrappers
@AssertFalse, Boolean, boolean The annotated element must be either false or
@AssertTrue true
@Future, Calendar, Date and types of The annotated element must be a date in the
@FutureOrPresent, theJava 8 date and time API future or in the past, including the present or
@Past, (JSR 310) not
@PastOrPresent
OEmail CharSequence The string has to be a well-formed email address
@Pattern CharSequence The element must match the specified regular

expression

Applying Built-in Constraints

These built-in constraints can be applied to different parts of our code. As an example, Listing 63
shows an Order class that uses constraint annotations on attributes, containers (List), constructors,

107

and business methods.
Listing 63. A POJO Using Constraints on Several Element Types
public class Order {
(regexp = "[CDM][0-9]+")
public String orderId;
(1)
public BigDecimal totalAmount;

public Instant creationDate;

public LocalDate deliveryDate;

public List<OrderLine> orderlLines;

public Order(Instant creationDate) {
this.creationDate = creationDate;

}

public Double calculateTotalAmount(Double changeRate) {
return complexCalculation();

}

As you can see, Bean Validation is flexible enough to apply the same built-in constraints on
different element types.

Constraining Attributes

Bean Validation takes its name from the Java Bean design pattern."”’ A Java Bean has properties,
getters, setters, and methods. The most common use case of Bean Validation is constraining the
attributes of a class. Listing 64 shows a Book class, containing attributes annotated with Bean
Validation built-in constraints.

108

Listing 64. A Book Constraining Its Properties

public class Book {

public String title;
(integer = 4, fraction = 2)
public Float price;
(max = 2000)
public String description;
public Integer isbn;

public Integer nbOfPages;

public String authorEmail;

Thanks to Bean Validation, the Book class in Listing 64, adds semantic to its properties. Instead of
just saying that the price attribute is a Float, it actually expresses that the price of a book can have
4 numbers and 2 fractions. This is how we can read this code:

* A book must have a title (@NotNull),

* The price of a book must have maximum 4 digits for the number and maximum 2 digits for the
fraction,

* The description of the book can be null, and if not, its length cannot be greater than 2000
characters,

* The number of pages must be a positive integer, and

* The author’s email must be well-formed if not null. If you need the email to be not null and
well-formed, then you need to use both the @NotNull and @Email annotations.

Constraining Methods

Method-level constraints were introduced in Bean Validation 1.1. These are constraints declared on
methods as well as constructors (getters are not considered constrained methods by default). These
constraints can be added to the method parameters (called parameter constraints) or to the method
itself (called return value constraints). In this way, Bean Validation can be used to describe and
validate the contract applied to a given method or constructor. This enables utilising the well-
known Programming by Contract paradigm."*"

* Preconditions must be met by the caller before a method or constructor is invoked, and

» Postconditions are guaranteed to the caller after a method or constructor invocation returns.
Listing 65 shows how you can use method-level constraints in several ways. The CardValidator
service validates a credit card through a specific validation algorithm. This algorithm is passed to
the constructor and cannot be null. For that, the constructor uses the @NotNull constraint on the

ValidationAlgorithm parameter. Then, the two validate() methods return a boolean (indicating the
validity of the credit card) with an @AssertTrue constraint on the returned type. In our example, this

109

is to ensure the credit card is always valid (postcondition). The validate() methods also have some
constraints like @NotNull and @Future on the method parameters to validate input parameters
(preconditions).

Listing 65. A Service with Constructor and Method-level Constraints
public class CardValidator {

private ValidationAlgorithm algorithm;

public CardValidator(ValidationAlgorithm algorithm) {
this.algorithm = algorithm;

}

public boolean validate(CreditCard creditCard) {

return algorithm.validate(creditCard.getNumber(), creditCard.getControlNumber());
}

public boolean validate(String number,
Date expiryDate,
Integer controlNumber) {
return algorithm.validate(number, controlNumber);
}
¥

5.1.3. Validating Data

So far, we’ve been applying constraints on attributes, constructors, method parameters and return
values. But for validation to occur on all these element types, you need to use validation APIs. In
fact, the validation runtime uses a small set of APIs to be able to validate constraints. The main one
is the javax.validation.Validator interface. It holds the methods to validate objects and graphs of
objects independently of the layer in which it is implemented (presentation layer, business layer, or
business model).

Like the Config object that we saw in the previous chapter, Quarkus allows the injection via @Inject.
So you can inject a Validator as follows:

Validator validator;

Quarkus looks after the life cycle of the validator, so you do not need to manually create or close it.

Validating Beans

Once the Validator is obtained programmatically or by injection, we can use its methods to validate
either an entire bean or just a single property. Listing 66 shows a CD class with constraints set on
properties, on method parameters and return values.

110

Listing 66. A Bean with Property and Method Constraints
public class CD {

(min = 4, max = 50)
public String title;

public Float price;
(min = 10, max = 5000)
public String description;
(regexp = "[A-Z][a-z]+")
public String musicCompany;
(value = 5)
public Integer numberOfCDs;
public Float totalDuration;

("5.8")
public Float calculatePrice(("1.4") Float discountRate) {
return price * discountRate;

}

("9.99")
public Float calculateVAT() {
return price * 0.196f;

}
}

To validate all the bean properties, we just need to create an instance of (D and call the
Validator.validate() method (see Listing 67). If the instance is valid, then an empty set of
ConstraintViolation is returned. The following code validates a CD instance which has a valid title
and price. The code then checks that the set of constraint violations is empty.

Listing 67. Validating a Valid Bean
CD cd = new CD().title("Kind of Blue").price(12.5f);

Set<ConstraintViolation<CD>> violations = validator.validate(cd);
assertEquals(0, violations.size());

On the other hand, the code in Listing 68 will return two ConstraintViolation objects - one for the
title and another one for the price (both violating @NotNul1):

Listing 68. Validating an Invalid Bean
CD cd = new CD();

Set<ConstraintViolation<CD>> violations = validator.validate(cd);
assertEquals(2, violations.size());

111

In Listing 69, we create a CD with a negative price. You can see how we use the ConstraintViolation
APIL. When testing the values of our (D, we can check that the error message is correct, the message
template, the invalid value, or the property.

Listing 69. Checking the ConstraintViolation API
(D cd = new CD().title("Kind of Blue").price(-10f);

Set<ConstraintViolation<CD>> violations = validator.validate(cd);
assertEquals(1, violations.size());
ConstraintViolation<CD> violation = violations.iterator().next();

assertEquals("must be greater than 0", violation.getMessage());
assertEquals("{javax.validation.constraints.Positive.message}", violation
.getMessageTemplate());

assertEquals(-10f, violation.getInvalidValue());

assertEquals("price", violation.getPropertyPath().toString());
assertEquals(CD.class, violation.getRootBeanClass());
assertTrue(violation.getConstraintDescriptor().getAnnotation() instanceof javax
.validation.constraints.Positive);

assertEquals("Kind of Blue", violation.getRootBean().title);

Cascading Validation

If one bean (e.g. Order) has a reference to another bean (e.g. Address), or to a list of beans (e.g.
List<OrderLine>), the validation is not transitive to nested beans. In addition to supporting instance
validation, validation of graphs of objects is also supported. In other words, validating one bean is a
good start, but often, beans are nested one into another. To validate a graph of beans in one go, we
can apply cascading validation with the @Valid annotation. @Valid marks a property, method
parameter or method return type to be included for cascading validation. This feature is also
referred to as object graph validation.

In Listing 70, the Order bean uses a few Bean Validation annotations: order identifier must not be
null, address delivery must be valid, and the list of order items must be valid too.

Listing 70. Order Cascading Validation to Its Order Lines

public class Order {

public Long id;
public Double totalAmount;

public Address deliveryAddress;

public List< OrderLine> orderlLines;

112

In Listing 70, the @Valid constraint will instruct Bean Validator to delve into the Address and
OrderLine, and validate all constraints found there. This means that each order line must have a
positive unitPrice and a positive quantity (see Listing 71).

Listing 71. OrderLine Has Its Own Constraints
public class OrderLine {
public String item;
public Double unitPrice;

public Integer quantity;

To be valid, an address has a mandatory street, city and zipcode (see Listing 72).

Listing 72. Address Has Its Own Constraints

public class Address {

public String street;

public String city;
(max = 5)
public String zipcode;

Listing 73 shows how to validate an order. As you can see, there is nothing special to be done here.
We just create the object graph with one purchase order containing two order lines, and use the
validator.validate(order) method as usual. Bean Validation will automatically cascade the
validation to the delivery address and the two order lines.

Listing 73. Validating an Order with Valid OrderLines
Order order = new Order().id(1234L).totalAmount(40.5);
order.deliveryAddress = new Address().street("Ritherdon Rd").zipcode("SE123").city(
"London");
order.add(new OrderLine().item("Help").quantity(1).unitPrice(10.5));
order.add(new OrderLine().item("Sergeant Pepper").quantity(2).unitPrice(15d));

Set<ConstraintViolation<Order>> violations = validator.validate(order);

assertEquals(0, violations.size());

In Listing 74, we are purposely supplying an invalid value to the OrderLine (quantity(null)) to see

113

the @Valid annotation in action. Notice how we use the getRootBean() and getLeafBean() methods.
They respectively give us access to the Order bean (the root) and the OrderLine bean (the leaf). The
method getPropertyPath() gives us the exact location of the constraint violation: the attribute
quantity of the first order line in the array (orderLines[@].quantity).

Listing 74. First OrderLine Has Null Quantity Therefore Order Is Invalid

Order order = new Order().id(1234L).totalAmount(40.5);

order.deliveryAddress = new Address().street("Ritherdon Rd").zipcode("SE123").city(
"London");

order.add(new OrderLine().item("Help").quantity(null).unitPrice(10.5));
order.add(new OrderLine().item("Sergeant Pepper").quantity(2).unitPrice(15d));

Set<ConstraintViolation<Order>> violations = validator.validate(order);
assertEquals(1, violations.size());
ConstraintViolation<Order> violation = violations.iterator().next();

assertEquals("orderLines[@].quantity", violation.getPropertyPath().toString());
assertEquals(Order.class, violation.getRootBean().getClass());
assertEquals(OrderLine.class, violation.getLeafBean().getClass());

If we remove the @Valid annotation from the orderLines attributes in Listing 70, then the code in
Listing 74 will not validate the null value on quantity; no constraint will be violated, therefore the
order bean will be considered valid.

But @Valid can be used in other different ways. The example below will first cascade the validation
on Order and will only invoke the sendPurchaseOrder () method if the order is valid.

public String sendPurchaseOrder(Order order)

As you will see in future chapters, Bean Validation is well integrated with other technologies such
as JPA or JAX-RS. That means that, in most cases, you don’t have to validate programmatically.
Validation will happen automatically in JPA entities before insert, update or delete, and in JAX-RS
endpoints when a request is received. You will see this automatic validation working in Chapter 12,
Putting It All Together.

5.1.4. Configuring Hibernate Validator

And if you need to tweak validation, you can configure Hibernate Validator using the namespace
quarkus.hibernate-validator.""" Table 16 lists the most common configuration properties.

Table 16. Some Quarkus Bean Validation Configuration Properties
Property Default

quarkus.hibernate-validator.fail-fast false
When fail fast is enabled, the validation will stop on the first constraint
violation detected

114

Property

quarkus.hibernate-validator.method-validation.allow-overriding-parameter-
constraints

Define whether overriding methods that override constraints should throw a
ConstraintDefinitionException
quarkus.hibernate-validator.method-validation.allow-parameter-constraints-
on-parallel-methods

Define whether parallel methods that define constraints should throw a
ConstraintDefinitionException
quarkus.hibernate-validator.method-validation.allow-multiple-cascaded-
validation-on-return-values

Define whether more than one constraint on a return value may be marked
for cascading validation

5.2. Java Persistence API

[127]

The JPA implementation used by Quarkus is Hibernate ORM.

specification that manages objects stored in a relational database."”"

Default

false

false

false

Java Persistence API (JPA) is a Java
JPA gives the developer an

object-oriented view in order to transparently use entities instead of tables. It also comes with a
query language (Java Persistence Query Language, or JPQL), allowing complex queries over objects.

The Java Persistence API APIs are all defined under the javax.persistence package. Table 17 lists the
main subpackages defined in JPA 2.2 (under the root javax.persistence package).

Table 17. Main javax.persistence Subpackages

Subpackage Description

root Root package of the JPA APIs

criteria Java Persistence Criteria API, allowing the writing of queries in an object-oriented
way

metamodel Java Persistence Metamodel AP, bringing type safety to the queries

spi Internal SPIs (Service Provider Interfaces) implemented by the provider

In these packages you will find many APIs and annotations. Table 18 shows the main APIs that we

will be using.

Table 18. Main JPA APIs

API Description

EntityManager This is the primary JPA interface used by applications to manage

persistent objects

Query and TypedQuery Set of interfaces allowing the querying of persistent objects that meet

certain criteria

PersistenceException Thrown by the persistence provider when a problem occurs

Along with APIs, JPA comes with a set of annotations. Table 19 lists a subset of the most commonly

115

used annotations.

Table 19. Main JPA Annotations

Annotation Description

@Entity POJOs become persistent objects when annotated with @Entity

@Column Specifies the mapped column for a persistent property (name, length, unique,
etc.)

OGeneratedValue Defines the value generation policy of primary keys

eId Specifies the primary key of an entity
@Table Specifies the primary table for the annotated entity
@Transient Specifies that the property is not persistent
@0neToOne, Relation multiplicity
@0neToMany,
@ManyToOne,
@ManyToMany
o If you like the format of this fascicle and are interested in Java Persistence API,
check out the references for my Understanding JPA 2.2 fascicle in Appendix E.

To be able to use all the Java Persistence API APIs and annotations, you need to add the Quarkus
extension described in Listing 75 to your pom. xml.

Listing 75. JPA Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-hibernate-orm</artifactId>
</dependency>

5.2.1. Understanding Object-Relational Mapping

Relational databases store data in tables made of rows and columns. Data is identified by primary
keys, which are special columns (or a combination of columns) designated to uniquely identify each
table record. The relationships between tables use foreign keys and join tables with integrity
constraints.

All this vocabulary is completely unknown in an object-oriented language such as Java. In Java, we
manipulate objects that are instances of classes. Objects inherit from others, have references to
collections of other objects, and sometimes recursively point to themselves. We have concrete
classes, abstract classes, interfaces, enumerations, annotations, methods, attributes, and so on.

As seen in Figure 24, the principle of Object-Relational Mapping (ORM) is to bring the world of
relational databases and objects together. ORMs are external tools that give an object-oriented view
of relational data, and vice versa.

116

Application

Entity Entity Entity

Object Relational
Maplping

Metadata

—
N—

Relational
\Database

Figure 24. Mapping objects to a relational database

Relational Databases

The relational model organises data into one or more tables made of columns and rows, with a
unique key identifying each row. Rows are also called records or tuples. Generally, each table
represents one entity type (such as a book, author or purchase order). The rows represent instances
of that type of entity (such as the book "H2G2" or "Design Patterns") with the columns representing
values attributed to that instance (such as the title of the book or the price).

How would you store data representing a book in a relational database? Listing 76 shows an SQL
script that creates such a table.

117

Listing 76. SQL Script Creating a BOOK Table Structure

CREATE TABLE BOOK

(
ID BIGINT NOT NULL,
DESCRIPTION VARCHAR(255),
ILLUSTRATIONS BOOLEAN,
ISBN VARCHAR(255),
NBOFPAGES INTEGER,
PRICE FLOAT,
TITLE VARCHAR(255),
PRIMARY KEY (ID)

)

A Data Definition Language (DDL, or data description language) uses a syntax for defining database
structures. The table BOOK is where we will find all the books of our application. Each book is
identified by a unique primary key column (PRIMARY KEY (ID)) and each attribute is stored in a
column (e.g. TITLE, PRICE, ISBN etc.). A column in a table has a type (e.g. VARCHAR, INTEGER, BOOLEAN etc.)
and can accept null values or not (NOT NULL).

Entities

When talking about mapping objects to a relational database, persisting objects, or querying
objects, the term entity should be used rather than object. Objects are instances that just live in
memory. Entities are objects that live for a short time in memory and persistently in a relational
database. They have the ability to be mapped to a database; they can be concrete or abstract; and
they support inheritance, relationships, and so on.

In the JPA persistence model, an entity is a Plain Old Java Object (POJO). This means an entity is
declared, instantiated and used just like any other Java class. An entity usually has attributes (its
state), can have business methods (its behaviour), constructors, getters and setters. Listing 77 shows
a simple entity.

118

Listing 77. Simple Example of a Book Entity

public class Book {

private Long id;

private String title;

private Float price;

private String description;
private String isbn;

private Integer nbOfPages;
private Boolean illustrations;

// Constructors, getters, setters

The example in Listing 77 represents a Book entity from which I’'ve omitted the getters and the
setters for clarity. As you can see, except for some annotations, this entity looks exactly like any
Java class: it has several attributes (id, title, price etc.) of different types (Long, String, Float,
Integer, and Boolean), a default constructor, and getters and setters for each attribute. So how does
this map to a table? The answer is: thanks to mapping.

5.2.2. Mapping Entities

The principle of Object-Relational Mapping (ORM) is to delegate the task of creating a
correspondence between objects and tables, to external tools or frameworks (in our case, JPA). The
world of classes, objects, and attributes can then be mapped to relational databases which are
made up of tables containing rows and columns. Mapping gives an object-oriented view to
developers who can transparently use entities instead of tables. And how does JPA map objects to a
database? This is done through metadata.

Associated with every entity are metadata that describe the mapping. The metadata enable the
persistence provider to recognise an entity and to interpret the mapping. The metadata can be
written in two different formats:

* Annotations: The code of the entity is directly annotated with all sorts of annotations.

* XML descriptors: Instead of (or in addition to) annotations, we can use XML descriptors. The
mapping is defined in an external XML file that will be deployed with the entities.

These entities, once mapped, can be managed by JPA. You can persist an entity in the database,
remove it, and query it. An ORM lets you manipulate entities while, under the covers, the database
is being accessed.

The Book entity (shown in Listing 77) uses JPA annotations so the persistence provider can
synchronise the data between the attributes of the Book entity and the columns of the BOOK table.
Therefore, if the attribute isbn is updated by the application, the ISBN column will be synchronised
(see Figure 25).

119

© T @ v
O Long id «@ld» _ ID bigint
O String title mapping | TITLE varchar[255]
O Float price €< - —-- - - | PRICE double
O String description DESCRIPTION varchar[255]
O String isbn ISBN varchar[255]
O Integer nbOfPages NBOFPAGES integer
O Boolean illustrations ILLUSTRATIONS smallint

Figure 25. Data synchronisation between the entity and the table

As shown in the DDL in Listing 76, the Book entity is mapped in a BOOK table, and each column is
named after the attribute of the class (e.g. the isbn attribute of type String is mapped to a column
named ISBN of type VARCHAR).

In this fascicle, I use CamelCase for Java code (e.g. Book entity, isbn attribute) and
o UpperCase for SQL script (e.g. BOOK table, ISBN column). But you need to be careful
when picking up a specific case as some databases are case-sensitive.

Without JPA and metadata, the Book entity in Listing 77 would be treated just like a POJO. If you
manually tried to map a POJO with JPA, then it would be ignored by JPA which would throw an
exception. So you need to tell JPA that it deals with an entity, not an object, by using the @Entity
annotation. It is the same for the identifier. You need a way to tell the persistence provider that the
id attribute has to be mapped to a primary key, so you annotate it with @Id. The value of this
identifier is automatically generated by the persistence provider, using the optional @GeneratedValue
annotation. This type of decision characterises the configuration by exception approach (a.k.a.
configuring a component is the exception), in which annotations are not required for the more
common cases and are only used as metadata to be understood by an external provider.

Customising Mappings

@Entity and @Id are the only two required annotations to map an entity to a relational database.
Then, Hibernate ORM applies the mapping rules, also known as configuration by exception. This
allows you to write the minimum amount of code to get your application running, relying on the
provider’s defaults. For example, the entity name is mapped to a relational table name (e.g. the Book
entity is mapped to a BOOK table). Attribute names are mapped to a column name (e.g. the id
attribute, or the getId() method, is mapped to an ID column). If you don’t want the provider to
apply the default rules, you can customise the mapping to your own needs using metadata as
shown in Listing 78.

120

Listing 78. Book Entity with Mapping Annotations

(name = "t _book")
public class Book {

private Long 1id;

(name = "book_title", nullable = false, updatable = false)

private String title;
(1)

private Float price;

(length = 2000)
private String description;
private String isbn;

(name = "nb_of_pages", nullable = false)
private Integer nbOfPages;
private Boolean illustrations;

private Instant creationDate;

// Constructors, getters, setters

Notice in Listing 78 that the entity is also annotated with Bean Validation built-in
constraints. Here we tell the Bean Validation runtime to make sure the book title is

o not null (@NotNull) and the minimum price is $1 (eMin(1)). Bean Validation and JPA
integrate well. When JPA entities include Bean Validation constraints, they are
automatically validated. In fact, validation is performed automatically as JPA
delegates entity validation to Bean Validation before insert or update.

In Listing 78 several annotations are used to declare the object-relational mapping which should be
applied to the class and attributes of a Book class:

* The @javax.persistence.Table annotation changes the default mapping values related to the
table. So, instead of mapping the Book entity to the default BOOK table, the @Table annotation
changes the name to T_BOOK.

* The book attribute id is mapped to the primary key column of the T_BOOK table and its value is
automatically generated by the JPA provider Hibernate.

* The book title is mapped to a column called book_title, cannot be null and cannot be updated.
* The price property has no mapping annotation (so the default mapping will be used).
* The description can be null, but if it’s not, its size must be less than 2000 characters long.

» The date of creation is not mapped to the table as it is transient.

All in all, the Book entity defined in Listing 78 will be mapped to a table structure shown in Listing

121

79.

Listing 79. SQL Script Creating a Customised BOOK Table Structure

CREATE TABLE T_BOOK

(
ID BIGINT NOT NULL,
DESCRIPTION VARCHAR(2000),
ILLUSTRATIONS BOOLEAN,
ISBN VARCHAR(255),
NB_OF_PAGES INTEGER NOT NULL,
PRICE FLOAT,
BOOK_TITLE VARCHAR(255) NOT NULL,
PRIMARY KEY (ID)

)

Here I just show you a very small subset of mapping annotations. JPA is a rich
specification allowing you to map simple data structures as well as very complex

e ones. If you want to know more, I encourage you to check out Chapter 11 of the JPA
2.2 specification where every annotation is explained."”” I have also published an
entire fascicle on JPA called Understanding JPA 2.2 (see Appendix E for more
details).

Advanced Mapping

The world of object-oriented programming abounds with classes and associations between classes.
These associations are structural in that they link objects of one kind to objects of another. Several
types of relations can exist between classes:

» Associations: An association has a direction and a multiplicity (or cardinality). It can be
unidirectional (i.e. one object can navigate towards another) or bidirectional (i.e. one object can
navigate towards another and vice versa). It can be a one-to-one or a one-to-many cardinality.

* Inheritance: Object-oriented languages such as Java support inheritance. This paradigm is

where a child class reuses code by inheriting the attributes and behaviour of parent classes.

Figure 26 shows a class diagram with classes, an abstract class and an enumeration. These classes
inherit from each other (e.g. Author extends Artist) and are associated with each other (e.g. one
Musician appears on many (D or a Book is published by one Publisher).

122

@ «@Entity»
Item

< Long id

<& String title
< String description
< Float unitCost

@«@MappedSuperclass»

@ «@Entity» Artist
CD < Long id

< String firstName

< String lastName

< String bio

< LocalDate dateOfBirth
< Integer age

@ «@Entity»
Book

O String isbn

O Integer nbOfPage

O Instant publicationDate
O Language language

O Float totalDuration
O String musicCompany
O String genre

«@Entity» ©sicher
Musician

O Long id

O String name

@ «@Entity»
Author

O Language preferredLanguage

O String preferredinstrument

Figure 26. Entity class diagram

JPA can map such a complex class diagram to several datatables thanks to default mapping, of
course, but also thanks to annotations. For example, in Listing 80, we can see that a book is written
by several authors. This is represented by a one-to-many relationship (@0neToMany annotation) and
mapped to a join table called book_author. Thanks to the joinColumns and inverseloinColumns
members, we can even map the book and author identifiers to the book_fk and author_fk foreign
keys. Also notice that the Book entity extends the Item entity (see Listing 81).

123

Listing 80. Child Entity with Relationship Annotations

public class Book extends Item {

(length = 15)
private String isbn;

(name = "nb_of_pages")
private Integer nbOfPage;

(name = "publication_date")
private Instant publicationDate;

(EnumType.STRING)
private Language lanquage;

(name = "book author",
joinColumns = (name = "book fk"),
inverseJoinColumns = (name = "author fk")

)

private Set<Author> authors = new HashSet<>();

(name = "publisher_pk")
private Publisher publisher;

// Constructors, getters, setters

}

The Item entity in Listing 81 uses the @Inheritance annotation to specify the inheritance strategy.
Because databases do not support table inheritance, JPA has three different inheritance mapping
strategies you can choose from.

* A single-table-per-class hierarchy strategy: The sum of the attributes of the entire entity
hierarchy is flattened down to a single table (this is the default strategy). For instance, the ITEM
table will have all the attributes of Book, Item and (D in a single table and an extra discriminator
column to differentiate which type each row is.

* A joined-subclass strategy: In this approach, each entity in the hierarchy, concrete or abstract, is
mapped to its own dedicated table. So Book, Item and CD will have their own tables, each with its
own attributes and will be linked together by having the same identifier.

* A table-per-concrete-class strategy: This strategy maps each concrete entity class to its own
separate table. For instance, the BOOK table will contain all the Book and Item attributes, and the
(D table will contain all the CD and Item attributes.

Listing 81 shows the parent entity Item, with Book and (D extending it. Item specifies the single-table-
per-class strategy with the @Inheritance annotation. So in this case, all the sub-classes of Item, Book
and (D, will get mapped into the single table ITEM.

124

Listing 81. Parent Entity with Inheritance Annotations

(strategy = InheritanceType.SINGLE_TABLE)
public abstract class Item {

(strategy = GenerationType.AUTO)
protected Long id;

(length = 100)
protected String title;

(length = 3000)
protected String description;

(name = "unit_cost")
protected Float unitCost;

// Constructors, getters, setters

}

I will end this section on mapping entities to relational databases. JPA can map most of the edge
case scenarios and requires an entire book to master it, but you don’t need to master it for the most
common use-cases. I just wanted to show you some basics as it will be useful in understanding how
to manage and query entities with JPA. Later in this chapter, you will see how Hibernate ORM with
Panache is based on JPA and how it simplifies the developer’s life.

5.2.3. Managing Entities

JPA allows us to map entities to a table and also to query them using different criteria. JPA’s power
is that it offers the ability to query entities and their relationships in an object-oriented way
without the developer having to use the foreign keys or columns of the underlying database. The
central piece of the API responsible for orchestrating entities is the
javax.persistence.EntityManager. Its role is to manage entities, read from and write to a given
database, and allow simple CRUD (create, read, update, and delete) operations on entities as well as
complex queries using JPQL (Java Persistence Query Language). In a technical sense, the entity
manager is just an interface whose implementation is done by the persistence provider. At its core,
the entity manager delegates all the low-level calls to JDBC bringing the developer a higher-level of
abstraction.

In Figure 27, you can see how the EntityManager interface can be used by a class (here Main) to
manipulate entities (in this case, Book). With methods such as persist() and find(), the entity
manager hides the JDBC calls to the database as well as the INSERT or SELECT SQL (Structured Query
Language) statements.

125

EntityManager II
(©) Main @ 7 | SQL/JoBC

O persist(entity: Object): void
o find(entityClass: Class<T>, primaryKey: Object): <T>

)

Y
@ «Entity»
Book
O Long id «@ld»
O String title
O Float price
O String description
O String isbn

O Integer nbOfPages
O Boolean illustrations

Figure 27. The entity manager interacts with the entity and the underlying database

The way to acquire an entity manager is through injection. With a simple @Inject, Quarkus will be
responsible for managing the life cycle of the entity manager (creating and closing the entity
manager) and injecting an instance of it.

EntityManager em;

Being the central piece of JPA, we use the entity manager for both simple entity manipulation and
complex JPQL query execution. When manipulating single entities, the EntityManager interface can
be seen as a generic Data Access Object (DAO), which allows CRUD operations on any entity."*”

To help you gain a better understanding of these methods, I use a simple example of a one-way,
one-to-one relationship between a Customer and an Address. Both entities have automatically
generated identifiers (thanks to the @GeneratedValue annotation), and Customer (see Listing 82) has a
link to Address (see Listing 83).

126

Listing 82. The Customer Entity with a One-way, One-to-one Address

@Entity
public class Customer {

eId

@GeneratedValue

private Long id;

private String firstName;
private String lastName;

private String email;

@0neToOne

@JoinColumn(name = "address_fk")
private Address address;

// Constructors, getters, setters

Listing 83. The Address Entity

@Entity
public class Address {

eId

@GeneratedValue

private Long id;
private String streetl;
private String city;
private String zipcode;
private String country;

// Constructors, getters, setters

These two entities will get mapped into the database structure shown in Figure 28. Note the
ADDRESS_FK column is the foreign key to ADDRESS.

127

@ CUSTOMER @ ADDRESS

ID bigint 1 1D bigint

FIRSTNAME integer] STREET1 varchar[255]
LASTNAME varchar[255] ZIPCODE varchar[255]
EMAIL varchar[255] COUNTRY varchar[255]
ADDRESS FK bigint CITY varchar[255]

Figure 28. CUSTOMER and ADDRESS tables

For better readability, the fragments of code used in the upcoming sections assume that the em
attribute is of type EntityManager.

Persisting an Entity

Persisting an entity means inserting data into the database when the data doesn’t already exist. To
do so, it’s necessary to create a new entity instance using the new operator, set the values of the
attributes, bind one entity to another when there are associations (customer.setAddress(address)),
and finally call the EntityManager.persist() method as shown in the JUnit test case in Listing 84.

Listing 84. Persisting a Customer with an Address

Customer customer = new Customer("Anthony", "Balla", "aballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

// Persists the object
em.persist(customer);
em.persist(address);

assertNotNull(customer.getId());
assertNotNull(address.getId());

In Listing 84, customer and address are just two objects that reside in the JVM memory. Both become
managed entities when the entity manager (variable em) takes them into account by persisting them
(em.persist()). At this time, both objects become eligible for insertion in the database. When the
transaction is committed, the data is flushed to the database, an address row is inserted into the
ADDRESS table, and a customer row is inserted into the CUSTOMER table. As the Customer is the owner of
the relationship, its table holds the foreign key to ADDRESS. The assertNotNull expressions check that
both entities have received a generated identifier (thanks to the persistence provider and the @Id
and @GeneratedValue annotations).

Note the ordering of the persist() methods: a customer is persisted and then an address. If it were
the other way round, the result would be the same. Until the transaction is committed, the data
stays in memory and there is no access to the database. The entity manager caches data and, when

128

the transaction is committed, flushes the data in the order that the underlying database is expecting
(respecting integrity constraints). Because of the foreign key in the CUSTOMER table, the insert
statement for ADDRESS will be executed first, followed by that for CUSTOMER.

Finding by Id

To find an entity by its identifier, you can use two different methods. The first is the
EntityManager.find() method, which has two parameters: the entity class and the unique identifier
(see Listing 85). If the entity is found, it is returned; if it is not found, a null value is returned.

Listing 85. Finding a Customer by Id

Customer customer = em.find(Customer.class, id);
if (customer != null) {
// Process the object

}

The second method is getReference() (see Listing 86). It is very similar to the find operation, as it
has the same parameters, but it retrieves a reference to an entity (via its primary key) but does not
retrieve its data. Think of it as a proxy to an entity, not the entity itself. It is intended for situations
where a managed entity instance is needed, but no data, other than potentially the entity’s primary
key, being accessed. With getReference(), the state data is fetched lazily, which means that if you
don’t access state before the entity is detached, the data might not be there. If the entity is not
found, an EntityNotFoundException is thrown.

Listing 86. Finding a Customer by Reference

try {
Customer customer = em.getReference(Customer.class, id);
// Process the object
assertNotNull(customer);
} catch (
EntityNotFoundException ex) {
// Entity not found

}

Removing an Entity

An entity can be removed with the EntityManager.remove() method. Once removed, the entity is
deleted from the database, is detached from the entity manager, and cannot be synchronised with
the database anymore. In terms of Java objects, the entity is still accessible until it goes out of scope
and the garbage collector cleans it up. The code in Listing 87 shows how to remove an object after it
has been created.

129

Listing 87. Creating and Removing Customer and Address Entities

Customer customer = new Customer("Anthony", "Balla", "aballa@mail.com");
Address address = new Address("Ritherdon Rd", "London", "8QE", "UK");
customer.setAddress(address);

// Persists the object
em.persist(customer);
em.persist(address);

assertNotNull(customer.getId());
assertNotNull(address.getId());

// Removes the object from the database
em.remove(customer);
em.remove(address);

// The entities are not in the database
assertNull(em.find(Customer.class, customer.getId()));
assertNull(em.find(Address.class, address.getId()));

5.2.4. Querying Entities

The relational database world relies on Structured Query Language, or SQL. This programming
language is designed for managing relational data (retrieval, insertion, updating and deletion), and
its syntax is table oriented. You can select columns from tables made of rows, join tables together,
combine the results of two SQL queries through unions, and so on. There are no objects here, only
rows, columns, and tables. In the Java world, where we manipulate objects, a language made for
tables (SQL) has to be tweaked to suit a language made of objects (Java). This is where Java
Persistence Query Language comes into play.

JPQL (Java Persistence Query Language) is the language defined in JPA to query entities stored in a
relational database. JPQL syntax resembles SQL but operates against entity objects rather than
directly working with database tables. JPQL does not see the underlying database structure or deal
with tables or columns but rather objects and attributes. And, for that, it uses the dot (.) notation
that Java developers are familiar with.

Java Persistence Query Language

You just saw how to manipulate entities individually with the EntityManager API. You know how to
find an entity by Id, persist it, remove it, and so on. But finding an entity by Id is quite limiting, as
you only retrieve a single entity using its unique identifier. In practice, you may need to retrieve an
entity by criteria other than the Id (by name, ISBN etc.) or retrieve a set of entities based on
different criteria (e.g. all customers living in the United States). This possibility is inherent to
relational databases, and JPA has a language that allows this interaction: Java Persistence Query
Language (JPQL).

JPQL is used to define searches for persistent entities independent of the underlying database. JPQL
is a query language that takes its roots in the syntax of SQL, which is the standard language for

130

database interrogation. But the main difference is that, in SQL, the results obtained are in the form
of rows and columns (tables), whereas JPQL results will yield an entity or a collection of entities.
JPQL syntax is object oriented and therefore more easily understood by developers who are
familiar with object-oriented languages. Developers manage their entity domain model, not a table
structure, by using the dot notation (e.g. myClass.myAttribute).

Under the hood, JPQL uses the mapping mechanism in order to transform a JPQL query into
language comprehensible by an SQL database. The query is executed on the underlying database
with SQL and JDBC calls, and then entity instances have their attributes set and are returned to the
application - all in a very simple and powerful manner, using a rich query syntax.

The simplest JPQL query selects all the instances of a single entity.

SELECT b
FROM Book b

If you know SQL, this should look familiar to you. Instead of selecting from a table, JPQL selects
entities, here Book. The FROM clause is also used to give an alias to the entity: b is an alias for Book. The
SELECT clause of the query indicates that the result type of the query is the b entity (the Book).
Executing this statement will result in a list of zero or more b (Book instances).

To restrict the result you just add a search criteria using the WHERE clause as follows:

SELECT b
FROM Book b
WHERE b.title = "H2G2'

The alias is used to navigate across entity attributes through the dot operator. Since the Book entity
has a persistent attribute named title of type String, b.title refers to the title attribute of the
Book entity. Executing this statement will result in a list of zero or more Book instances that have a
title equal to 'H2G2".

The simplest select query consists of two mandatory parts: the SELECT and the FROM clause. SELECT
defines the format of the query results. The FROM clause defines the entity or entities from which the
results will be obtained, and the optional WHERE, ORDER BY, GROUP BY, and HAVING clauses can be used
to restrict or order the result of a query. Listing 88 defines a simplified syntax of a JPQL statement.

Listing 88. Simplified JPQL Statement Syntax

SELECT <select clause>

FROM <from clause>

[WHERE <where clause>]
[ORDER BY <order by clause>]
[GROUP BY <group by clause>]
[HAVING <having clause>]

Listing 88 defines a SELECT statement but DELETE and UPDATE statements can also be used to perform

131

delete and update operations across multiple instances of a specific entity class.

Dynamic Queries

You’ve just seen the JPQL syntax and how to describe statements using different clauses (SELECT,
FROM, WHERE etc.). But how do you integrate a JPQL statement in your application? Through queries.
JPA has different types of queries that can be used in code, each for a different purpose (Named
queries, Criteria API, etc.). But, in this fascicle, I'll focus on Dynamic queries. It is the simplest form of
query, consisting of nothing more than a JPQL query string, dynamically specified at runtime.

The central point for choosing from these types of queries is the EntityManager interface, which has
several factory methods returning either a Query or a TypedQuery. The Query interface is used in cases
when the result type is Object, and TypedQuery is used when a typed result is preferred. The methods
that are mostly used in this API are ones that execute the query itself. To execute a SELECT query,
you have to choose between two methods, depending on the required result.

* The getResultList() method executes the query and returns a list of results (entities, attributes,
expressions etc.).

* The getResultStream() method executes the query and returns the query results as a
java.util.stream.Stream.

* The getSingleResult() method executes the query and returns a single result (throws a
NonUniqueResultException if more than one result is found).

Dynamic queries are defined on the fly as needed by the application. To create a dynamic query, we
use the EntityManager.createQuery() method, which takes a String as a parameter that represents a
JPQL query. It’s called dynamic because the query string can be dynamically created by the
application, which can then specify a complex query at runtime not known ahead-of-time. String
concatenation can be used to construct the query dynamically, depending on the criteria. The
following query retrieves customers named 'Mike' depending on certain criteria. That’s why the
query cannot be predicted: if the boolean is true, the query will have a WHERE clause, if it’s false, it
won’t.

String jpqlQuery = "SELECT ¢ FROM Customer c";
if (someCriteria)
jpqlQuery += " WHERE c.firstName = 'Mike'";

TypedQuery<Customer> typedQuery = em.createQuery(jpqlQuery, Customer.class);
List<Customer> customers = typedQuery.getResultList();

When concatenating strings, you can end-up passing an unchecked value to the database. This can
raise security concerns because it can be easily hacked by SQL injection. You have to avoid the
above code and use parameter binding instead. For that, there are two possible choices for passing
a parameter: using names or positions. In the following example, I use a named parameter called
:fname (note the : symbol) in the query and bind it with the setParameter method:

132

TypedQuery<Customer> typedQuery = em.createQuery(

"SELECT ¢ FROM Customer c¢ WHERE c.firstName = :fname", Customer.class);
typedQuery.setParameter("fname", "Mike");
List<Customer> customers = typedQuery.getResultList();

Note that the parameter name fname does not include the colon used in the query. You can also use
positional parameters. It is 1-based meaning that the first parameter is number 1, the second
parameter number 2, and so on. The equivalent code would look like the following:

TypedQuery<Customer> typedQuery = em.createQuery(

"SELECT c¢ FROM Customer c¢ WHERE c.firstName = ?1", Customer.class);
typedQuery.setParameter(1, "Mike");
List<Customer> customers = typedQuery.getResultList();

If you need to use pagination to display the list of customers in chunks of five, you can use the
setMaxResults method as follows:

TypedQuery<Customer> typedQuery = em.createQuery(

"SELECT ¢ FROM Customer c ORDER BY c.age", Customer.class);
typedQuery.setMaxResults(5);
List<Customer> customers = typedQuery.getResultList();

And if you need to set the position of the first result to retrieve, then you can use the
setFirstResult() method:

TypedQuery<Customer> typedQuery = em.createQuery(
"SELECT ¢ FROM Customer c ORDER BY c.age", Customer.class);
typedQuery.setFirstResult(3);
typedQuery.setMaxResults(10);
List<Customer> customers = typedQuery.getResultList();

An issue to consider with dynamic queries is the cost of translating the JPQL string into an SQL
statement at runtime. Because the query is dynamically created and cannot be predicted, the
persistence provider has to parse the JPQL string, get the ORM metadata, and generate the
equivalent SQL. The performance cost of processing each of these dynamic queries can be an issue.
If you have static queries that are unchangeable and want to avoid this overhead, then you can use
named queries instead.

This was a short overview of JPQL queries as you can have much more complex ones using joins,
unions, exclusions, etc. But this overview has set the basis for JPQL so you will see how it differs
from the Hibernate ORM with Panache Queries you will later see in this chapter.

5.2.5. Configuring Hibernate ORM

Like most extensions in Quarkus, object-relational mapping can also be configured. For that, it’s just

133

a matter of using the quarkus.hibernate-orm. namespace."""

Table 20. Some Quarkus Hibernate Configuration Properties
Property Default

quarkus.hibernate-orm.dialect
Class name of the Hibernate ORM dialect (e.g. PostgreSQL, MariaDB, Microsoft
SQL Server and H2)

quarkus.hibernate-orm.sql-load-script import.sql
Name of the file containing the SQL statements to execute when Hibernate

ORM starts.

quarkus.hibernate-orm.metrics.enabled false

Whether or not metrics are published in case the smallrye-metrics extension is
present

quarkus.hibernate-orm.database.generation none
Select whether the database schema is generated or not (none, create, drop-
and-create, drop, update)

quarkus.hibernate-orm.log.sql false
Show SQL logs and format them nicely

5.3.Java Transaction API

JPA is about mapping entities to tables, managing, and querying them. And JTA is about managing
entities in a transactional way. In Java, transaction management is done through the Java
Transaction API (JTA) specified by JSR 907."°" JTA defines a set of interfaces for the application or
the container in order to demarcate transaction boundaries, and it also defines APIs to deal with
the transaction manager.

The Java Transaction API APIs are all defined under the javax.transaction package. Table 21 lists
the main subpackages defined in JTA 1.2 (under the root javax.transaction package)."*”

Table 21. Main javax.transaction Subpackages

Subpackage Description

root Root package of the JTA APIs

xa Interfaces and classes to accomplish distributed XA transactions "*”

In this root package, you’ll find all the APIs and annotations. Table 22 shows the main JTA APIs.

Table 22. Main JTA APIs
API Description
Transaction Allows operations to be performed against a transaction

UserTransaction Defines the methods that allow an application to explicitly manage transaction
boundaries

RollbackException Thrown when the transaction has been marked for rollback

134

Along with APIs, JTA comes with a set of annotations. Table 23 lists a subset of the most commonly
used annotations.

Table 23. Main JTA Annotations

Annotation Description
@Transactional Gives the ability to declaratively control transaction boundaries
@TransactionScoped Provides the ability to define bean instances whose life cycle is scoped to

the currently active transaction

To use transactions, you need the Java Transaction API APIs and annotations. This is done by
adding the Narayana extension to your pom.xml (see Listing 89).

Listing 89. JTA Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-narayana-jta</artifactId>
</dependency>

5.3.1. Understanding Transactions

Transaction management is an important matter for enterprises. It allows applications to have
consistent data and to process that data in a reliable manner. Transaction management is a low-
level concern that a business developer shouldn’t have to code. That’s why JTA (Java Transaction
API) provides these services in a very simple way: either programmatically with a high level of
abstraction or declaratively using metadata.

A transaction is used to ensure that the data is kept in a consistent state. It represents a logical
group of operations that must be performed as a single unit, also known as a unit of work. These
operations can involve persisting data in one or several databases, sending messages to a MOM
(Message-Oriented Middleware), or invoking web services. Companies rely on transactions every
day for their banking and e-commerce applications or business-to-business interactions with
partners.

These indivisible business operations are performed either sequentially or in parallel over a
relatively short period of time. Every operation must succeed for the transaction to succeed (we say
that the transaction is committed). If one of the operations fails, the transaction fails as well (the
transaction is rolled back).

135

Transaction |
commit J

Successful

4

! Transaction rollback

Transaction |
Failed)

.//

Figure 29. Transaction Management

Transactions must guarantee a degree of reliability and robustness and follow the ACID properties.
ACID refers to the four properties that define a reliable transaction: Atomicity, Consistency,
Isolation, and Durability (described in Table 24).

Table 24. ACID Properties
Property Description

Atomicity A transaction is composed of one or more operations grouped in a unit of work. At
the conclusion of the transaction, either these operations are all performed
successfully (a commit) or none of them is performed at all (a rollback) if
something unexpected or irrecoverable happens.

Consistency At the conclusion of the transaction, the data are left in a consistent state.
Isolation The intermediate state of a transaction is not visible to external applications.

Durability Once the transaction is committed, the changes made to the data are visible to other
applications.

To explain these properties, I'll take the classic example of a bank transfer: you need to debit your
savings account to credit your current account.

When you transfer money from one account to the other, you can imagine a sequence of database
accesses: the savings account is debited using an SQL update statement, the current account is
credited using a different update statement, and a log is created in a different table to keep track of
the transfer. These operations have to be done in the same unit of work (Atomicity) because you
don’t want the debit to occur but not the credit. From the perspective of an external application
querying the accounts, only when both operations have been successfully performed are they
visible (Isolation). With isolation, the external application cannot see the interim state when one
account has been debited and the other is still not credited (if it could, it would think the customer
has less money than they really do). Consistency is when transaction operations (either with a
commit or a rollback) are performed within the constraints of the database (such as primary keys,
relationships, or fields). Once the transfer is completed, the data can be accessed from other
applications (Durability).

136

5.3.2. Declarative Transaction Management

When managing transactions declaratively, you delegate the demarcation policy to the container.
You don’t have to explicitly use the JTA transaction management to explicitly start or commit a
transaction; you can leave the container to demarcate transaction boundaries by automatically
beginning and committing transactions based on annotations.

Listing 91 shows a transactional service. You know this service is transactional thanks to the
javax.transaction.Transactional annotation. This annotation will cause every method invocation to
be intercepted and start a transaction if needed.

Listing 90. A Transactional Service

public class ItemService {

EntityManager em;

StatisticsService statistics;

public List<Book> findBooks() {
return em.createQuery("SELECT b FROM Book b", Book.class).getResultList();

}

public Book createBook(Book book) {
em.persist(book);
statistics.addNew(book);
return book;

}
}

You might ask how does the code in Listing 90 work? The answer is that the container is
intercepting the method invocation and managing the transaction. Figure 30 shows what happens
when a client invokes the ItemService.createBook() method. The client call is intercepted by the
container, which checks immediately before invoking the method whether a transaction context is
associated with the call. By default, if no transaction context is available, the container begins a
new transaction before entering the method and then invokes the createBook() method. Once the
method exits, the container automatically commits the transaction or rolls it back (if a particular
type of exception is thrown).

137

| Client || | Container || | Transaction |I | ItemService || | StatisticsService ||
I

|
I createBook
—>

begin

>

addNew

|
|
1
|
1
I
. I
commit or rollback _ ,
|

I
I
I
1
I
I
I
|
i createBook
I
I
I
I
I
I
]
1

>
1
| Client II | Container || | Transaction || | ItemService || | StatisticsService ||

Figure 30. The container handles the transaction

The default transactional behaviour is that whatever transaction context is used for createBook()
(from the client or created by the container), it is applied to addItem(). The final commit happens if
both methods have returned successfully. This behaviour can be changed using metadata.
Depending on the transaction attribute you choose (REQUIRED, REQUIRES_NEW, SUPPORTS, MANDATORY,
NOT_SUPPORTED, or NEVER), you can affect the way the container demarcates transactions: on a client
invocation of a transactional method, the container uses the client’s transaction, runs the method in
a new transaction, runs the method with no transaction, or throws an exception. Table 25 defines
the transaction attributes of the @Transactional annotation.

Table 25. Transaction Types

Attribute
REQUIRED

REQUIRES_NEW

SUPPORTS

138

Description

This attribute (default value) means that a method must always be invoked within a
transaction. The container creates a new transaction if the method is invoked from
a non-transactional client. If the client has a transaction context, the business
method runs within the client’s transaction. You should use REQUIRED if you are
making calls that should be managed in a transaction, but you can’t assume that the
client is calling the method from a transaction context.

The container always creates a new transaction before executing a method,
regardless of whether the client is executed within a transaction. If the client is
running within a transaction, the container suspends that transaction temporarily,
creates a second one, commits or rolls it back, and then resumes the first
transaction. This means that the success or failure of the second transaction has no
effect on the existing client transaction. You should use REQUIRES_NEW when you
don’t want a rollback to affect the client.

The transactional method inherits the client’s transaction context. If a transaction
context is available, it is used by the method; if not, the container invokes the
method with no transaction context. You should use SUPPORTS when you have read-
only access to the database table.

Attribute Description

MANDATORY The container requires a transaction before invoking the business method but
should not create a new one. If the client has a transaction context, it is propagated;
if not, a javax.transaction.TransactionalException is thrown.

NOT_SUPPORTED The transactional method cannot be invoked in a transaction context. If the client
has no transaction context, nothing happens; if it does, the container suspends the
client’s transaction, invokes the method, and then resumes the transaction when
the method returns.

NEVER The transactional method must not be invoked from a transactional client. If the
client is running within a transaction context, the container throws a
javax.transaction.TransactionalException.

To apply one of these six demarcation attributes to your service, you have to use the @Transactional
annotation. This annotation can be applied either to individual methods or to the entire bean. If
applied at the bean level, all business methods will inherit the bean’s transaction attribute value.
Listing 91 shows how the PublisherService uses a SUPPORT transaction demarcation policy and
overrides the update() method with REQUIRED.

Listing 91. A Custom Transactional Service

(SUPPORTS)
public class PublisherService {

EntityManager em;

public List<Publisher> findAl1l() {
return em.createQuery("SELECT p FROM Publisher p", Publisher.class).getResultList
OF
}

public Optional<Publisher> findByIdOptional(Long id) {
Publisher publisher = em.find(Publisher.class, id);
return publisher != null ? Optional.of(publisher) : Optional.empty();

}

(REQUIRED)
public Publisher update(Publisher publisher) {
return em.merge(publisher);

}

So if you look at the PublisherService in Listing 91, then youw’ll understand that the update() method
is transactional. If the caller hasn’t created a transaction, then the container will create one. On the
other hand, when the find methods are invoked, if it hasn’t been invoked in a transactional context,
then the container will not create a new one.

139

Exceptions and Transactions

Exception handling in Java has been confusing since the creation of the language (as it involves
both checked exceptions and unchecked exceptions). Associating transactions and exceptions is also
quite intricate. Before going any further, I just want to say that throwing an exception in a business
method will not always mark the transaction for rollback. It depends on the type of exception or the
metadata defining the exception

» Application exceptions: Exceptions related to business logic. For example, an application
exception might be raised if invalid arguments are passed to a method, the inventory level is too
low, or the credit card number is invalid. Throwing an application exception does not
automatically result in marking the transaction for rollback. That’s because the container
doesn’t roll back when checked exceptions (which extend java.lang.Exception) are thrown, but
it does for unchecked exceptions (which extend RuntimeException).

» System exceptions: Exceptions caused by system-level faults, such as JVM errors, failure to
acquire a database connection, and so on. A system exception must be a subclass of a
RuntimeException. Throwing a system exception results in marking the transaction for rollback.

With this definition, we know now that if the container detects a system exception, such as an
ArithmeticException, ClassCastException, I1legalArgumentException, or NullPointerException, it will
rollback the transaction. But this default behaviour can be overridden in the @Transactional
annotation using the rollbackOn and dontRollbackOn attributes. As shown in Listing 92, the persist()
method will rollback if the StatisticsService throws a StatisticsException.

Listing 92. Transaction Rollbacks on Exception

public class PublisherService {

EntityManager em;

StatisticsService statistics;

(value = REQUIRED, rollbackOn = StatisticsException.class)
public Publisher persist(Publisher publisher) throws Exception {
em.persist(publisher);
statistics.addNew(publisher);
return publisher;

}

To override the default behaviour and cause transactions to be marked for rollback for all
application exceptions, you need to write the following:

(rollbackOn = Exception.class)

140

On the other hand, if you want to prevent transactions from being marked for rollback by the
interceptor when an I1legalStateException (unchecked exception) or any of its subclasses is caught,
you can use the dontRollbackOn as follows:

(dontRollbackOn = IllegalStateException.class)

You can use both attributes to refine the transactional behaviour. Each attribute takes an array of
classes and can be used as follows:

(rollbackOn
dontRollbackOn

SQLException.class,
{SQLWarning.class, ArrayIndexOutOfBoundsException.class})

5.3.3. Programmatic Transaction Management

With @Transactional, you leave the container to do the transaction demarcation just by specifying a
transaction attribute and the exceptions to mark a transaction for rollback or not. In some cases,
transaction demarcation may not provide the granularity that you require (e.g. a method cannot
generate more than one transaction). To address this issue, JTA offers a programmatic way to
explicitly manage transaction boundaries (begin, commit, rollback).

The main interface used to explicitly manage a transaction is javax.transaction.UserTransaction. It
allows the bean to demarcate a transaction, get its status, set a timeout, and so on.

Listing 93 shows how to manage a transaction. First of all, we get a reference to the UserTransaction
using injection. The oneItemSold() method begins the transaction, does some business processing,
and then, depending on some business logic, commits or rolls back the transaction. Notice also that
the transaction is marked for rollback in the catch block (I've simplified exception handling for
better readability).

141

Listing 93. Programmatically Managing Transactions

public class InventoryService {

UserTransaction tx;

InventoryRepository repository;

public void oneltemSold(Item item) throws Exception {
try {
tx.begin();
repository.add(item);
repository.decreaseAvailableStock(item);
sendShippingMessage();

if (inventorylLevel(item) == 0)
tx.rollback();
else
tx.commit();
} catch (InventoryException e) {
tx.rollback();

}
}
}

5.3.4. Configuring Transactions

In Quarkus, you can configure transaction management. But be careful as transactions are low-
level concerns that sometimes depend on the database you are using. For example, you can
configure the default transaction timeout configuration property or the isolation level."*" More on
transaction configuration properties can be found on the Quarkus website."""

Table 26. Some Quarkus Transaction Configuration Properties

Property Default

quarkus.datasource.jdbc.transactions enabled
Whether we want to use regular JDBC transactions, XA, or disable all
transactional capabilities (enabled, xa, disabled)

quarkus.datasource.jdbc.transaction-isolation-level
The transaction isolation level (undefined, none, read-uncommitted, read-
committed, repeatable-read, serializable)

quarkus.transaction-manager.default-transaction-timeout 60
The default transaction timeout

142

5.4. DataSource

We’ve seen how to map and query entities, and how to access them in a transactional way. But
there is still one piece of the puzzle missing: a relational database. The usual way of obtaining
connections to a database is to use a datasource and configure a JDBC driver."*”

In Quarkus, the datasource and connection pooling implementation is called Agroal."*" Agroal is a
modern, lightweight connection pool implementation designed for very high performance and
scalability, and features first-class integration with the other components in Quarkus, such as
security, transaction management components and health metrics. To configure the datasource,
you just have to configure it in the application.properties, for example:

quarkus.datasource.db-kind=h2
quarkus.datasource.jdbc.driver=org.h2.Driver
quarkus.datasource.jdbc.url=jdbc:h2:mem:vintageStoreDB

The database kind (property db-kind) defines which type of database you will connect to. Currently
Quarkus supports these built-in database kinds:

Derby: derby

H2: h2
e MariaDB: mariadb

Microsoft SQL Server: mssql
* MySQL: mysql

PostgreSQL: postgresql, pgsql or pg

By installing a JDBC driver in your dependencies (e.g. for PostgreSQL by adding the quarkus-jdbc-
postgresql dependency in the pom.xml) and setting the kind in the configuration, Quarkus resolves
the JDBC driver automatically, so you don’t need to configure it yourself. So the following
datasource configuration is the same as the previous one, we just skip the JDDB driver:

quarkus.datasource.db-kind=h2
quarkus.datasource.jdbc.url=jdbc:h2:mem:vintageStoreDB

And because there is a good chance you will need to define some credentials to access your
database, you can use the following configuration:

quarkus.datasource.db-kind=h2
quarkus.datasource.jdbc.url=jdbc:h2:mem:vintageStoreDB
quarkus.datasource.username=app
quarkus.datasource.password=app

143

5.4.1. Configuring DataSources

Configuring a datasource can affect performance. If you have many concurrent users accessing
your database, you might want to set its minimum and maximum pool size, for example. Or you
might want to generate metrics so you can visualise them and take action. If you look for the
quarkus.datasource. namespace on the Quarkus website, you will find all the datasource

configurations."' Table 27 shows a subset of these configuration properties.

Table 27. Some Quarkus Datasource Configuration Properties

Property Default

quarkus.datasource.db-kind
The kind of database we will connect to (e.g. h2, postgresql...)

quarkus.datasource.username
The datasource username

quarkus.datasource.password
The datasource password

quarkus.datasource. jdbc true
If we create a JDBC datasource for this datasource

quarkus.datasource.jdbc.driver
The datasource driver class name

quarkus.datasource.jdbc.enable-metrics
Enable datasource metrics collection (enabled by default if the smallrye-
metrics extension is active)

quarkus.datasource.jdbc.url
The datasource URL

quarkus.datasource.jdbc.initial-size
The initial size of the pool

quarkus.datasource.jdbc.min-size 0
The datasource pool minimum size

quarkus.datasource.jdbc.max-size 20
The datasource pool maximum size

5.5. Hibernate ORM with Panache

As you’'ve just seen, Quarkus supports JPA and JTA. That means you can use these two APIs. But if
you want to ease your development life, you can also use Hibernate ORM with Panache. Hibernate
ORM is the Quarkus JPA implementation and offers you the full breadth of a JPA object-relational
mapper. It makes complex mappings and queries possible, but it does not make simple and
common mappings trivial. Hibernate ORM with Panache (pronounced pa-nash) focuses on

simplifying your JPA entities as well as your repositories.

144

Panache is about more than just making JPA easier. In fact, there is also a
MongoDB with Panache extension and an experimental RESTful web service with

e Panache extension. MongoDB with Panache provides active record style entities
(and repositories) and focuses on making entities trivial to map to a MongoDB
database. To differentiate both technologies, we use the terms Hibernate ORM with
Panache and MongoDB with Panache.

Panache depends on Hibernate ORM. So to use the Panache and JPA APIs and annotations, one
single extension is needed. Add the Panache extension to your pom.xml as shown in Listing 94 and
you will get the Hibernate ORM provider as well.

Listing 94. Panache Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-hibernate-orm-panache</artifactId>
</dependency>

5.5.1. Panache Entities

Hibernate ORM with Panache provides an active record pattern implementation for JPA."*" In the
active record pattern, the entity is an object that wraps a row in a database table (or view),
encapsulates the database access, but also adds domain logic on that data. So the entity carries both
data and behaviour. Listing 95 shows a Panache entity carrying data and behaviour.

Listing 95. A Panache Entity

public class Publisher extends PanacheEntity {

(length = 30)
public String name;

public static Optional<Publisher> findByName(String name) {
return find("name", name).firstResultOptional();

}

public static long deleteByName(String name) {
return delete("name", name);
}
}

If you compare the Panache entity in Listing 95 with its JPA counterpart, you will notice a few
differences:

 Public attributes with no getters and setters (here name): Since Java lacks support for properties
in the language, we have to create fields, then generate getters and setters for those fields. With
Hibernate ORM with Panache you don’t have to.

145

* Identifier logic in the parent class: Entities need a technical identifier to be able to map to a
primary key column in the database. Being a technical id, it’s usually not relevant to our model
and can be inherited from a parent class (the id attribute is declared in the PanacheEntity class).

 State and behaviour in the same class (name attribute and findByName() method): Traditional
patterns advise to split entity definition (the model) from the operations you can do on them
(using DAOs or Repositories). You don’t have to with Panache Entities, but if you really want to,
you can also have repositories in Hibernate ORM with Panache (see below).

 Simplified queries: JPQL is a very rich and powerful query language. But it’s also very verbose
for common operations, requiring you to write queries even when you don’t need all the
statements.

Hibernate ORM with Panache takes an opinionated approach to tackle all these problems and
makes your code as concise as possible. For that, you need to follow certain rules:

* Make your entities extend PanacheEntity: It has an identifier field that is auto-generated. If you
require a custom ID strategy, you can extend PanacheEntityBase instead and handle the ID
yourself (see class diagram in Figure 31).

» Use public fields: Get rid of boilerplate getter and setters: under the hood, Hibernate ORM with
Panache generates all getters and setters that are missing, and rewrite every access to these
fields to use the accessor methods. This way you can still write useful accessors when you need
them, which will be used even though you use field accesses.

* Use the active record pattern: Put all your entity logic in static methods in your entity class. The
PanacheEntityBase superclass already comes with lots of useful static methods, and you can add
your own in your entity class.

Figure 31 shows the class diagram of the entity hierarchy. To be a Panache entity, your entity needs
to extend from the PanacheEntity mapped superclass that gives you an identifier. PanacheEntity
extends from the abstract class PanacheEntityBase that gives you most of the common CRUD
operations, plus a few queries.

146

@ PanacheEntityBase

© delete(): void

@ flush(): void

O isPersistent(): boolean

@ persist(): void

@ persistAndFlush(): void

@ deleteAll(): long

© deleteByld(Object id): boolean

© findByld(Object id): PanacheEntityBase
© findByldOptional(Object id): Optional<PanacheEntityBase>
@ persist(lterable<?> entities): void

@ persist(Stream<?> entities): void

/\

@ «@MappedSuperclass»
PanacheEntity

O id: Long «@ld» «@GeneratedValue»

/\

«Entity»
Publisher

O name: String

Figure 31. Simplified Panache entity class diagram

Mapping Panache Entities

To be a JPA entity, a class needs at least to be annotated with @Entity and have an identifier
annotated with @Id. If you want to use Hibernate ORM with Panache, you still need to annotate the

147

class with @Entity but you also need to extend PanacheEntity (so you get an autogenerated
identifier) or from PanacheEntityBase (if you want to manage your own identifier). Then, map your
Panache entity as you would have done with JPA. Listing 96 shows a Publisher Panache entity with
a name attribute. Thanks to the JPA @Column annotation, the column in the database would be 30
characters long.

Listing 96. Simple Panache Entity Mapping

public class Publisher extends PanacheEntity {

(length = 30)
public String name;

}

Panache entities can benefit from the powerful object-relational mapping annotations of JPA: from
simple mapping to more complex ones. For example, Listing 97 shows the Item parent entity using
the @Inheritance annotation. This annotation instructs JPA to map all the fields from the parent
entity, as well as the child entities, in a single table. Notice that Item is the parent entity, but it still
extends PanacheEntity.

Listing 97. Parent Panache Entity

(strategy = InheritanceType.SINGLE_TABLE)
public class Item extends PanacheEntity {

(length = 100)
public String title;

(length = 3000)
public String description;

(name = "unit_cost")
public Float unitCost;
}

The child entity (D in Listing 98 extends Item (which extends PanacheEntity, so CD is a Panache
entity). CD uses the @ManyToMany and @JoinTable JPA annotations to customise the relationship
mapping with the Musician Panache entity, like any other plain JPA entity. One big difference
though, is that the JPA annotations are set on the public fields of the Panache entity (not private
fields as we are used to). So reading the title attribute of a CD is as simple as reading the cd.title
attribute (instead of using a getter: cd.getTitle()).

148

Listing 98. Child Panache Entity

@Entity
public class CD extends Item {

@Column(name = "total duration")
public Float totalDuration;

@Column(name = "music_company")
public String musicCompany;

public String genre;

@ManyToMany

@JoinTable(name = "cd_musician",
joinColumns = @JoinColumn(name = "cd_fk"),
inverseJoinColumns = @JoinColumn(name = "musician_fk")

)

public Set<Musician> musicians = new HashSet<>();

Managing Panache Entities

In JPA, we use the EntityManager interface to interact with entities. We use the EntityManager to
persist, delete or find an entity, as well as create and execute a query. Thanks to the
PanacheEntityBase parent class (see the class diagram in Figure 31), we get most of the CRUD
operations on the Panache entity itself. Listing 99 shows some operations you can do on a Panache
entity.

149

Listing 99. Operations on a Panache Entity

// Creating a publisher
Publisher publisher = new Publisher();
publisher.name = "AGoncal Fascicle";

// Persist it
publisher.persist();

// Getting a list of all publisher entities
List<Publisher> allPublishers = Publisher.1listAll();

// Finding a specific publisher by ID
publisher = Publisher.findById(publisherId);

// Finding a specific publisher by ID via an Optional
Optional<Publisher> optional = Publisher.findByIdOptional(publisherId);
publisher = optional.orElseThrow(() -> new EntityNotFoundException());

// Counting all publishers
long countAll = Publisher.count();

// Check if it's persistent

if (publisher.isPersistent()) {
// Delete it
publisher.delete();

}

// Delete by id
boolean deleted = Publisher.deleteById(publisherId);

// Delete all publishers
Publisher.deleteAll();

Querying Panache Entities

One strength of JPA is its query language (Java Persistence Query Language). You can do all sorts of
simple as well as complex queries on entities. As you can see in Listing 100, Panache gives you the
possibility to write a full JPQL query as you would write in JPA, but you can also simplify it. The
list() method can take a fragment of a JPQL query and contextualise the rest. So you don’t have to
write the SELECT and FROM clause and just focus on the WHERE clause (even omitting the WHERE
keyword). That makes for very concise yet readable code.

150

Listing 100. Simplified JPQL Queries

// Full JPQL query
books = Book.list("SELECT b FROM Book b WHERE b.nbOfPage > 100 ORDER BY b.title");

// Simplified JPQL query
books = Book.list("FROM Book b WHERE b.nbOfPage > 100 ORDER BY b.title");

// Very simplified JPQL query
books = Book.list("nbOfPage > 100 ORDER BY title");

A Panache entity extends from PanacheEntityBase. As you can see in the class diagram in Figure 32,
PanacheEntityBase has several methods to handle queries (find(), list(), stream(), etc.). These
methods return a PanacheQuery that takes parameters (the Parameter class) and can be grouped
within a page (the Page class). Also notice the Sort class allowing you to easily sort data in ascending
or descending order.

@ PanacheEntityBase

o find(String query, Sort sort, Parameters params): PanacheQuery

@ findAll(): PanacheQuery

o findAll(Sort sort): PanacheQuery © Sort
@ list(String query, Sort sort, Parameters params): List<PanacheEntityBase>

o listAllQ): List<PanacheEntityBase> L >
@ listAll(Sort sort): List<PanacheEntityBase>
© stream(String query, Sort sort, Parameters params): Stream<PanacheEntityBase> 0 direction(): Direction
@ streamAll(): Stream<PanacheEntityBase> @ column(): Column

© streamAll(Sort sort): Stream<PanacheEntityBase>
@ count(): long

@ count(String query, Parameters params): long

© delete(String query, Parameters params): long

@ update(String query, Parameters params): int

O columns: List<Column>

I
I
I
I
Y
@ PanacheQuery

@ Parameters
© page(): Page

o filter(String filterName, Parameters parameters): PanacheQuery | —> O values: Map<String, Object>
@ list(): List<Entity>

© stream(): Stream<Entity>

o firstResult(): Entity

o firstResultOptional(): Optional <Entity>
@ singleResult(): Entity

© and(String name, Object value): Parameters
© map(): Map<String, Object>
© with(String name, Object value): Parameters

O index: int
O size: int

© next(): Page

© previous(): Page

o first(): Page

© index(int newIndex): Page

Figure 32. Panache query class diagram

As you can see in Listing 101, the find() method takes a simplified JPQL query and returns a
PanacheQuery. With this PanacheQuery you can execute it and get the list of books (invoking the 1ist()

151

method), the number of books (via the count() method) or the first result of the query. Notice that
the list() method is a shortcut of find().list(). In fact, simple use-cases will use list(), while
find() will allow you more options such as paging or locking.

Listing 101. Panache Queries

// Find returns a PanacheQuery

PanacheQuery<Book> bookQuery = Book.find("nbOfPage > 100 ORDER BY title");
List<Book> books = bookQuery.list();

Long nbBooks bookQuery.count();

Book firstBook bookQuery.firstResult();

Optional<Book> oBook = bookQuery.firstResultOptional();

// list() is a shortcut to find().list()
books = Book.find("nbOfPage > 100 ORDER BY title").list();
books = Book.list("nbOfPage > 100 ORDER BY title");

Passing Parameters

Hibernate ORM with Panache is based on JPA which is based on JDBC (Java DataBase Connectivity).
150 in Panache you can pass parameters to a query either using positional parameters (e.g. 71, 72,
etc.), name parameters (e.g. :min, : max) or the Panache Parameters class. Listing 102 shows how to
pass parameters to a query using these different techniques.

Listing 102. Query Parameters

// Hard coded parameters
cheapBooks = Book.list("unitCost between @ and 30");

// Positional parameters
cheapBooks = Book.list("unitCost between ?1 and ?2", min, max);

// Named parameters
Map<String, Object> params = Map.of("min", min, "max", max);
cheapBooks = Book.list("unitCost between :min and :max", params);

// Using the Parameters class
cheapBooks = Book.list("unitCost between :min and :max",
Parameters.with("min", min).and("max", max));

// Passing an enumeration
List<Book> englishBooks = Book.list("language", Language.ENGLISH);

Paging

When you invoke the method 1list() it returns the entire list of entities that have met the query.
This list can be large and difficult to display on a user interface, for example. You might want to
retrieve only a portion of it, of a certain size, and maybe iterate the following or previous portion.
This is called paging.

152

The PanacheQuery has several methods that deal with paging using the Page class. Page represents the
paging information on which you can iterate (using next() and previous() methods) or go straight
to a position (first() or index()). Listing 103 shows how to return the entire list of musicians from
the database, and iterate pages of size five.

Listing 103. Paging Through Panache Entities

// Create a query for all musicians
PanacheQuery<Musician> musicianQuery = Musician.findA11();

// Make it use pages of 5 entries at a time
musicianQuery.page(Page.ofSize(5));

// Get the first page
List<Musician> firstPage = musicianQuery.list();

// Get the second page
List<Musician> secondPage = musicianQuery.nextPage().list();

// Get the third page
List<Musician> lastPage = musicianQuery.nextPage().list();

// Get page 3 using index
List<Musician> page3 = musicianQuery.page(Page.of(2, 5)).list();

// Get the number of pages
int numberOfPages = musicianQuery.pageCount();

Sorting

In JPQL, you can order a query using the ORDER BY clause. Remember that Panache queries can take
a full JPQL query, so you can still use ORDER BY if you want to. But Panache makes it easier by using
the Sort class (see the class diagram in Figure 32). Most Panache query methods accept an optional
Sort parameter, which allows you to configure your sorting. The Sort class has a few methods for
adding columns and specifying sort direction as you can see in Listing 104.

Listing 104. Sorting Panache Entities

// Sorts by first name ascending
authors = Author.listA11(Sort.by("firstName"));

// Sorts by first name descending
authors = Author.1listA11(Sort.by("firstName", Descending));

// Sorts by first name ascending and last name descending
authors = Author.1listA11(Sort.by("firstName").and("lastName", Descending));

153

State and Behaviour on Panache Entities

A typical JPA entity has private attributes with getters and setters, and sometimes a few business
methods (e.g. a method that calculates the customer age based on his/her date of birth). But that’s it.
We don’t encapsulate JPQL queries or CRUD operations on a JPA entity.

On the contrary, once you have written your Panache entities with public attributes with the
required JPA mapping annotations, why not add some business logic to them? That’s the purpose of
the active record design pattern. By extending PanacheEntity you already get so many methods, why
not add custom queries on your entities inside the entities themselves? That way, developers can
easily find them, and queries are co-located with the object they operate on. Adding them as static
methods in your entity class is the active record pattern way.

Listing 105 shows a Book Panache entity (extending from Item which inherits from PanacheEntity).
As you can see, it uses JPA annotations to customise the mapping and declares queries in the entity
itself.

154

Listing 105. State and Behaviour in a Panache Entity

public class Book extends Item {

(length = 15)
public String isbn;

(name = "nb_of_pages")
public Integer nbOfPage;

(name = "publication_date")
public Instant publicationDate;

(EnumType.STRING)
public Lanquage language;

(name = "book author",
joinColumns = (name = "book fk"),
inverseJoinColumns = (name = "author fk")

)

public Set<Author> authors = new HashSet<>();

(name = "publisher_pk")
public Publisher publisher;

public static List<Book> findEnglishBooks() {
return list("language"”, Language.ENGLISH);
}

public static long countEnglishBooks() {
return count("lanquage"”, Language.ENGLISH);
}

public static List<Book> findBetweenPrices(Float min, Float max) {
return list("unitCost between :min and :max",
Parameters.with("min", min).and("max", max));

}

public static List<Book> findA110rderByTitle() {
return listAl1(Sort.by("title").and("publicationDate"));

}
}

5.5.2. Panache Repositories
What was described above is essentially the active record pattern, sometimes just called the entity

pattern. But Panache also allows you to use the more classical Data Access Object (DAO, a.k.a.

155

Repository) pattern.”” This basically means that you use the entities only to handle the state and
the mapping, and the repository handles the database access. This separation of concerns can be
handy in some cases.

As you can see in Listing 106, the repository does not have any attributes (they are in the entity),
but only methods querying the database. Notice that Publisher can be a Panache entity as well as a
JPA entity. This can be handy if you have legacy JPA entities and want to benefit from the Panache
repositories.

Listing 106. A Panache Repository

public class PublisherRepository implements PanacheRepository<Publisher> {

public Optional<Publisher> findByName(String name) {
return find("name", name).firstResultOptional();

}

public long deleteByName(String name) {
return delete("name", name);

}
}

As shown in Figure 33, a Panache repository implements the PanacheRepository and
PanacheRepositoryBase interfaces. When using repositories, you get the exact same convenient
methods as with the active record pattern, by making them implement PanacheRepository.

156

@ PanacheRepositoryBase

© default delete(Entity entity): void

@ default flush(): void

© default persist(Entity entity): void

@ default findByld(ld id): Entity

© default persist(Iterable<Entity> entities): void

@ default persist(Stream<Entity> entities): void

© default find(String query, Sort sort, Parameters params): PanacheQuery<Entity>
© default findAll(): PanacheQuery<Entity>

© default list(String query, Sort sort, Map<String, Object> params): List<Entity>
@ default listAll(): List<Entity>

© default stream(String query, Map<String, Object> params): Stream<Entity>

© default streamAll(Sort sort): Stream<Entity>

@ PanacheRepository

@ «@ApplicationScoped»
PublisherRepository

© findByName(String name): Optional<Publisher>
© deleteByName(String name): long

Figure 33. Panache repository class diagram

Listing 107 shows some operations that are available on your repository. As you can see, you can
use it in exactly the same way as with the active record pattern.

157

Listing 107. Operations on a Panache Repository

@Inject
PublisherRepository publisherRepository;

void shouldManagePublishers() {

// Creating a publisher
Publisher publisher = new Publisher();
publisher.name = "AGoncal Fascicle";

// Persist it
publisherRepository.persist(publisher);

// Getting a list of all Publisher entities
List<Publisher> allPublishers = publisherRepository.listA11l();

// Finding a specific publisher by ID
publisher = publisherRepository.findById(publisherId);

// Finding a specific publisher by ID via an Optional
Optional<Publisher> optional = publisherRepository.findByIdOptional(publisherId);
publisher = optional.orElseThrow(() -> new EntityNotFoundException());

// Counting all publishers
long countAll = publisherRepository.count();

// Check if it's persistent

if (publisherRepository.isPersistent(publisher)) {
// delete it
publisherRepository.delete(publisher);

}

// Delete by id
boolean deleted = publisherRepository.deleteById(publisherId);

// Delete all publishers
publisherRepository.deleteAll();

And of course, as shown in Listing 108, a repository can also use simplified JPQL queries, and query
parameters, sorting or paging, the same way a Panache entity would do.

158

Listing 108. Queries using a Panache Repository

// Simplified JPQL query
books = repository.list("nb0OfPage > 100 ORDER BY title");

// Positional parameters
cheapBooks = repository.list("unitCost between ?1 and 72", min, max);

// Using the Parameters class
cheapBooks = repository.list("unitCost between :min and :max",
Parameters.with("min", min).and("max", max));

5.5.3. Transactions

Panache entities and repositories allow you to easily map attributes to a relational database, and
access them through queries. But what about transactions? What about persisting or removing data
in a transactional way? For that, we just need to use transactional boundaries (services or REST
endpoints) using JTA. These transactional boundaries can either directly use the Panache entities,
or inject the repositories.

Using Panache Entities

Listing 109 shows a transactional service that persists, deletes and retrieves publisher entities in a
transactional way. For that, it marks methods with the JTA declarative transaction management
annotation @Transactional. Then, it directly uses the Panache entity methods (e.g. invoking
Publisher.persist() to persist a publisher).

159

Listing 109. Transactional Service Using Panache Entities

(SUPPORTS)
public class PublisherService {

(REQUIRED)
public Publisher persist(Publisher publisher) {
Publisher.persist(publisher);
return publisher;

}

public List<Publisher> findAll() {
return Publisher.1listAl1l();
}

public Optional<Publisher> findByIdOptional(Long id) {
return Publisher.findByIdOptional(id);
}

(REQUIRED)
public void deleteById(Long id) {
Publisher.deleteById(id);
}
}

Using Panache Repositories

But if you have chosen to have a repository layer instead of using the active record pattern, then,
you follow the same principles, but instead of using the Panache entity directly, you inject the
Panache repository. Listing 110 shows the same transactional service as Listing 109. The only
difference is that it injects the repository.

160

Listing 110. Transactional Service Using Panache Repositories

(SUPPORTS)
public class PublisherService {

PublisherRepository repository;

(REQUIRED)
public Publisher persist(Publisher publisher) {
repository.persist(publisher);
return publisher;

}

public List<Publisher> findA11() {
return repository.listAl1();
}

public Optional<Publisher> findByIdOptional(Long id) {
return repository.findByIdOptional(id);
}

(REQUIRED)
public void deleteById(Long id) {
repository.deleteByld(id);
}
}

5.6. Summary

This chapter was all about how to handle data with Quarkus. Quarkus doesn’t do anything special
per-se, instead, it delegates data validation to Hibernate Validator, object-relational mapping to
Hibernate ORM, transaction management to Narayana and uses the datasource connection pool
Agroal.

First, we saw how to validate data so that we make sure the data is valid before persisting or
updating it into a database. Bean Validation has a very comprehensive approach to validation
problems and solves most of the use cases by validating properties or methods in any application
layer. It also comes with already built-in constraints handling common use-cases (@NotNull, @Size,
@Email).

In the previous chapter we saw that CDI objects were usually called beans. When it comes to being
persistent, an object is usually called an entity. The Java Persistence API is all about mapping
entities to relational databases. It handles common mappings (e.g. mapping an attribute to a
column), but also complex ones (e.g. relationships or inheritance). Thanks to the entity manager
API and the JPQL syntax, we can easily manage and query JPA entities.

In this chapter, we’ve seen how to handle transactions. We can define transaction management

161

either decoratively or programmatically. Transactions allow the business tier to keep the data in an
accurate state even when accessed concurrently by several applications.

Then, we ended this chapter by having aan in-depth look at Panache. Hibernate ORM with Panache
is a way to easily map and access entities based on JPA. It gives us either an active record pattern
where we can add simplified queries to our entities, or repositories that follow the DAO pattern.

The next chapter is about HTTP Microservices. You will learn how to expose and document a REST
endpoint that consumes and produces JSON.

[123] Bean Validation https://jcp.org/en/jsr/detail?id=380

[124] Bean Validation GitHub https://github.com/eclipse-ee4j/beanvalidation-api

[125] Java Beans http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec
[126] Programming by Contract https://en.wikipedia.org/wiki/Design_by_contract

[127] Hibernate https://hibernate.org

[128] JPA https://jcp.org/en/jsr/detail?id=338

[129] JPA Specification https://jcp.org/en/jsr/detail?id=338

[130] DAO https://en.wikipedia.org/wiki/Data_access_object

[131] JTA https://jcp.org/en/jsr/detail?id=907

[132] JTA GitHub https://github.com/eclipse-ee4j/jta-api

[133] Open XA https://en.wikipedia.org/wiki/X/Open_XA

[134] Isolation Levels https://en.wikipedia.org/wiki/Isolation_(database_systems)

[135] DataSource https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/DataSource.html
[136] Agroal https://agroal.github.io

[137] Active Record Pattern https://en.wikipedia.org/wiki/Active_record_pattern

[138] JDBC https://en.wikipedia.org/wiki/Java_Database_Connectivity

[139] DAO https://en.wikipedia.org/wiki/Data_access_object

162

https://jcp.org/en/jsr/detail?id=380
https://github.com/eclipse-ee4j/beanvalidation-api
http://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec
https://en.wikipedia.org/wiki/Design_by_contract
https://hibernate.org
https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338
https://en.wikipedia.org/wiki/Data_access_object
https://jcp.org/en/jsr/detail?id=907
https://github.com/eclipse-ee4j/jta-api
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Isolation_(database_systems
https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/javax/sql/DataSource.html
https://agroal.github.io
https://en.wikipedia.org/wiki/Active_record_pattern
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Data_access_object

Chapter 6. HTTP Microservices

As we’ve seen in the previous Data, Transactions and ORM chapter, Quarkus is not only about
microservices. It has deep core functionalities such as injection or configuration, and a set of
extensions to deal with validating or mapping data into relational databases. Thanks to Hibernate
ORM with Panache you can easily leverage JPA and JTA to access data in a transactional manner.

But if Quarkus is not only about microservices, it has been strongly influenced by microservices.
When it comes to microservices, we can distinguish between HTTP and reactive microservices (see
Chapter 8 for reactive microservices). This chapter focuses on RESTful microservices which are
based on HTTP. To expose REST endpoints, Quarkus relies on the JAX-RS specification which goes
hand in hand with JSON Binding and JSON Processing. There is another specification when it comes
to document a REST endpoint, and that’s OpenAPIv3. As you will see, Quarkus transparently
enables REST documentation with Eclipse MicroProfile OpenAPI.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/http

6.1. Java API for RESTful Web Services

Let’s start at the beginning. In Java, RESTful web services can be implemented using different
frameworks or APIs. MicroProfile has chosen JAX-RS as it has a long history of exposing web
services within the Jakarta EE platform. Quarkus implements JAX-RS through the RESTEasy
implementation.

Representational State Transfer (REST) is an architectural style based on how the Web works.
Applied to services, it tries to put the Web back into web services. To design a RESTful web service,
you need to know Hypertext Transfer Protocol (HTTP) and Uniform Resource Identifiers (URIs), and
to observe a few design principles. This basically means that each unique URI is a representation of
some resource. You can interact with that resource using an HTTP GET (to get its content), DELETE (to
delete it), POST (to create it), or PUT (to update the content).

RESTful architectures quickly became popular because they rely on a very robust transport
protocol: HTTP. RESTful web services reduce the client/server coupling, making it much easier to
evolve a REST interface over time without breaking existing clients. Like the protocol they are
based on, RESTful web services are stateless and can make use of HTTP cache and proxy servers to
help you handle high load and scale much better. Furthermore, they are easy to build as no special
toolkit is required.

Java API for RESTful Web Services (JAX-RS) is a specification that provides support for creating web
services according to the Representational State Transfer (REST) architectural style."*” JAX-RS
provides a set of annotations and classes/interfaces to simplify the development and deployment of
REST endpoints. It also brings a client API to programmatically invoke REST endpoints.

The Java API for RESTful Web Services APIs and annotations are all defined under the javax.ws.rs.
Table 28 lists the main subpackages defined in JAX-RS 2.1 (under the root javax.ws.rs package).""

Table 28. Main javax.ws.rs Subpackages

163

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/http
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/http

Subpackage Description

root Root package of the CDI APIs

client Classes and interfaces of the new JAX-RS client API

container Container-specific JAX-RS API

core Low-level interfaces and annotations used to create RESTful web resources
ext APIs that provide extensions to the types supported by the JAX-RS API

Along with APIs, JAX-RS comes with a set of annotations. Table 29 lists a subset of the most
commonly used annotations.

Table 29. Main JAX-RS Annotations

Annotation Description

@GET, @POST, @PUT, Indicates that the annotated method responds to HTTP GET, POST, PUT or
ODELETE DELETE requests

@Path Identifies the URI path that a resource class or class method will serve
requests for

@PathParam Binds the value of a URI template parameter or a path segment

@QueryParam Binds the value(s) of an HTTP query parameter to a resource method
parameter

@Produces, Defines the media types that the methods of a resource can produce or accept

@Consumes

The JAX-RS extension shown in Listing 111 is the default extension that is added to a pom.xml when
generating a new Quarkus application. RESTeasy is the Java API for RESTful Web Services
implementation used by Quarkus.

Listing 111. JAX-RS Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy</artifactId>
</dependency>

6.1.1. Understanding RESTful Web Services

RESTful web services are HTTP-centric and make the most of this very rich protocol. In the REST
architectural style, every piece of information is a resource, and these resources are addressed
using Uniform Resource Identifiers (URIs), typically links on the Web. The resources are acted on by
using a set of simple, well-defined operations. The REST client-server architectural style is designed
to exchange representations of these resources using a defined interface and protocol (see Figure
34). These principles encourage RESTful applications to be simple and lightweight, and to have high
performance.

164

REST Client RESTful Web Service

| |
| |
request)| GET POST PUT DELETE |
| |
| |
| |

200-0KUSON} | response ™)

REST Client RESTful Web Service

Figure 34. RESTful web services

6.1.2. Exposing RESTful Web Services

Some of the low-level concepts (such as the HTTP protocol) might have you wondering how the
code would look when developing a RESTful web service. The good news is that you don’t have to
write plumbing code to digest HTTP requests, nor create HTTP responses by hand. JAX-RS is a very
elegant API allowing you to describe a RESTful web service with only a few annotations. RESTful
web services are POJOs that have at least one method annotated with @javax.ws.rs.Path and an
HTTP method annotation (e.g @GET, @POST, etc.). Listing 112 shows a typical resource.

Listing 112. A Simple Book RESTful Web Service

("/book™)
public class BookResource {

("text/plain")
public String getBookTitle() {
return "H2G2";

}
}

The BookResource is a Java class annotated with @Path, indicating that the resource will be hosted at
the URI path /book. The getBookTitle() method is marked to process HTTP GET requests (using @GET
annotation) and produces text (the content is identified by the MIME Media text/plain; I could have
also used the constant MediaType.TEXT_PLAIN which is less error prone). To access this resource, you
need an HTTP client such as a browser to point to the URL http://www.vintage-shop.com/book.

JAX-RS is HTTP-centric by nature and has a set of clearly defined classes and annotations to deal
with HTTP and URIs. A resource can have several representations, so the API provides support for a

165

http://www.vintage-shop.com/book

variety of content types.

HTTP Method Matching

You’ve seen how the HTTP protocol works with its requests, responses, and action methods (GET,
POST, PUT etc.). JAX-RS defines these common HTTP methods using annotations: @GET, @POST, @PUT,
@DELETE, @HEAD, and @OPTIONS. Only public methods may be exposed as resource methods. Listing 113
shows a customer RESTful web service exposing CRUD methods: @GET methods to retrieve
resources, @P0ST methods to create a new resource, @PUT methods to update an existing resource,

and @DELETE methods to delete a resource.

Listing 113. A Customer Resource Exposing CRUD Operations and Returning Responses

("/customers")

public class CustomerResource {

}

The HTTP specification defines what HTTP response codes should be on a successful request. You

166

public Response getCustomers() {

/] ...
return Response.ok(customers).build();
}
("{customerId}")
public Response getCustomer(("customerId") String customerId) {
/] ...
return Response.ok(customer).build();
}

public Response createCustomer(Customer customer) {
/] ...
return Response.created(createdCustomerURI).build();

}

public Response updateCustomer(Customer customer) {
/] ...
return Response.ok(customer).build();

}

("{customerId}")
public Response deleteCustomer (("customerId") String customerId) {
/] ...
return Response.noContent().build();

}

can expect JAX-RS to return the same default response codes:

GET methods retrieve whatever information (in the form of an entity) is identified by the
requested URI. GET should return 200-0K.

The PUT method refers to an already existing resource that needs to be updated. If an existing
resource is modified, either the 200-0K or 204-No Content response should be sent to indicate
successful completion of the request.

The POST method is used to create a new resource identified by the request URI. The response
should return 201-CREATED with the URI of this new resource (in the Location header) or 204-No
Content if it does not result in a resource that can be identified by a URIL.

The DELETE method requests that the server deletes the resource identified by the requested URI.
A successful response should be 200-0K if the response includes an entity, 202-Accepted if the
action has not yet been enacted, or 204-No Content if the action has been enacted but the
response does not include an entity.

URI Definition and Binding URIs

The @Path annotation represents a relative URI that can annotate a class or a method. When used on
classes, it is referred to as the root resource, providing the root of the resource tree and giving
access to subresources. Each class should use a different root resource so each resource can be
uniquely identified. Listing 114 shows a REST service that can be accessed at http://www.vintage-
shop.com/items/toprated. All the methods of this service will have /items/toprated as root.

Listing 114. Root Path to an Item Resource

("/items/toprated")

public class ItemResource {

}

public List<Item> getItems() {
/] ...
}

Once we have a root path (e.g. /items), you can then add subpaths to your methods, which can be
useful to group together common functionalities for several resources as shown in Listing 115.

167

http://www.vintage-shop.com/items/toprated
http://www.vintage-shop.com/items/toprated

Listing 115. Several Subpaths in the ItemResource

("/items")
public class ItemResource {

public List<Item> getItems() {
// URI : /items

}

(n/cdsu)
public List<CD> getCDs() {
// URI : /items/cds

}

("/books")
public List<Book> getBooks() {
// URI : /items/books

}

("/books")
public Response createBook(Book book) throws URISyntaxException {
// URI : /items/book
}
}

Listing 115 represents a RESTful web service that will give you methods to get all the items (CDs and
books) from the Vintage Store application. When requesting the root resource /items, the only
method without sub @Path will be selected (getItems()). Then, when @Path exists on both the class
and method, the relative path to the method is a concatenation of both. For example, to get all the
CDs, the path will be /items/cds. When requesting /items/books, the getBooks() method will be
invoked. To create a new book you need to point at /items/book.

If @Path("/items") only existed on the class, and not on any methods, the path to access each
method would be the same. The only way to differentiate them would be the HTTP verb (GET, PUT
etc.) and the content negotiation (text, XML etc.), as you’ll later see.

Extracting Parameters

Having nice URIs by concatenating paths to access your resource is very important in REST. But
paths and subpaths are not enough: you also need to pass parameters to your RESTful web services
and extract and process them at runtime. JAX-RS provides a rich set of annotations to extract the
different parameters that a request could send (@PathParam, @QueryParam, @MatrixParam, @CookieParam,
@HeaderParam, and @FormParam).

Listing 116 shows how the @PathParam annotation is used to extract the value of a URI template
parameter. A parameter has a name and is represented by a variable between curly braces or by a

168

variable that follows a regular expression. The searchCustomers method takes any String parameter
while getCustomerByLogin only allows lowercase/uppercase alphabetical letters ([a-zA-Z]*) and
getCustomerById only digits (\\d+).

Listing 116. Extracting Path Parameters and Regular Expressions

@Path("/customers")
public class CustomerResource {

@GET

@Path("search/{text}")

public List<Customer> searchCustomers(@PathParam("text") String textToSearch) {
// URI : /customers/search/smith

}

@GET

@Path("{login: [a-zA-Z]*}")

public Customer getCustomerBylLogin(@PathParam("login") String login) {
// URI : /customers/foobarsmith

}

@GET
@Path("{customerId : \\d+}")
public Customer getCustomerById(@PathParam("customerId") Long id) {
// URI : /customers/12345
}
}

The @QueryParam annotation extracts the value of a URI query parameter. Query parameters are
key/value pairs separated by an & symbol such as http://www.vintage-shop.com/customer?
zip=75012&city=Paris. The @MatrixParam annotation acts like @QueryParam, except it extracts the value
of a URI matrix parameter (; is used as a delimiter instead of 7). Listing 117 shows how to extract
both query and matrix parameters from URISs.

169

http://www.vintage-shop.com/customer?zip=75012&city=Paris
http://www.vintage-shop.com/customer?zip=75012&city=Paris

Listing 117. Extracting Query and Matrix Parameters

@Path("/customers")
public class CustomerResource {

@GET
public List<Customer> getByZipCodeCity(@QueryParam("zip") Long zip,
@QueryParam("city") String city) {
// URL : /customer?zip=75012&city=Paris
}

@GET
@Path("search")
public List<Customer> getByName(@MatrixParam("firstname") String firstname,
@MatrixParam("surname") String surname) {
// URI : /customer/search;firstname=Antonio;surname=Goncalves

}
}

Consuming and Producing Content Types

With REST, the same resource can have several representations; a book can be represented as a
web page, a PDF, or an image showing the book cover. JAX-RS specifies a number of Java types that
can represent a resource such as String, InputStream and JAXB beans. The @javax.ws.rs.Consumes
and @javax.ws.rs.Produces annotations may be applied to a resource where several representations
are possible. It defines the media types of the representation exchanged between the client and the
server. JAX-RS has a javax.ws.rs.core.MediaType class that acts as an abstraction for a MIME type. It
has several methods and defines the constants listed in Table 30.

Table 30. MIME Types Defined in MediaType

Constant name MIME type

APPLICATION_ATOM_XML application/atom+xml
APPLICATION_FORM_URLENCODED application/x-www-form-urlencoded

APPLICATION_JSON application/json
APPLICATION_OCTET_STREAM application/octet-stream

APPLICATION_SVG_XML application/svg+xml
APPLICATION_XHTML_XML application/xhtml+xml
APPLICATION_XML application/xml
MULTIPART_FORM_DATA multipart/form-data
TEXT_HTML text/html

TEXT_PLAIN text/plain

TEXT_XML text/xml

WILDCARD *[*

170

Using the @Consumes and @Produces annotations on a method overrides any annotations on the
resource class for a method argument or return type. In the absence of either of these annotations,
support for any media type (*/*) is assumed. By default, CustomerRestService produces plain text
representations that are overridden in some methods (see Listing 118). Note that the
getAsJsonAndXML produces an array of representations (XML or JSON).

Listing 118. A Customer Resource with Several Representations

("/api/customers")
public class CustomerResource {

(MediaType.TEXT_PLAIN)
public Response getAsPlainText() {
/] ...
}

(MediaType.TEXT_HTML)
public Response getAsHtml() {
/] ...

}

({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public Response getAsJsonAndXML() {
/] ...
}

(MediaType.TEXT_PLAIN)
public void putName(String customer) {
/] ...

}
}

If a RESTful web service is capable of producing more than one media type, the targeted method
will correspond to the most acceptable media type, as declared by the client in the Accept header of
the HTTP request. For example, if the Accept header is Accept: text/plain and the URI is
/api/customers, the getAsPlainText() method will be invoked.

Returned Types

So far you’ve seen mostly how to invoke a method (using parameters, media type, HTTP methods
etc.) without caring about the returned type. What can a RESTful web service return? Like any Java
class, a method can return any standard Java type, a bean or any other object as long as it has a
textual representation that can be transported over HTTP. In this case, the runtime determines the
MIME type of the object being returned and invokes the appropriate Entity Provider to get its
representation.”*” The runtime also determines the appropriate HTTP return code to send to the
consumer (204-No Content if the resource method’s return type is void or null; 200-0K if the returned

171

value is not null). But sometimes you want finer control of what you are returning: the response
body (a.k.a. an entity) of course, but also the response code and/or response headers or cookies.
That’s when you return a Response object. It is good practice to return a javax.ws.rs.core.Response
with an entity since it would guarantee a return content type. Listing 119 shows you different
return types.

Listing 119. A Customer Service Returning Data Types, a Bean, and a Response

("/customer™)
public class CustomerResource {

public String getAsPlainText() {
return new Customer("John", "Smith").toString();

}

(llmaX“)
public Integer getMaximumAge() {
return 42;

}

(MediaType.APPLICATION_XML)
public Customer getAsXML() {
Customer customer = new Customer("John", "Smith");
return customer;

}

(MediaType.APPLICATION_JSON)
public Response getAsJson() {
Customer customer = new Customer("John", "Smith");
return Response.ok(customer).encoding("utf-8").build();
}
}

The getAsPlainText() method returns a String representation of a customer and the
getMaximumAge() returns a numerical constant. The defaults will apply so the return HTTP status on
both methods will be 200-0K (if no exception occurs). The getAsXML() returns a Customer object that
the runtime will marshal into XML.

The getAsJson() method doesn’t return an entity but instead a javax.ws.rs.core.Response object. A
Response wraps the entity that is returned to the consumer and it’s instantiated using the
ResponseBuilder class as a factory. In this example, we still want to return an object (the Customer)
with a 200-0K status code (the ok() method), but we also want to specify the encoding to be UTF-8.
Calling the ResponseBuilder.build() method creates the final Response instance.

Table 31 shows a subset of the Response API.

172

Table 31. The Response API

Method Description

accepted() Creates a new ResponseBuilder with a 202-Accepted status
created() New ResponseBuilder for a 201-Created resource (with its URI)
noContent() New ResponseBuilder for an empty response (204-No Content)
notModified() New ResponseBuilder with a 304-Not Modified status

ok() New ResponseBuilder with a 200-0K status

serverkrror() New ResponseBuilder with a 500-Internal Server Error status
status() New ResponseBuilder with the supplied status

temporaryRedirect() Temporary redirection (307- Temporary Redirect)

getCookies() Gets the cookies from the response message
getHeaders() Gets the headers from the response message
getlinks() Gets the links attached to the message as a header
getStatus() Gets the status code associated with the response
readentity() Reads the message entity

The Response and ResponseBuilder follow the fluent API design pattern. Meaning you can easily
write a response by concatenating methods. This also makes the code more readable. Here are
some examples of what you can write with this API:

Response.ok().build();

Response.ok().cookie(new NewCookie("SessionID", "5G79GDIFY@9")).build();
Response.ok("Plain Text").expires(new Date()).build();

Response.ok(new Customer("Ennio", "Smith"), APPLICATION_JSON).build();
Response.noContent().build();

Response.accepted(new Customer("Ligia", "Smith")).build();
Response.notModified().header("User-Agent", "Mozilla").build();

6.1.3. Invoking RESTful Web Services

JAX-RS has a client API so that you can make HTTP requests to your remote RESTful web services
easily (despite all the low-level details of the HTTP protocol). It is a fluent request building API (i.e.
using the Builder design pattern) that uses a small number of classes and interfaces (see Table 32 to
have an overview of the javax.ws.rs.client package). Very often, you will come across three main
classes: Client, WebTarget, and Response. The Client interface (obtained with the ClientBuilder) is a
builder of WebTarget instances. A WebTarget represents a distinct URI from which you can invoke
requests on to obtain a Response. From this Response you can check HTTP status, length or cookies
but more importantly, you can get its content (a.k.a. entity, message body or payload) through the
Entity class.

Table 32. Main Classes and Interfaces of the javax.ws.rs.client Package

173

Class/Interface Description

(lient Main entry point to the fluent API used to build and execute client requests
in order to consume responses returned

ClientBuilder Entry point to the client API used to bootstrap Client instances

Configurable Client side configuration from Client, WebTarget, and Invocation

Entity Encapsulates message entity including the associated variant information

Invocation A request that has been prepared and is ready for execution

Invocation.Builder A client request invocation builder

WebTarget A resource target identified by the resource URI

In Chapter 7, you will see how an HTTP microservice invokes another one.

e Basically, it uses the Eclipse MicroProfile REST Client which is part of MicroProfile.
Eclipse MicroProfile REST Client is based on the JAX-RS 2.0 client API, so it’s
important that you know the basis before diving into REST Client.

Bootstrapping the Client

The main entry point for the API is the (Client interface. The Client interface manages and
configures HTTP connections. It is also a factory for WebTargets and has a set of methods for
creating resource links and invocations. The Client instances are created using one of the static
methods of the ClientBuilder class:

Client client = ClientBuilder.newClient();

Targets and Invocations

Once you have a Client you can now target a RESTful web service URI and invoke some HTTP
methods on it. That’'s what the WebTarget and Invocation interfaces allow you to do. The
Client.target() methods are factories for web targets that represent a specific URI. You build and
execute requests from a WebTarget instance. You can create a WebTarget with the String
representation of a URI:

WebTarget target = client.target("http://localhost:8081/customers");

You can also obtain a WebTarget from a java.net.URI, javax.ws.rs.core.UriBuilder or
javax.ws.rs.core.Link:

URT uri = new URI("http://localhost:8081/customers");
WebTarget target = client.target(uri);

Now that you have a URI to target, you need to build your HTTP request. The WebTarget allows you
to do that by using the Invocation.Builder. To build a simple HTTP GET on a URI just write:

174

Invocation invocation = target.request().buildGet();

Invocation.Builder allows you to build a GET method as well as POST, PUT and DELETE methods. You
can also build a request for different MIME types and even add path, query and matrix parameters.
For PUT and POST methods you need to pass an Entity, which represents the payload to send to your
RESTful web service:

target.request().buildDelete();

target.queryParam("author", "Eloise").request().buildGet();
target.path(bookId).request().buildGet();
target.request(MediaType.APPLICATION_XML).buildGet();
target.request(MediaType.APPLICATION_XML).acceptlLanguage("pt").buildGet();
target.request().buildPost(Entity.entity(new Book()));

The code below just builds an Invocation. You then need to call the invoke() method to actually
invoke your remote RESTful web service and get a Response object back. The Response is what
defines the contract with the returned instance and is what you will consume:

Response response = invocation.invoke();

So if you put everything together, these are the lines of code to invoke a GET method on a remote
RESTful web service located at http://localhost:8081/customers and return a text/plain value:

Client client = ClientBuilder.newClient();

WebTarget target = client.target("http://localhost:8081/customers");
Invocation invocation = target.request(MediaType.TEXT_PLAIN).buildGet();
Response response = invocation.invoke();

Thanks to the builder API and some shortcuts, you can write the same behaviour in a single line of
code:

Response response = ClientBuilder
.newClient()
.target("http://localhost:8081/customers")
.request(MediaType.TEXT_PLAIN)

-get();

6.1.4. Configuring RESTEasy

As usual with Quarkus, if you need to configure an extension, you just add a few properties to the
application.properties file. For configuring RESTful web services, you can look for the
quarkus.resteasy namespace for the configuration keys."""

Table 33. Some Quarkus RESTEasy Configuration Properties

175

http://localhost:8081/customers

Property Default

quarkus.resteasy.gzip.enabled false
If gzip is enabled
quarkus.resteasy.gzip.max-input oM

Maximum deflated file bytes size (if the limit is exceeded, a 413-Payload Too Large is
returned)

quarkus.resteasy.singleton-resources true
If true then JAX-RS will use only a single instance of a resource, if false then it will create
a new instance of the resource per request

quarkus.resteasy.path /
Overrides the default path for JAX-RS resources if there are no annotated application
classes

quarkus.resteasy.metrics.enabled false
Whether or not JAX-RS metrics should be enabled if the Metrics capability is present

6.2. Eclipse MicroProfile OpenAPI

JAX-RS lets you consume and expose REST APIs. But it doesn’t help you in documenting your APIs,
you need to use external tools. That’s what Quarkus allows you to do. By default, a Quarkus
application exposes its API description through an OpenAPI specification. It can even let you test it
via a user-friendly Ul named Swagger UL

Exposing RESTful APIs has become an essential part of all modern applications. From the
microservices developer’s point of view, it is important to understand how to interact with these
APIs and how to test that they are still valid and backward compatible. For that, there needs to be a
clear and complete contract. Therefore a standard API documentation mechanism is required and
can also be used for API testing. That’s when OpenAPI comes along."*”

Eclipse MicroProfile OpenAPI provides a Java API for the OpenAPI v3 specification that all
application developers can use to expose their API documentation."* It aims to provide a set of
Java interfaces and programming models which allow Java developers to natively produce
OpenAPI v3 documents from their JAX-RS endpoints.

The Eclipse MicroProfile OpenAPI APIs and annotations are all defined under the main
org.eclipse.microprofile.openapi package, either at the root, or under the other subpackages. Table
34 lists the main subpackages defined in Eclipse MicroProfile OpenAPI version 1.1 (under the root
org.eclipse.microprofile.openapi package)."*”

Table 34. Main org.eclipse.microprofile.openapi Subpackages

Subpackage Description

root Root package of the OpenAPI APIs

annotations Set of annotations to produce a valid OpenAPI document

models Interfaces to define OpenAPI document programmatically

spi Internal SPIs (Service Provider Interfaces) implemented by the provider

176

Along with APIs, OpenAPI comes with a set of annotations. Table 35 lists a subset of the most
commonly used annotations.

Table 35. Main OpenAPI Annotations

Annotation Description
@APIResponse Describes the endpoint’s response (response code, data structure, types, etc.)
@peration Describes a single API operation on a path

@0penAPIDefinition Root document object of the OpenAPI document

OParameter The name of the method parameter

@RequestBody A brief description of the request body

@Schema Allows the definition of input and output data types

@Tag Used to add tags to the REST endpoint contract to provide more description

The Eclipse MicroProfile OpenAPI extension shown in Listing 120 is one of these extensions that,
once added to your pom.xml brings you new functionalities without having to invoke any APIs. Add
this extension, and Quarkus will automatically generate an OpenAPIv3 documentation for your
REST endpoints.

Listing 120. OpenAPI Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-openapi</artifactId>
</dependency>

Before digging more into OpenAPI, we need to define some terminology, such as the OpenAPI v3
Specification.

Swagger

The term Swagger UI takes its roots from Swagger. Let’s explain it. At first, there was no
specific way to describe a RESTful service. Some developers were not even documenting their
APIs or would be using an in-house proprietary format. That’s when Swagger came into play.

Swagger is an open source software framework created in 2011 that helps developers design,
build, document, and consume RESTful web services."*” RESTful APIs typically did not have a
machine-readable description mechanism at that time, so Swagger became very popular
among developers and also companies (Apigee, Intuit, Microsoft, IBM, etc.). Shortly after
Swagger was created, alternative structures for describing RESTful APIs were introduced, the
most popular being API Blueprint and RAML."*” In 2015, under the sponsorship of the Linux
Foundation, Swagger was donated to the OpenAPI Initiative."*" In 2016, the Swagger
specification was renamed OpenAPI Specification.

177

6.2.1. Understanding OpenAPI v3 Specification

OpenAPI specification (formerly known as the Swagger Specification) is an API description format
for REST APIs."*" It is a specification for machine-readable interface files for describing, producing,
consuming, and visualising RESTful web services. An OpenAPI file allows you to describe your
entire AP], including:

» Available endpoints (/authors) and operations on each endpoint (GET, POST, etc.),
* Input and output parameters for each operation,

e Authentication methods,

* Contact information, license, terms of use and other information.

The specifications can be written in YAML or JSON. The format is easy to learn and readable to both
humans and machines.

Every API definition must include the version of the OpenAPI Specification that this definition is
based on:

openapi: 3.0.1

The info section contains API information:

e titleis the API name.

* description (optional) is extended information about the API. It can be multiline and supports
CommonMark and HTML syntax for rich text representation.!””

» versionis an arbitrary string that specifies the version of the API.

info:
title: Generated API
version: "1.0"

tags:
- name: Author Endpoint

The paths section defines individual endpoints (or paths) of the API, and the HTTP methods (or
operations) supported by these endpoints (GET, POST, PUT, DELETE, etc.). For example, return a
specific author can be described as an HTTP GET operation on the /authors/{index} path:

paths:
/authors/{index}:
get:
summary: Returns an author for a given index

Operations can have parameters passed via URL path (/authors/{index}), query string
(/authors?name=Adams), headers (X-CustomHeader: Value) or cookies (Cookie: debug=0). You can define
the parameter data types, format, whether they are required or optional, and other details:

178

parameters:
- name: index
in: path
description: Author index
required: true
schema:
format: int32
type: integer

For each operation, you can define possible status codes, such as 200-0K or 404-Not Found, and the
response body schema. Schemas can be defined inline or referenced via $ref. You can also provide
example responses for different content types:

responses:
204" :
description: The author is not found for a given index
"200":
description: OK
content:
text/plain: {}

6.2.2. Exposing OpenAPI Contracts

Eclipse MicroProfile OpenAPI integrates with Java API for RESTful Web Services. That means that
OpenAPI processes all the relevant JAX-RS annotations (such as @Path, @Consumes, etc.) as well as Java
objects used as input or output to JAX-RS operations. Without any additional annotation or
configuration, you get your API documentation out-of-the-box. The JAX-RS classes and annotations
are scanned so that a default documentation is generated. The RESTful web service described in
Listing 121 only has JAX-RS annotations.

Listing 121. Author Endpoint with no OpenAPI Annotations

("/authors")
(MediaType.TEXT_PLAIN)
public class AuthorResource {

String[] scifiAuthors = {"Isaac Asimov", "Nora Jemisin", "Douglas Adams"};

("/{index}")
public String getScifiAuthor(("index") int index) {
return scifiAuthors[index];

}
}

Thanks to the integration of JAX-RS, Eclipse MicroProfile OpenAPI is capable of generating a default
contract as described in Listing 122.

179

Listing 122. Default Generated OpenAPI Contract

openapi: 3.0.3
info:
title: Generated API
version: "1.0"
paths:
/authors/{index}:
get:
parameters:
- name: index

in: path

required: true

schema:
format: int32
type: integer

responses:

"200":
description: OK
content:

text/plain:
schema:
type: string

The default contract described in Listing 122 is comprehensive enough, but it lacks documentation.
We could give some description of the API, or an example on how to use it and you could say if the
index parameter is required or not, etc. The Eclipse MicroProfile OpenAPI allows you to customise
several aspects of your REST endpoints thanks to annotations.

When you expose RESTful web services with Quarkus, you can get the OpenAPI

contract under the URL /openapi. You can either access it with your browser, or

you can use cURL. With cURL, by changing the HTTP header, you can retrieve the
o OpenAPI document in several formats:

* YAML: curl http://localhost:8080/openapi
* JSON: curl -H "Accept: application/json" http://localhost:8080/openapi

Customising OpenAPI Contracts

Relying on the default JAX-RS mapping is usually not enough. You want to really document your
APIs, and for that, Eclipse MicroProfile OpenAPI has a set of annotations. For example, in Listing
123 we add extra information to the JAX-RS annotations. On the getScifiAuthor() method we add
an @0peration annotation so we can give a summary to the endpoint. This is very useful for a third-
party partner to understand what your API does. The @APIResponse gives some information about
the response returned by the API. Here, we express that the API can return a 200-0K and a 204-No
Content.

180

http://localhost:8080/openapi
http://localhost:8080/openapi

Listing 123. Author Endpoint with OpenAPI Annotations

@Path("/authors")
@Produces(MediaType.TEXT_PLAIN)
public class AuthorResource {

String[] scifiAuthors = {"Isaac Asimov", "Nora Jemisin", "Douglas Adams"};

@GET
@Path("/{index}")
@0peration(summary = "Returns an author for a given index")
@APIResponse(responseCode = "204", description = "Author not found")
@APIResponse(responseCode = "200",
description "Author returned for a given index")
public String getScifiAuthor(@PathParam("index") int index) {
return scifiAuthors[index];
}
}

As you can see below, the summary of the @0peration annotation is reflected into the OpenAPI v3
contract.

Without annotation
paths:
/authors/{index}:
get:

With the @Operation annotation
paths:
/authors/{index}:
get:
summary: Returns an author for a given index

Adding the @APIResponse annotations to the code also makes the contract clearer so all the returned
status codes are listed and documented.

181

Without annotation
"200":
description: OK
content:
text/plain:
schema:
type: string

With the @APIResponse annotations
responses:
"204":
description: Author not found
"200":
description: Author returned for a given index
content:
text/plain:
schema:
type: string

Advanced Customisation

If you have external clients accessing your endpoints, you want to add further information for
them to understand what each endpoint is about. Not just about the operations and return code,
but parameters, returned values, general documentation, etc. Fortunately, OpenAPI defines a rich
set of annotations you can use to customise the API documentation.

Figure 35 shows a BookResource REST endpoint that consumes and produces a Book class. Notice the
BookApplication which is a general class used to document the entire application and not just an
endpoint. OpenAPI lets you document the entire application: from the BookApplication to the Book.

182

@ BookResource

© getRandomBook(): Response @A lication
@ getAllBooks(): Response PP

© getBook(): Response

© createBook(): Response A
@ updateBook(): Response

© deleteBook(): Response

O id: Long
O title: String @ BookApplication
O isbn: String

O author: String

O price: BigDecimal
O description: String

Figure 35. REST application

Customising Applications

Having a documented contract for a given REST endpoint is not enough. It is also important to
document the entire application. The difference is that OpenAPI annotations are not just on the
endpoint itself, but instead on another Java class configuring the entire application (see the
BookApplication in Listing 124). To define a class that globally defines a JAX-RS application, the
BookApplication needs to extend the JAX-RS javax.ws.rs.core.Application class. This allows the
application and supplies additional meta-data. For example, the @0penAPIDefinition annotation.
This annotation is used to add extra information to the root document of the contract. It contains
several fields such as the description of the application, its version, the team to contact or the
license used.

183

Listing 124. Application Information

@0penAPIDefinition(
info = @Info(
title = "Book API",
description = "This API allows CRUD operations on books",
version = "1.0",
contact = @Contact(name = "@agoncal", url = "https://twitter.com/agoncal"),
license = @License(
name = "MIT",
url = "https://opensource.org/licenses/MIT")),
externalDocs = @ExternalDocumentation(url = "https://github.com/agoncal/agoncal-
fascicle-quarkus", description = "All the Quarkus fascicle code"),

tags = {
@Tag(name = "api", description = "Public API that can be used by anybody"),
@Tag(name = "books", description = "Anybody interested in books")
}
)
public class BookApplication extends Application {
}

The result is that the root of the OpenAPI v3 contract is now fully documented (see Listing 125). The
documentation is not about an endpoint per-se, but the entire application.

Listing 125. Root of the OpenAPI v3 Contract

openapi: 3.0.1
info:
title: Book API
description: This API allows CRUD operations on books
contact:
name: '@agoncal’
url: https://twitter.com/agoncal
license:
name: MIT
url: https://opensource.org/licenses/MIT
version: "1.0"
externalDocs:
description: A1l the MicroProfile fascicle code
url: https://github.com/agoncal/agoncal-fascicle-microprofile

A tag is extra information you can use to help organise your API endpoints. The array of @Tag
annotations can be applied at the method or class level (see Listing 126).

184

Listing 126. Tags in the Root of the Contract

tags:
- name: api
description: Public API that can be used by anybody
- name: books
description: Anybody interested in books
- name: BETA

description: This API is still in BETA. Use carefully

On the BookApplication you can also add information about the servers where the APIs can be
accessed. For example, in Listing 127 we use the server attribute to list the server, host and port.

Thanks to @ServerVariable, the host and port can be variables and can have default values.

Listing 127. Servers Information

servers = @Server(
description = "Vintage Store server 1",
url = "http://{host}.vintage-store/{port}",
variables = {
@ServerVariable(name = "host",
description = "Vintage Store main server",
defaultValue = "localhost"),
@ServerVariable(name = "port",

description = "Vintage Store listening port",

defaultValue = "80")
}
)
)
public class BookApplication extends Application {

}

The result is that the contract will have an extra servers section (see Listing 128).

Listing 128. Servers in the Root of the Contract

servers:

- url: http://{host}.vintage-store/{port}
description: Vintage Store server 1
variables:

host:

default: localhost

description: Vintage Store main server
port:

default: "80"

description: Vintage Store listening port

185

Customising Parameters

There are several ways to pass parameters to an endpoint operation. For example, JAX-RS uses the
@PathParam annotation to pass parameters to the URL path, or passes data straight into the request
body. Thanks to the OpenAPI @Parameter annotation in Listing 129, you can add a description to the
parameter to tell the client what this parameter is about.

Listing 129. Operation with Parameters

("/{id}")
public Response getBook((description = "Book identifier", required = true)
("id") Long id) {

As shown in Listing 130, thanks to @Parameter, the contract is enriched with a description and
expresses the fact that a parameter can be required or not.

Listing 130. Contract Describing Operation Parameters

/api/books/{id}:
get:
summary: Returns a book for a given identifier
parameters:
- name: id
in: path
description: Book identifier
required: true
schema:
format: int64
type: integer

For POST or PUT operations, Eclipse MicroProfile OpenAPI has a @RequestBody annotation to
document the data passed in the body (see Listing 131). In fact, like the @Parameter annotation,
@RequestBody takes a @Content that describes the content passed in or out. So it specifies the formats
passed in the body (here JSON) but also the type of the structure.

Listing 131. Operation with Request Body Reference

public Response createBook((
required = true,
content = (mediaType = APPLICATION_JSON,
schema = (implementation = Book.class)))
Book book, UriInfo urilInfo) {

Thanks to @Schema, the contract has a reference (the keyword ref) to #/components/schemas/Book. In
fact, the Book structure being a reference, it is used in Listing 132 as an input parameter to the
createBook() method as well as in Listing 134.

186

Listing 132. Operation with Request Body

post:

summary: Creates a book
requestBody:

content:

application/json:
schema:
$ref: '#/components/schemas/Book’
required: true

When the same annotation is used on a class and on a method, the values from the
o method instance will take precedence for that particular method. This commonly
occurs with the @Server and @Tag annotations, for example.

Customising Responses

A REST endpoint can return a datatype (e.g. String, int, Book, etc.) or a Response. In that case, if we
don’t specify the type of the response, the contract is unclear. @Schema can also be used on a
response, as seen in Listing 133. As the response may contain several books, schema type is set to
an array.

Listing 133. Operation Returning an Array

(summary = "Returns all the books from the database")
(responseCode = "200",
content (mediaType = APPLICATION_JSON,
schema = (implementation = Book.class, type = SchemaType.ARRAY)))
(responseCode = "204", description = "No books")
public Response getAl1Books() {

The result is that, now, the type of the response is a reference to Book (see Listing 134). Being of type
array and of media type application/json, the consumer of this API now knows what to expect
when invoking getAl11Books().

187

Listing 134. Array of References to Book

paths:
/api/books:
get:
summary: Returns all the books from the database
responses:
"204":
description: No books
"200":
description: OK
content:
application/json:
schema:
type: array
items:

$ref: '#/components/schemas/Book’

Within the @Schema annotation, we can reference the response or parameter objects with the
schema type. This can point to a Data Transfer Object (DTO), for example. Listing 135 represents the
Book class that is passed as a request body to the createBook() method (Listing 131) or as the
response of getAl1Books() (see Listing 133). As you can see, Book can also use the @Schema annotation
to add a description, or to specify which field is required and what the example values are.

Listing 135. Operation with Request Body

@Schema(name = "Book", description = "Book representation")
public class Book {

@Schema(required = true, readOnly = true)

public Long id;

@Schema(required = true)

public String title;

@Schema(required = true, example = "9798629562115")
public String isbn;

public String author;

public BigDecimal price;

public String description;

The Book class is then described in the schemas section of the OpenAPI v3 contract as shown in
Listing 136.

188

Listing 136. Book Reference Described in the Contract

components:
schemas:
Book:
description: Book representation
required:
- id
- 1isbn
- title
type: object
properties:
author:
type: string
description:
type: string
id:
format: int64
type: integer
readOnly: true
isbn:
type: string
example: "9798629562115"
price:
$ref: '#/components/schemas/BigDecimal’
title:
type: string

As you can see, Eclipse MicroProfile OpenAPI comes with a set of APIs and annotations to document
REST endpoints. Quarkus can generate this documentation either in YAML or JSON. These two
formats are human-readable and can also be used by external tools to generate stubs or proxies
such as Swagger Codegen, for example."”"! But if the application is made of several endpoints and
each endpoint exposes many APIs, then the OpenAPI contract can be huge and difficult to read.
Having a user interface instead could be very helpful. Quarkus solves this problem by integrating
Swagger Ul

6.2.3. Swagger Ul

When building APIs, developers want to analyse them quickly. Swagger UI is a great tool that
permits you to visualise and interact with your APIs."*” It's automatically generated from the
OpenAPI contract, with the visual documentation making it easy for back end implementation and
client side consumption.

The Quarkus smallrye-openapi extension comes with a Swagger Ul extension embedding a properly
configured Swagger Ul page. By default, Swagger UI is accessible at /swagger-ui (the OpenAPI
contract being accessible on /openapi). So, once an application is started, you can go to
http://localhost:8080/swagger-ui and play with the APIs. As shown in Figure 36, Swagger UI lets
you visualise the operations and schemas of the APIs, as well as interact with them.

189

http://localhost:8080/swagger-ui

® sz

/openapi
This API allows CRUD operations on books
@agoncal - Website
MIT
All the Quarkus fascicle code
ap| Public API that can be used by anybody v
books Anybody interested in books v
default o
GET /api/books Returns all the books from the database
No parameters
Responses ‘
Code Description Links
200 No links
OK
Media type
application/json v

Controls Accept header.

Example Value | Schema

"author”: "string”,

cri; : "string",

798629562115",

204 No links
No books

Figure 36. Swagger UI

6.2.4. Configuring SmallRye OpenAPI

By default, Quarkus scans all the classes of all the packages of your application to discover JAX-RS
endpoints and OpenAPI annotations. Eclipse MicroProfile OpenAPI comes with a set of properties
so you can include or exclude a list of packages to scan, as well as excluding classes. This can be
useful if you want to generate a contract only for certain REST endpoints. Table 36 is a subset of
standard configuration properties that every vendor must support.

Table 36. MicroProfile OpenAPI Configuration Properties

Property Description

mp.openapi.scan.disable Disables annotation scanning (default value is false)
mp.openapi.scan.packages List of packages to scan

mp.openapi.scan.classes List of classes to scan
mp.openapi.scan.exclude.packages List of packages to exclude from scans
mp.openapi.scan.exclude.classes List of classes to exclude from scans

190

Property Description

mp.openapi.servers List of global servers that provide connectivity
information

On top of the standard properties listed in Table 36, Quarkus adds a set of configuration properties
listed in Table 37. These properties let you change the default paths for the OpenAPI contract or
Swagger, as well as enabling Swagger in production, for example.

Table 37. Some Quarkus OpenAPI Configuration Properties

Property Default

quarkus.smallrye-openapi.path /openapi
The path at which to register the OpenAPI Servlet

quarkus.swagger-ui.path /swagger-u1
The path where Swagger Ul is available (/ is not allowed as it blocks the
application from serving anything else)

quarkus.swagger-ui.always-include false
If Swagger Ul should be included every time (by default it’s only included in
dev mode)

quarkus.swagger-ui.enable true
If Swagger UI should be enabled

6.3. JSON Binding

Most of the examples of REST endpoints examples that you've seen so far, consume or produce
JSON. In fact, a REST endpoint can consume or produce any kind of media type: from plain text, to
XML, images or PDFs. But JSON has become a common data format exchanged between
microservices. That’s why Quarkus implements the two MicroProfile specifications dealing with
JSON: JSON Binding and JSON Processing.

JSON Binding (JSON-B) is a standard binding layer for converting Java objects to/from JSON
documents."*” It defines a default mapping algorithm for converting existing Java classes to JSON
while enabling developers to customise the mapping process through the use of Java annotations.

The JSON Binding APIs are all defined under the javax.json.bind package. Table 38 lists the main
subpackages defined in JSON-B 1.0 (under the root javax. json.bind package)."*

Table 38. Main javax.json.bind Subpackages

Subpackage Description

root Root package of the JSON-B APIs

adapter APIs to define a custom mapping for a given Java type
annotation JSON-B mapping annotations

config Classes and interfaces to configure the mapping provider

serializer JSON-B internals for custom serialisers

191

Subpackage Description

spi Internal SPIs (Service Provider Interfaces) implemented by the provider

Along with APIs, JSON-B comes with a set of annotations. Table 39 lists a subset of the most
commonly used annotations.

Table 39. Main J[SON-B Annotations

Annotation Description

@JsonbDateFormat Customises the date format of a field
@JsonbProperty Allows customisation of a field name
@JsonbNumberFormat Customises the number format of a field
@JsonbTransient Prevents mapping of a field

To be able to bind JSON objects, you need JSON Binding. JSON-B comes with the RESTeasy extension
shown in Listing 137.

Listing 137. JSON-B Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jsonb</artifactId>
</dependency>

Jackson

Maybe you don’t know JSON-B but instead have heard of, or used, Jackson. Inspired by the
quality and variety of XML tooling, Jackson was created back in 2009 as a multi-purpose Java
library for processing JSON.'**! It is a high-performance JSON processor including the
streaming JSON parser / generator library and matching data-binding library (POJOs to and
from JSON).

JSON-B is analogous to Jackson, and in fact, Quarkus comes with a Jackson extension. This
fascicle uses JSON-B instead of Jackson because JSON-B is part of Eclipse MicroProfile. Just
make sure not to mix Jackson and JSON-B in the same project, since this might introduce
some unwanted bugs.

6.3.1. Understanding Binding

As shown in Figure 37, data binding is the process of defining the representation of a JSON
document into an object instance, and vice versa. So, deserialisation is the process of reading a
JSON document and constructing a tree of content objects, where each object corresponds to a part
of the JSON document. Thus the content tree reflects the document’s content. The inverse process to
deserialisation is serialisation. This is when the content of the object tree is written a JSON
document that reflects the tree’s content.

192

Person

I\

JSON Document

{ n "ne

"email": "j.rorri@me.com”,

"first_name": "James",

“last_name": "Rorrison”, deserialisation
"phone_number": "+44 1234 1234" [— - - - — — — Cusmmerl‘ Adress
"address"{ L serialisation |

"street":"21 Ritherdon Rd",
“city":"Brighton",
"country":"UK"

}
}

1)

Figure 37. Binding between a J[SON document and Java classes

6.3.2. Binding POJOs

So far you’ve seen how JPA maps objects to a relational database: it uses a default mapping
mechanism (a.k.a. programming by exception or convention over configuration) and gives you a set
of annotations to customise the default. OpenAPI works the same: an OpenAPI v3 contract is
generated based on default endpoint annotations, but Eclipse MicroProfile OpenAPI gives you a set
of annotations to add extra information to the contract if needed. The same occurs with JSON-B.

Default Binding

Default mapping is a set of rules used by JSON-B to map default objects without any annotations or
any configuration. For JSON-B, the default mapping rules are simple:

» Attribute names are bound to the same JSON key name (e.g. the title attribute is bound to the
title key).

 All the basic Java types (String, Integer, int, etc.), standard Java types (BigDecimal, URL, Optional,
etc.) or dates have their value bound to the JSON value. These values have to follow the RFC
7159 standard (the JSON Data Interchange Format) and be encoded in UTF-8."*

So let’s have a look at the default binding in a simple example. Listing 138 represents a Book object
from which I’'ve omitted the getters and the setters for clarity. As you can see, this object has several
attributes (title, price etc.) of different types (String, Float, Integer, and Boolean), a default
constructor, and getters and setters for each attribute.

193

Listing 138. Simple Book Class
public class Book {

private String title;

private Float price;

private String isbn;

private Integer nbOfPages;

private Boolean illustrations;
private String description;
private LocalDate publicationDate;

// Constructors, getters, setters

So how does this map to JSON? The answer is: thanks to default binding, the JSON-B runtime
deserialises the Book instances to end-up with the JSON document shown in Listing 139.

Listing 139. Default JSON Representation of a Book Object

{
"title": "H2G2",
"price": 12.5,
"isbn": "1-84023-742-2",
"nbOfPages": 354,
"illustrations": false,
"description": "Best Sci-fi book ever",
"publicationDate": "1999-04-28"

+

Customising Binding

Like what we saw previously with JPA or OpenAP], if you need to customise the default binding,
you use annotations. In JSON-B, you can add a binding annotation either on a field, getter or setter.
If the annotation is specified on a field, the binding is used both for serialisation and
deserialisation. If it annotates a getter, it is used only for serialisation, and used only for
deserialization if specified on a setter.

Listing 140 uses several JSON-B annotations on fields:
» @JsonbProperty is used to change the name of a particular property (e.g. book_title instead of the

default title). The nillable attribute switches on and off the serialisation of null values.

* By default, JSON-B uses ISO formats to serialise and deserialise dates and numbers. But
sometimes it’s required to override these settings. This can be done using @JsonbDateFormat and
@JsonbNumberFormat annotations. These two annotations take a parameter following the
java.time.format.DateTimeFormatter and java.text.DecimalFormat patterns.

* Also notice that the property description is annotated with @JsonbTransient, therefore, it will be
ignored by the JSON binding engine.

194

Listing 140. Customised Book Class
public class Book {

@JsonbProperty(value = "book_title", nillable = false)
private String title;

@JsonbNumberFormat("#0.00")

private Float price;

private String isbn;

@JsonbProperty(value = "nb_of_pages", nillable = true)
private Integer nbOfPages;

private Boolean illustrations;

@JsonbTransient

private String description;
@JsonbDateFormat("dd/MM/yyyy")

private LocalDate publicationDate;

// Constructors, getters, setters

When the Book object in Listing 140 is serialised into a JSON document it looks like the JSON in
Listing 141: the title has been renamed, the price and publication date have been formatted, and
the description does not appear in the document.

Listing 141. Custom JSON Representation of a Book

{
"book_title": "H2G2",
"price": "12.50",
"isbn": "1-84023-742-2",
"nb_of_pages": 354,
"illustrations": false,
"publicationDate": "28/04/1999"

Advanced Customisation

JSON-B also supports binding collections as well as inheritance. As you can see in Figure 38, the
class diagram represents a purchase order that has several relationships: a one-to-one relationship
with credit card and customer, as well as a one-to-many order lines. Customer inherits from the
abstract class Person.

195

@ Person

< firstName: String
< lastName: String

@ CreditCard

O number: String

O expiryDate: String

O controlNumber: Integer

O creditCardType: CreditCardType

@ PurchaseOrder

O id: Long
O date: LocalDate

© Customer

O email: String
O phoneNumber: String

@ OrderLine

O item: String
O unitPrice: Double
O quantity: Integer

Figure 38. Binding complex object graphs

As complex as this class diagram looks, JSON-B will apply the same binding mechanisms to all the
classes. It will also cascade the serialisation/deserialisation from the root class to the child classes.
JSON-B supports binding arrays, as well as Java collections (e.g. Collection, Map, Set, etc.). Listing 142
represents the root class PurchaseOrder with all its relationships.

Listing 142. Purchase Order with Relationships
public class PurchaseOrder {

private Long 1id;

private LocalDate date;
@JsonbProperty("purchase_order_content")
private List<OrderLine> orderLines;
@JsonbProperty("credit_card")

private CreditCard creditCard;

private Customer customer;

// Constructors, getters, setters

Serialising a purchase order results in a more complex JSON document (see Listing 143). As you can
see, the purchase_order_content is an array of order lines. credit_card and customer are nodes in the
JSON document representing the Customer and CreditCard one-to-one relationships. And the

196

customer node inherits from the attributes of Person (firstName and lastName).

Listing 143. JSON Representation of a Purchase Order

{
"id": 1234,
"date": "2019-12-07",
"purchase_order_content": [
{
"item": "H2G2",
"quantity": 1,
"unit_price": 23.5
b
{
"item": "Harry Potter",
"quantity": 2,
"unit_price": 34.99
}
P
"credit_card": {
"control_number": 372,
"expiry_date": "10/23",
"number": "2156 7655 1234 9876",
"type": "VISA"
}

ustomer": {

"email": "j.rorri@me.com",
"first_name": "James",

"last _name": "Rorrison",
"phone_number": "+44 1234 1234"

197

JAX-B

There is an XML equivalent called JAX-B (Java Architecture for XML Binding) that does the
binding between an XML document and a Java object. To have XML binding in Quarkus, you
first need to add the quarkus-resteasy-jaxb Maven dependency. Then, you need to annotate
your POJOs with JAX-B annotations such as:

public class (D {
}

And if you need your RESTful web service to produce XML, then it’s just a matter of using the
appropriate media type:

(MediaType.APPLICATION_XML)
public CD getRandomCD() {
return service.findRandomBook();

}

6.3.3. Serialising and Deserialising

Serialisation is when the content of an object tree is written to a JSON document, and
deserialisation is the inverse, the process of reading a JSON document and constructing an object
tree. JSON-B has an API to programmatically serialise and deserialise content. But the beauty of it is
the integration with other technologies, such as JAX-RS, which makes serialisation and
deserialisation transparent.

Programmatic Serialisation and Deserialisation

The main entry point in JSON-B is the javax.json.bind.Jsonb API. It provides a facade over the JSON
Binding operations. As seen in Listing 144, an instance of Jsonb is created using a JsonbBuilder. It
provides a toJson() method to serialise Java objects to a String and deserialises them back with the
fromJson() method.

198

Listing 144. Serialising and Deserialising JSON using an API

// Creates a book instance
Book book = new Book().title("H2G2").price(12.5F).isbn("1-84023-742-2");

// Creates Jsonb using a builder
Jsonb jsonb = JsonbBuilder.create();

// Serialises
String json = jsonb.toJson(book);

// Deserialises back
book = jsonb.fromJson("{\"isbn\":\"1-84023-742-2\",\"price\":12.5,\"title\":\"H2G2\"}
", Book.class);

In Listing 144, the toJson() method serialises a Book object to a String. If you want to return this
String from a JAX-RS REST endpoint, you have two possibilities as shown in Listing 145: you either
return a String (getBookAsString()) or return a Response and embed the String to it
(getBookAsResponseString()).

Listing 145. Serialising JSON in a REST Endpoint

(APPLICATION_JSON)
public String getBookAsString() {

Book book = new Book().title("H2G2").price(12.5F).isbn("1-84023-742-2");
Jsonb jsonb = JsonbBuilder.create();
String json = jsonb.toJson(book);

return json;

(APPLICATION_JSON)
public Response getBookAsResponseString() {

Book book = new Book().title("H2G2").price(12.5F).isbn("1-84023-742-2");
Jsonb jsonb = JsonbBuilder.create();
String json = jsonb.toJson(book);

return Response.ok(json).build();

Automatic Serialisation and Deserialisation

JSON-B is nicely integrated with JAX-RS. If a REST endpoint produces JSON
(MediaType.APPLICATION_JSON) and returns an object, this object is automatically serialised to JSON. If
this object is annotated with JSON-B annotations, then the binding is done transparently, no need to

199

use the Jsonb API. As you can see in Listing 146, the method getBook() returns a Book object. The
method getBookAsResponse() embeds the Response. In terms of output, both methods are similar:
they both return a JSON representation of a Book object.

Listing 146. Automatic Serialisation and Deserialisation in JAX-RS

(APPLICATION_JSON)
public Book getBook() {

Book book = new Book().title("H2G2").price(12.5F).isbn("1-84023-742-2");

return book;

}

(APPLICATION_JSON)
public Response getBookAsResponse() {

Book book = new Book().title("H2G2").price(12.5F).isbn("1-84023-742-2");

return Response.ok(book).build();
+

Creating an instance of Jsonb with a builder on each request is very expensive. It’s better to obtain
an instance of Jsonb through CDI injection as seen in Listing 147.

Listing 147. Injecting the Jsonb Entry Point

("/api/vinyl")
public class VinylResource {

Jsonb jsonb;
(APPLICATION_JSON)
public String getVinyl() {
Vinyl vinyl = new Vinyl().title("Horses").artist("Patti Smith")

.musicCompany("Arista Records");
return jsonb.toJson(vinyl);

}
}

6.4. JSON Processing

JSON-B allows you to convert JSON from and to Java objects. Thanks to annotations you can even
customise the binding and produce or consume JSON that can be slightly different from the object

200

structure. But sometimes you need to generate, build, read and write JSON that has nothing to do
with a Java object. That’s when JSON-P comes along. Like JSON-B, JSON-P is part of MicroProfile and
therefore included in Quarkus.

JSON Processing (JSON-P), is a specification that allows JSON processing in Java."”” The processing
includes mechanisms to parse, generate, transform, and query JSON data. JSON-P provides a
standard to build a Java object in JSON using an API similar to DOM for XML. At the same time, it
provides a mechanism to produce and consume JSON by streaming in a manner similar to StAX
(Streaming API for XML) for XML."*

The JSON Processing APIs are all defined under the main javax.json package, either at the root, or
under the other subpackages. Table 40 lists the main subpackages defined in JSON-P 1.1 (under the
root javax.json package)."””

Table 40. Main javax.json Subpackages

Subpackage Description

root Root package of the JSON-P APIs

stream Provides a streaming API to parse and generate JSON

spi Internal SPIs (Service Provider Interfaces) implemented by the provider

JSON-P has a main javax.json.Json APIL, which is a class for creating JSON processing objects. These
APIs are listed in Table 41.

Table 41. Main JSON-P APIs

API Description

Json Facade for creating JSON processing objects

JsonObject Represents an immutable JSON object value

JsonArray Represents an immutable JSON array (an ordered sequence of zero or more values)
JsonWriter Writes a JSON object or array structure to an output source

JsonReader Reads a JSON object or an array structure from an input source

JsonParser Provides forward, read-only access to JSON data in a streaming way

JsonGenerator Writes JSON data to an output source in a streaming way

JSON-P and JSON-B share the same extension. So with the extension shown in Listing 148 you can
do bind and process JSON.

Listing 148. JSON-P Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jsonb</artifactId>
</dependency>

201

6.4.1. Understanding Processing

JSON-P provides two different programming models to process JSON documents: the Object Model
API, and the Streaming API.

Similar to the DOM API for XML, the Object Model API provides classes to model JSON objects and
arrays (using the JsonObject and JsonArray APIs) in a treelike structure that represents JSON data in
memory. As with the DOM API, the Object Model API provides flexible navigation and queries to the
whole content of the tree. It also allows you to read and write JSON files thanks to the JsonReader
and JsonWriter APISs.

The streaming API (under the stream package) is a low-level API designed to process large amounts
of JSON data efficiently. The Streaming API is much like the StAX API for XML. It provides a way to
stream JSON without maintaining the whole document in memory. The streaming API provides an
event-based parser based on a pull parsing streaming model (JsonParser), enabling the user to
process or discard the parser event, and ask for the next event (pull the event). Thanks to the
JsonGenerator, you can also generate and write JSON by streaming.

6.4.2. Building JSON

The object and array structures in JSON are represented by the javax.json.JsonObject and
javax.json.JsonArray classes. The API lets you navigate and query the tree structure of data.

JsonObject provides a Map view to access the unordered collection of zero or more name/value
pairs. Similarly, JsonArray provides a list view to access the ordered sequence of zero or more
values. The API uses the builder patterns to create the tree representation of JsonObject and
JsonArray through the javax.json.JsonObjectBuilder and javax.json.JsonArrayBuilder interfaces.

Listing 149 shows how to build a JSON object representing a customer. As you can see, the Json class
is the facade used to create a JsonObjectBuilder object that will end up building a JsonObject (using
the final build() method). JsonObject provides a map view to the JSON object name/value mappings.
Therefore, invoking the add() method will add a name/value to the JSON object.

Listing 149. Building a JSON Object

(APPLICATION_JSON)
public JsonObject getCustomer() {

JsonObject customer = Json.createObjectBuilder()
.add("firstName", "Antonio")
.add("lastName", "Goncalves")
.add("email", "agoncal.fascicle@gmail.com")
.build();

return customer;

}

Notice that the REST endpoint in Listing 149 returns the JsonObject. In fact, if you print this JSON
object you get a valid JSON document, so you can return it straight from a JAX-RS endpoint or use it
as an HTTP request body:

202

{

"firstName": "Antonio",
"lastName": "Goncalves",
"email": "agoncal.fascicle@gmail.com"

}

The same logic applies to an array. In Listing 150, we build an array of phone numbers and send
them back. Again, we use the Json class to create a JsonArrayBuilder object so we can build a
JsonArray.

Listing 150. Building a JSON Array

(APPLICATION_JSON)
public JsonArray getPhones() {
JsonArray phones = Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "mobile")
.add("number", "+33 123 456"))
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number", "+33 646 555"))
.build();
return phones;

}

The result is a JSON array with two phone numbers which looks like the following JSON document:

[
{
"type": "mobile",
"number": "+33 123 456"
I
{
"type": "home",
"number": "+33 646 555"
}
]

And of course, you can then mix JSON objects and JSON arrays. Listing 151 shows how you can
build a more complex JSON document with nodes and arrays.

203

Listing 151. Building a Complex JSON Object

@GET
@Produces(APPLICATION_JSON)
public JsonObject getCustomerDetails() {
JsonObject customer = Json.createObjectBuilder()
.add("firstName", "Antonio")
.add("1lastName", "Goncalves")
.add("email", "agoncal.fascicle@gmail.com")
.add("address", Json.createObjectBuilder()
.add("street", "21 Ritherdon Rd")
.add("city", "Brighton")
.add("country", "UK"))
.add("phoneNumbers", Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "mobile")
.add("number", "+33 123 456"))
.add(Json.createObjectBuilder()
.add("type", "home")
.add("number", "+33 646 555")))
.build();
return customer;

}

If you look carefully at Listing 151, youw’ll understand the pattern used. You always start with the
Json facade to either create an ObjectBuilder or ArrayBuilder. You then add some key/values to the
JsonObject or JsonArray (using the add() method), and you then build the entire document (invoking
the build() method). Listing 152 shows the end result of the JSON document built in Listing 151.

204

Listing 152. Complex JSON Object

{

"firstName": "Antonio",
"lastName": "Goncalves",
"email": "agoncal.fascicle@gmail.com",
"address": {
"street": "21 Ritherdon Rd",
"city": "Brighton",
"country": "UK"
I
"phoneNumbers": [
{
"type": "mobile",
"number": "+33 123 456"

Iy
{
"type": "home",
"number": "+33 646 555"
}

6.4.3. Reading and Writing JSON

A JsonObject can also be created from an input source (such as an InputStream or a Reader) using the
interface javax.json.JsonReader. The code in Listing 153 shows how to read and create a JsonObject
from a String and a file using the interface JsonReader. JsonReader provides the general read()
method to read any javax.json.JsonStructure subtype (e.g. JsonObject or JsonArray).

Listing 153. Reading JSON from a File

StringReader string = new StringReader("{\"hello\":\"world\"}");
JsonReader reader = Json.createReader(string);

FileReader file = new FileReader("src/main/resources/customer.json");
JsonReader reader = Json.createReader(file);
JsonObject jsonObject = reader.readObject();

Once the getJsonObject() method is called, it returns a JsonObject. Then, you can navigate in this
JsonObject to get any value, any JSON array, or, any other embedded JSON object. For example, the
code in Listing 154 gets the String value of firstName, the object address or the array of phone
numbers. Notice that when you get the String value of a JSON key, the API returns a JsonString.
Depending on the datatype, it can also return a JsonNumber if the value is a number.

205

Listing 154. Navigating the J[SON Object

JsonString firstName = jsonObject.getJsonString("firstName");
JsonObject address = jsonObject.getJsonObject("address");
JsonArray phones = jsonObject.getJsonArray("phoneNumbers");

// Getting the value of a JsonString
String firstName = jsonObject.getJsonString("firstName").getString();

Similarly, JsonObject and JsonArray can be written to an output source (such as OutputStream or
Writer) using the class javax.json.JsonWriter. The builder method Json.createWriter() can create a
JsonWriter for different outputs. In Listing 155, the customer JSON object is written to a file.

Listing 155. Writing a JSON Object to a File

File file = new File("src/main/resources/customer.json");
try (OutputStream outputStream = new FileOutputStream(file);
JsonWriter jsonWriter = Json.createWriter(outputStream)) {

jsonWriter.write(customer);

}

Json.createliriter() is a simple way to have a writer. But if you need to configure a writer, you can
instead use the Json.createllriterFactory() passing a configuration as a parameter, and then obtain
a JsonlWiriter. As an example, Listing 156 configures the writer so it can write a JSON object to a file
in pretty-print.

Listing 156. Writing a Formatted J[SON Object to a File

Map<String, Boolean> config = new HashMap<>();
config.put(JsonGenerator .PRETTY_PRINTING, true);
JsonWriterFactory writerFactory = Json.createWriterFactory(config);

File file = new File("src/main/resources/customer.json");
try (OutputStream outputStream = new FileOutputStream(file);
JsonWriter jsonWriter = writerFactory.createWriter(outputStream)) {

jsonWriter.write(customer);

}

6.4.4. Streaming JSON

The Object Model API that we just saw, keeps the JSON structure in memory. So, if your use case is to
process big JSON objects (which might not fit into memory), you should have a look at the
Streaming API. Streaming works for both parsing (JsonParser) and generating (JsonGenerator) JSON
objects.

The Streaming API (package javax.json.stream) facilitates parsing JSON via streaming with forward
and read-only access. It provides the javax.json.stream.JsonParser interface to parse a JSON

206

document. The entry point is the javax.json.Json factory class, which provides a createParser()
method that returns a javax.json.stream.JsonParser from a specified input source (such as a Reader
or an InputStream). Listing 157 shows how to create a JSON parser without any configuration, or, by
passing properties to the createParserFactory() method.

Listing 157. Getting a JSON Parser

StringReader string = new StringReader ("{\"hello\":\"wor1ld\"}");
JsonParser parser = Json.createParser(string);

// Configuring the parsing factory

StringReader string = new StringReader ("{\"hello\":\"wor1ld\"}");
JsonParserFactory factory = Json.createParserFactory(config);
JsonParser parser = factory.createParser(string);

The JsonParser offers a rather low-level access to the JSON object based on a pull parsing streaming
model. Meaning that the parser generates events when a JSON name/value is reached or the
beginning/end of an object/array is read. Table 42 lists all of the events triggered by the parser.

Table 42. JSON Parsing Events

Event
START_OBJECT

END_OBIJECT
START_ARRAY
END_ARRAY
KEY_NAME
VALUE_STRING
VALUE_NUMBER
VALUE_TRUE
VALUE_FALSE
VALUE_NULL

Description

Event for start of a JSON object (fired when { is reached)
Event for end of an object (fired when } is reached)

Event for start of a JSON array (fired when [is reached)
Event for end of an array (fired when] is reached)

Event for a name in name(key)/value pair of a JSON object
Event for a string value

Event for a number value

Event for a true value

Event for a false value

Event for a null value

Let’s first take a simple example to explain how events work. The code in Listing 158 creates a
parser based on a very simple JSON document that contains only one key hello and one value world.
Then, the parser loops (parser.hasNext()) until reaching the last event of the document (END_OBJECT)
and displays the start and the end of the JSON object, the keys and the values.

207

Listing 158. Getting a JSON Parser

StringReader string = new StringReader("{\"hello\":\"world\"}");
JsonParser parser = Json.createParser(string);

while (parser.hasNext()) {
JsonParser.Event event = parser.next();
switch (event) {
case START_OBJECT:
case END _OBJECT:
System.out.println(event.toString());
break;
case KEY_NAME:
System.out.print("KEY_NAME " + parser.getString() + " - ");
break;
case VALUE_STRING:
System.out.println("VALUE_STRING " + parser.getString());
break;

The result of the code in Listing 158 is displayed below. A START_OBJECT event is sent when the root
object is detected. Then, the KEY_NAME event with the value hello is followed by the VALUE_STRING
event world. Finally, the END_OBJECT is thrown once the parser has reached the end of the JSON

document.

START_OBJECT
KEY_NAME hello - VALUE_STRING world
END_OBJECT

This technique of listening to events is very low-level, but it allows you to parse huge JSON
documents without filling the memory. For example, the class in Listing 159 parses a JSON file and
extracts the customers' email. The parser moves forward until it encounters the email key (event

KEY_NAME).

208

Listing 159. Parsing Emails

FileReader file = new FileReader("src/main/resources/customer.json");
JsonParser parser = Json.createParser(file);

while (parser.hasNext()) {
JsonParser.Event event = parser.next();
switch (event) {
case KEY _NAME:
if (parser.getString().equals("email")) {
parser.next();
System.out.println("Email:
}

break;

+ parser.getString());

By using a switch, you can determine the type of event you want (KEY_NAME in Listing 159) and
process the JSON based on the event. While the JsonParser streams the JSON, you can use the
getString() method to get a String representation for each name (key) and value depending on the
state of the parser.

The JsonParser parses a JSON object via streaming, whereas the javax.json.stream.JsonGenerator
allows the writing of JSON to a stream by writing one event at a time. The class in Listing 160 uses
the createGenerator() method from the main javax.json.Json factory to get a JsonGenerator to
generate some JSON. The generator writes name/value pairs in JSON objects and JSON arrays.

209

Listing 160. Generating a Customer

StringWriter writer = new StringWriter();
JsonGenerator generator = Json.createGenerator(writer);
generator
.writeStartObject()
write("firstName", "Antonio")
write("lastName", "Goncalves")
.write("email", "agoncal.fascicle@gmail.com")
.writeStartObject("address")
write("street", "21 Ritherdon Rd")
write("city", "Brighton")
write("country”, "UK")
.writeEnd()
.writeStartArray("phoneNumbers")
.writeStartObject()
write("type", "mobile")
write("number", "+33 123 456")
writeEnd()
.writeStartObject()
write("type", "home")
write("number", "+33 646 555")
.writeEnd()
writeEnd()
.writeEnd()
.close();

While the writeStartObject() method writes a JSON start object character ({), the writeStartArray()
method is used to write a JSON start array character ([). Each opened context must be terminated
using the writeEnd() method. After writing the end of the current context, the parent context
becomes the new current context.

The writeStartObject() method is used to start a new child object context and the writeStartArray()
method starts a new child array context. Both methods can be used only in an array context or
when a context is not yet started and both can only be called when no context is started. A context
is started when one of these methods is used. The JsonGenerator class provides other methods, such
aswrite(), to write a JSON name/value pair in the current object context or to write a value in the
current array context. The close() method closes the generator and frees any associated resources.

6.5. Summary

This chapter was about the HTTP microservices. We first looked at Java API for RESTful Web
Services which allows us to expose and consume RESTful web services. JAX-RS has an easy API to
expose endpoints mostly based on annotations: @Path to define URIs, @Consumes and @Produces to pick
up the right media type and @GET, @POST, @PUT, @Delete to interact with the resource. JAX-RS also
comes with a Client API to consume RESTful web services. This Client API is used under the hood in
the Eclipse MicroProfile REST Client that you will see in next chapter.

When exposing web services, you usually need to document them: what the available endpoints

210

are, which URIs are accessible, which methods, what the returned status codes are, and so on.
Eclipse MicroProfile OpenAPI is part of MicroProfile and integrates with JAX-RS to generate some
basic documentation. Thanks to the OpenAPI, with only a small set of annotations (@0peration,
@APIResponse, @Schema, etc.) you can add extra information to your OpenAPI v3 contract.

And because JSON is such a common data format, MicroProfile includes two specifications to
handle it. JSON Binding can serialise an object tree into JSON and deserialise it back with no effort.
Thanks to a few annotations (@JsonbProperty, @JsonbDateFormat, @JsonbTransient, etc.), you can
customise the binding so you get the JSON you really need. And because binding is not always
enough, JSON-P gives us some APIs to build, read, write and stream JSON.

Now that we know how to build and expose HTTP microservices, the next chapter, Communication
and Fault Tolerance, will focus on how microservices can communicate with each other. One thing
is invoking a microservice with the Eclipse MicroProfile REST Client, and the other thing is dealing
with communication failure thanks to Eclipse MicroProfile Fault Tolerance.

[140] JAX-RS https://jcp.org/en/jsr/detail?id=370

[141] JAX-RS GitHub https://github.com/eclipse-ee4j/jaxrs-api

[142] Entity Provider https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest/message-body-workers.html
[143] OpenAPI Specification https://github.com/OAI/OpenAPI-Specification
[144] OpenAPI https://microprofile.io/project/eclipse/microprofile-open-api
[145] OpenAPI GitHub https://github.com/eclipse/microprofile-open-api
[146] Swagger https://en.wikipedia.org/wiki/Swagger_(software)

[147] RAML https://en.wikipedia.org/wiki/RAML_(software)

[148] OpenAPI Initiative https://www.openapis.org

[149] OpenAPI Specification https://github.com/OAI/OpenAPI-Specification
[150] CommonMark https://commonmark.org

[151] Swagger-Codegen https://github.com/swagger-api/swagger-codegen
[152] Swagger UI https://swagger.io/tools/swagger-ui

[153] JSON-B https://jcp.org/en/jsr/detail?id=367

[154] JSON-B GitHub https://github.com/eclipse-ee4j/jsonb-api

[155] Jackson https://github.com/FasterXML/jackson

[156] RFC 7159 https://tools.ietf.org/html/rfc7159

[157] JSON-P https://jcp.org/en/jsr/detail?id=374

[158] StAX https://en.wikipedia.org/wiki/StAX

[159] JSON-P GitHub https://github.com/eclipse-ee4j/jsonp

211

https://jcp.org/en/jsr/detail?id=370
https://github.com/eclipse-ee4j/jaxrs-api
https://eclipse-ee4j.github.io/jersey.github.io/documentation/latest/message-body-workers.html
https://github.com/OAI/OpenAPI-Specification
https://microprofile.io/project/eclipse/microprofile-open-api
https://github.com/eclipse/microprofile-open-api
https://en.wikipedia.org/wiki/Swagger_(software
https://en.wikipedia.org/wiki/RAML_(software
https://www.openapis.org
https://github.com/OAI/OpenAPI-Specification
https://commonmark.org
https://github.com/swagger-api/swagger-codegen
https://swagger.io/tools/swagger-ui
https://jcp.org/en/jsr/detail?id=367
https://github.com/eclipse-ee4j/jsonb-api
https://github.com/FasterXML/jackson
https://tools.ietf.org/html/rfc7159
https://jcp.org/en/jsr/detail?id=374
https://en.wikipedia.org/wiki/StAX
https://github.com/eclipse-ee4j/jsonp

Chapter 7. Communication and Fault
Tolerance

The previous chapter presented the technologies around HTTP Microservices. The main one is Java
API for RESTful Web Services which allows us to expose and invoke REST endpoints. Often those
endpoints produce and/or consume JSON. For that, Quarkus integrates with JSON Binding and JSON
Processing. Eclipse MicroProfile OpenAPI is used to document an endpoint so external clients know
how to invoke it.

But in a microservice architecture, there is not one microservice but several, and they need to talk
to each other. They can use messaging (as you will see in Chapter 8) or HTTP. When we need an
HTTP microservice to invoke another one, we can use Eclipse MicroProfile REST Client. It is based
on the JAX-RS Client API and simplifies HTTP invocations. But when this invocation is synchronous,
we quickly realise that our microservices need to handle communication failure. That’s when
Eclipse MicroProfile Fault Tolerance becomes very useful. Microservices can also be accessed by
user interfaces, browsers, mobile devices, etc. In this case, we need to deal with CORS issues. And
once again, Quarkus is here to help.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/communication

7.1. CORS

In a microservice architecture, you easily end-up with several REST endpoints interacting with each
other, crossing different servers, different domains. And you usually want to have a graphical
interface so your users can interact with the system. That’s when you will hit CORS! Cross-origin
Resource Sharing (CORS) is a mechanism that allows restricted resources on a web page to be
requested from another domain outside the domain from which the first resource was served.'""”

7.1.1. Understanding CORS

In a nutshell, CORS allows web clients to make HTTP requests to servers hosted on different origins.
By origin, we mean a combination of the URI scheme, hostname, and port number. It is a
mechanism that uses additional HTTP headers to tell browsers to give a web application running at
one origin, access to selected resources from a different origin. For example, if the front-end
JavaScript code in Figure 39 is served from https:/domain-a.com and makes a request on
https://domain-b.com, then the browsers restrict the access. For security reasons, a web application
can only request resources from the same origin the application was loaded from, unless the
response from other origins includes the right CORS headers. CORS defines a way in which a
browser and server can interact to determine whether it is safe to allow the cross-origin request.

212

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/communication
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/communication
https://domain-a.com
https://domain-b.com

(—_
Browser B Domain A

A1

v [
Domain B >| Domain C

Figure 39. Crossing origins

The specification for CORS is included as part of the WHATWG’s Fetch Living Standard (Web
Hypertext Application Technology Working Group)."*" This specification describes how CORS is
currently implemented in browsers.

7.1.2. Configuring CORS

To solve this CORS issue, Quarkus comes with a CORS filter which intercepts all incoming HTTP
requests. It can be enabled in the Quarkus configuration file,
src/main/resources/application.properties. If enabled and an HTTP request is identified as cross-
origin, the CORS policy and headers will be applied before passing the request on to its actual
target.

quarkus.http.cors=true

If you need to be more precise in terms of controlling the origin access, Quarkus comes with a few
extra configuration properties (see Table 43).

Table 43. Some Quarkus CORS Configuration Properties

Property Default

quarkus.http.cors.origins
Comma-separated list of origins allowed for CORS. The filter allows any origin if this is
not set.

quarkus.http.cors.methods
Comma-separated list of HTTP methods allowed for CORS. The filter allows any method
if this is not set.

quarkus.http.cors.headers
Comma-separated list of HTTP headers allowed for CORS. The filter allows any header if
this is not set.

213

Property Default

quarkus.http.cors.exposed-headers
Comma-separated list of HTTP headers exposed in CORS.

quarkus.http.cors.access-control-max-age
The duration that indicates how long the results of a preflight request can be cached.
This value will be returned in an Access-Control-Max-Age response header.

The following is a configuration that allows CORS for all domains, all HTTP methods, and all
common headers:

quarkus.http.cors.origins=*
quarkus.http.cors.methods=GET,PUT,POST,DELETE
quarkus.http.cors.headers=accept, authorization, content-type

But you might want to be more specific and set the list of allowed origins to the domain asking to
connect remotely:

quarkus.http.cors.origins=https://domain-b.com

7.2. Eclipse MicroProfile REST Client

In the previous chapter, you saw that JAX-RS comes along with a Client API, meaning that JAX-RS
has all the required APIs to expose and consume RESTful web services. Eclipse MicroProfile REST
Client provides a type safe approach using proxies and annotations for invoking RESTful services
over HTTP."*” The Eclipse MicroProfile REST Client builds upon the JAX-RS 2.1 APIs for consistency
and ease-of-use.

The Eclipse MicroProfile REST Client APIs and annotations are all defined under the main
org.eclipse.microprofile.rest.client package, either at the root, or under the other subpackages.
Table 44 lists the main subpackages defined in Eclipse MicroProfile REST Client version 1.4 (under
the root org.eclipse.microprofile.rest.client package)."*”

Table 44. Main org.eclipse.microprofile.rest.client Subpackages

Subpackage Description

root Root package of the REST Client APIs

annotation APIs for annotating client interfaces

ext APIs for extending REST Client functionality

inject APIs to aid in CDI-based injection

spi Internal SPIs (Service Provider Interfaces) implemented by the provider

Along with APIs, REST Client comes with a set of annotations. Table 45 lists a subset of the most
commonly used annotations.

214

Table 45. Main REST Client Annotations

Annotation Description
@RegisterRest(lient A marker annotation to register a rest client at runtime
ORestClient CDI qualifier used to indicate that this injection point is meant to use an

instance of a type safe REST Client

To be able to invoke a remote REST endpoint you need to add the REST Client extension to your
pom.xml as shown in Listing 161.

Listing 161. REST Client Extension

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-rest-client</artifactId>
</dependency>

7.2.1. Understanding RESTful Web Services Invocation

One microservice does not make a microservice architecture. A microservice architecture is about
several microservices talking to each other (see Figure 40). For that, the client of an HTTP
microservice needs to handle the HTTP communication. That means, opening a connection to the
remote service, sending an HTTP request and processing the response.

(— - —

\ <|- 17 Purchase
Inventory urc
> Order

Figure 40. Microservices invoking each other

7.2.2. Invoking RESTful Web Services

The Eclipse MicroProfile REST Client builds on JAX-RS 2.0 client APIs to provide a type safe
approach for invoking RESTful services. This means writing client applications with more model-
centric code and less HTTP plumbing.

215

Client Proxies

One of the central ideas in Eclipse MicroProfile REST Client is the good-old distributed object
communication that we find implemented in Java RMI, for example. To invoke a remote object, we
use a proxy. Consider the RESTful endpoint in Listing 162. As you can see, this is a simple JAX-RS
web service that generates ISBN numbers. There is only one method, accessible through an HTTP
GET, and returns an IsbnNumber object (made up of a GS1 code and an ISBN 13 number).

Listing 162. Endpoint Taking a Query Parameter and Returning an Object

("/api/isbn")
(MediaType.APPLICATION_JSON)

public class IsbnResource {

public IsbnNumber generateIsbn(
("true")
("separator") boolean separator) {

IsbnNumber isbnNumber = new IsbnNumber();
isbnNumber.isbn13 = new Faker().code().isbn13(separator);
isbnNumber.gs1 = new Faker().code().isbnGs1();
return isbnNumber;

}

}

public class IsbnNumber {
public String gs1;
public String isbn13;

}

Reading Listing 162, you might wonder what Faker is. The Java Faker library is a

o port of Ruby’s faker gem that generates fake data.'* It's useful when youre
developing a project and need some pretty data for a showcase. Here, we use it to
generate some random data.

This web service takes a query parameter. So, depending if you pass true or false in the query, you
get an ISBN number with or without separators. Below you can see both cURL invocations:

$ curl 'http://localhost:9081/api/isbn?separator=true’
{"gs1":"979","isbn13":"978-0-9883021-6-7"}

$ curl "http://localhost:9081/api/isbn?separator=false’
{"gs1":"979","isbn13":"9791935525065" }

How can a third-party microservice invoke such an endpoint? Well, using an OpenAPI v3 contract.
As you saw in Chapter 6, Eclipse MicroProfile OpenAPI is integrated with JAX-RS. So OpenAPI can
generate the contract defined in Listing 163 just by scanning the JAX-RS annotations.

216

Listing 163. OpenAPI Contract

openapi: 3.0.1
info:

title: Generated API

version: "1.0"
paths:

/api/isbn:

get:
parameters:

- name: separator
in: query
schema:

default: true
type: boolean
responses:

"200":
description: OK
content:

application/json:
schema:
$ref: '#/components/schemas/IsbnNumber'
components:
schemas:
IsbnNumber :
type: object
properties:

gsl:
type: string

isbn13:
type: string

With the OpenAPI contract in Listing 163, the built-in JAX-RS Client API and the JSON-P integration,
you can easily access the IsbnResource with the few lines of code in Listing 164.

Listing 164. OpenAPI Contract

JsonObject isbnNumber = ClientBuilder
.newClient()
.target("http://localhost:9081/api/isbn?separator=true")
.request()
.get(JsonObject.class);

String gs1 = isbnNumber.getString("gs1");
String isbn13 = isbnNumber.getString("isbn13");

The call in Listing 164 is not particularly onerous, but it lacks a more object-typed syntax. And that’s
where Eclipse MicroProfile REST Client can help. Instead of using an OpenAPI v3 contract or
parsing JSON with JSON-B, Eclipse MicroProfile REST Client lets you define a contract as Java
interfaces. Using the Eclipse MicroProfile REST Client is as simple as creating an interface using the

217

proper JAX-RS and MicroProfile annotations.

First, we start off with an interface that proxies calls to the remote service. The methods of the
interface should match the RESTful APIs of the endpoint (annotations, return type, list of arguments
and exception declarations). In fact, the client interface is so similar to the web service itself that
you can basically copy/paste the resource and make it an interface. So if we want to access the
endpoint in Listing 162, we create an interface that looks like Listing 165.

Listing 165. Client Interface

("/api/isbn")
(MediaType.APPLICATION_JSON)

public interface IsbnProxy {

IsbnNumber generateIsbn(("separator") boolean separator);

}

The purpose of the annotations in Listing 165 is the following:

* @RegisterRest(lient allows Quarkus to know that this interface is meant to be available for CDI
injection as a REST Client.

» @Path, @GET and @QueryParam are the standard JAX-RS annotations used to define how to access
the service.

* @Produces defines the expected content-type. While @Consumes and @Produces are optional as auto-
negotiation is supported, it is recommended to annotate your interface with them to define
precisely the expected content-types.

By using a Java interface as the contract, you will be able to have direct access to the methods
within the client and issues with type or mistakes not following the contract won’t happen
anymore. Eclipse MicroProfile REST Client automatically generates a client instance based on what
is defined in the interface. The sequence of invocation is better described in the diagram shown in
Figure 41. The client (here BookResource) invokes a method on the Java interface IsbnProxy and
Eclipse MicroProfile REST Client does the work of sending an HTTP request to the remote endpoint
IsbnResource. It will handle all the networking and marshalling, leaving our code clean of such
technical details.

218

Book Microservice ISBN Microservice

«@Path» «@RegisterRestClient» «@Path»

BookResource IsbnProxy IsbnResource

generatelsbn()

HTTP GET /api/isbn

|

>
i >
|

«@Path» «@RegisterRestClient» «@Path»

BookResource IsbnProxy IsbnResource

Figure 41. Microservices invoking another one

Now that we have the interface, we just need to build the implementation and then invoke it. There
are two ways to build the implementation: programmatically using the RestClientBuilder API or
declaratively using CDI and Eclipse MicroProfile Configuration.

Programmatic Invocation

Let’s start with the org.eclipse.microprofile.rest.client.RestClientBuilder. It is a little more
verbose but can come in handy in environments where CDI is not available. As shown in Listing
166, to create a new instance of the RestClientBuilder we first specify the baseUrl value for the
remote endpoint. Then we build the client, passing in the interface class. After that, we can invoke
methods on the client like it was any other Java object.

Listing 166. Programmatic HTTP Invocation

IsbnProxy isbnProxy = RestClientBuilder.newBuilder()
.baseUri(new URI("http://localhost:9081"))
.build(IsbnProxy.class);

IsbnNumber isbnNumber = isbnProxy.generatelsbn(false);

Declarative Invocation

In addition to programmatic invocation, it is also possible to register the Java interface
declaratively with annotations. In fact, thanks to the @RegisterRestClient annotation on the
interface, it makes the client usable through CDI.

As you can see in Listing 167, the BookResource needs to invoke two external microservices: one
returning an ISBN book number (using the IsbnProxy interface), and another one an ISSN number
(the IssnProxy in Listing 168). These two interfaces are injected using the MicroProfile @Rest(Client
annotation. By injecting the interfaces as @Rest(lient, we will be able to proxy the remote REST
endpoint.

219

Listing 167. REST Endpoint Injecting Client Proxy Interfaces

("/books")
(MediaType.APPLICATION_JSON)

public class BookResource {
IsbnProxy isbnProxy;
IssnProxy issnProxy;

("/numbers")
public JsonObject generateBookNumbers() {

IsbnNumber isbnNumber = isbnProxy.generateIsbn(true);
String isbn13 = isbnNumber.isbn13;

JsonObject issnJsonObject = issnProxy.generatelssn();
String issn = issnJsonObject.getJsonString("issn").getString();

return Json.createObjectBuilder()
.add("isbn13", isbn13)
.add("isbn10", 1issn)
.build();

The implementation of the interface will include the qualifier @RestClient to
differentiate the use of an API call against any other beans registered of the same
type. But remember that the interface is a Bean and therefore can use other CDI
goodies. If greater discrimination is needed at injection, the interface and the
injection point can be annotated with extra qualifiers:

NumberProxy isbnProxy;

NumberProxy issnProxy;

As seen in Listing 167, injecting an interface is less verbose than invoking it programmatically with
the RestClientBuilder APIL But something is missing: the base URI of the remote endpoint. There are
two ways to define the URI. As you can see in Listing 168, a baseUri value can be set in the
@RegisterRestClient annotation. Eclipse MicroProfile REST Client then concatenates the @Path
annotations to this URI to invoke the remote endpoint (here at http://localhost:9082/api/issn).

220

http://localhost:9082/api/issn

Listing 168. Client Interface with Base URI

("/api/issn")
(MediaType.APPLICATION_JSON)
(baseUri = "http://localhost:9082")
public interface IssnProxy {

JsonObject generateIssn();

}

However, this value can be configured (or overridden) by a base URI property defined in a
configuration file. For that, we use the Eclipse MicroProfile Configuration. The configuration
property to use is the fully qualified interface name concatenated with /mp-rest/url. In the example
below, the IsbnProxy is configured to the default http://localhost:9081 URL. This configuration is
automatically picked up by the Eclipse MicroProfile Configuration APIL

org.agoncal.fascicle.quarkus.restclient.book.IsbnProxy/mp-
rest/url=http://localhost:9081
org.agoncal.fascicle.quarkus.restclient.book.IsbnProxy/mp-
rest/scope=javax.inject.Singleton

Having this configuration means that all requests performed using IsbnProxy will use
http://localhost:9081 as the base URL. So, calling the generateIsbn() method of IsbnProxy with a
value true for the separator, would result in an HTTP GET request being made to
http://localhost:9081/api/ishn?separator=true. The configuration also defines the scope of IsbnProxy
to be @Singleton. Supported scopes are @Singleton, @Dependent, @ApplicationScoped and
@RequestScoped. The default scope is @Dependent. The default scope can also be defined on the
interface.

7.2.3. Configuring RestEasy Client Microprofile

Table 46 lists some Eclipse MicroProfile REST Client configuration properties which are provided
via MicroProfile Config."""!

Table 46. Some REST Client Configuration Properties

Property Default

<myclass>/mp-rest/url
Base URL to use for this service

<myclass>/mp-rest/uri
Base URI to use for this service (will override any baseUri value specified in the
@RegisterRest(lient annotation)

<myclass>/mp-rest/scope @Dependent
CDI scope to use for injection

221

http://localhost:9081
http://localhost:9081
http://localhost:9081/api/isbn?separator=true

Property Default

<myclass>/mp-rest/providers
Provider classnames to include in the client (equivalent of the register method
or the @RegisterProvider annotation)

<myclass>/mp-rest/connectTimeout
Timeout specified in milliseconds to wait to connect to the remote endpoint

<myclass>/mp-rest/readTimeout
Timeout specified in milliseconds to wait for a response from the remote
endpoint

7.3. Eclipse MicroProfile Fault Tolerance

CORS is about allowing, or not allowing, client invocations to cross different origins. But once all the
invocations start to go through, you’ll need to handle communication failure and make resilient
applications. For that, Quarkus contains an implementation of the Eclipse MicroProfile Fault
Tolerance specification. As the number of services grows, the odds of any service failing also grows.
If one of the involved services does not respond as expected, e.g. because of fragile network
communication, we have to compensate for this exceptional situation. Eclipse MicroProfile Fault
Tolerance allows us to build up our microservice architecture to be resilient and fault tolerant by
design. This means we must not only be able to detect any issue but also to handle it automatically.

The Eclipse MicroProfile Fault Tolerance APIs and annotations are all defined under the main
org.eclipse.microprofile.faulttolerance package, either at the root, or under the other
subpackages. Table 47 lists the main subpackages defined in Eclipse MicroProfile Fault Tolerance
version 2.1 (under the root org.eclipse.microprofile.faulttolerance package)."*”

Table 47. Main org.eclipse.microprofile.faulttolerance Subpackages

Subpackage Description
root Root package of the Fault Tolerance APIs
exceptions Exceptions for Fault Tolerance

Along with APIs, Fault Tolerance comes with a set of annotations. Table 48 lists a subset of the most
commonly used annotations.

Table 48. Main Fault Tolerance Annotations

Annotation Description

@Timeout Defines a duration for timeout

@Retry Defines a criteria on when to retry

@Fallback Provides an alternative solution for a failed execution

@Bulkhead Isolates failures in part of the system while the rest of the system can still
function

@CircuitBreaker Offers a way to fail fast by automatically failing the execution to prevent the
system overloading and an indefinite wait or timeout by the clients

222

Annotation Description

@Asynchronous Invokes the operation asynchronously

You get fault-tolerance just by adding the extension in Listing 169 to your pom.xml.

Listing 169. Fault Tolerance Extension

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>

7.3.1. Understanding Fault Tolerance

Microservices helps to break down problems into pieces, which helps for easy maintenance and
testability. But the problem with an architecture using dozens of interdependent microservices, is
that there is a high chance of network, hardware, database or application issues (see Figure 42).
This will lead to the temporary unavailability of a component. To avoid or minimise this kind of
outage, we have to build resilient microservices. This means that instead of throwing the problem
at the user, we need to recover from failures and remain functional. For that, there are a few
resiliency patterns that we can use, such as timeout, retry, circuit breaker, fail-fast, bulkhead, load
balancing or failover. And some of these patterns are implemented by Eclipse MicroProfile Fault
Tolerance.

(— - —

!\W —

Inventory > Purchase
N Order

Figure 42. Microservices invocation failing

223

Network Fallacies

When talking about network issues, it’s always interesting to refer to the network fallacies.
The fallacies of distributed computing are a set of false assumptions that programmers new
to distributed applications invariably make."*” The fallacies are:

e The network is reliable;

» Latency is zero;

* Bandwidth is infinite;

e The network is secure;

» Topology doesn’t change;

e There is one administrator;

» Transport cost is zero;

* The network is homogeneous.

7.3.2. Falling Back

If a service A calls a service B, what happens when service B is down? What is the fallback plan in
such a scenario? A fallback is an alternative plan that may be used in case part of the system is
unavailable.

To illustrate fallbacks, let’s have a look at the BookResource in Listing 170. This REST endpoint has a
method to generate book numbers (ISBN and ISSN) on the /books/numbers path. Thanks to the
@RestClient annotation from Eclipse MicroProfile REST Client, the BookResource delegates the
number generation to the NumberProxy which ends-up invoking the remote NumberResource
microservice. And what if NumberResource is not available? What should we do? Throw an exception
or hang until the microservice becomes available again?

Instead let’s provide a fallback way for generating book numbers in case of failure. For that, we add
one fallback method to the BookResource called fallbackGenerateBookNumbers and a @Fallback
annotation to the generateBookNumbers() method (see Listing 170).

224

Listing 170. Falling Back on Generating Book Numbers

("/books")
(MediaType.APPLICATION_JSON)

public class BookResource {

NumberProxy numberProxy;

("/numbers")
(fallbackMethod = "fallbackGenerateBookNumbers")
public JsonObject generateBookNumbers() {

// Invoking microservices
IsbnNumber isbnNumber = numberProxy.generateIsbn(true);
JsonObject issnNumber = numberProxy.generateIssn();

return Json.createObjectBuilder()
.add("isbn13", isbnNumber.isbn13)
.add("gs1", isbnNumber.gs1)
.add("isbn10", issnNumber.getJsonString("isbn10").getString())
.build();
}

private JsonObject fallbackGenerateBookNumbers() {
return Json.createObjectBuilder()
.add("isbn13", "dummy isbn")
.add("gs1", "dummy gs1")
.add("isbn10", "dummy issn")
.build();

The fallbackGenerateBookNumbers() method must have the same method

signature as

generateBookNumbers() (in our case ,it takes no parameters and returns a JsonObject object). As
shown in Figure 43, in case the Book microservice cannot invoke the Number microservice, the
fallbackGenerateBookNumbers() is invoked and the JSON representation of temporary book numbers

is sent back.

225

Book Microservice Number Microservice

Client | BookResource I | NumberProxy I | NumberResource X II
ien
I

1 I
1 generateBookNumbers() 1

>

generatelsbn()

A
>

HTTP GHT| /api/isbn _,

7N

@Fallback _/

I
I
I
1
I
I
I
I fallbackGenerateBookNumbers() !
I

Client | BookResource I | NumberProxy I | NumberResource X II

Figure 43. HTTP request falling back

There are two ways to specify a fallback: we can specify a method name in the fallbackMethod
attribute as we did in Listing 170, or we can specify an external class that implements the
FallbackHandler interface:

// Method in the same class
(fallbackMethod = "fallbackGenerateBookNumbers")
public JsonObject generateBookNumbers() { ... }

// Different class implementing FallbackHandler
(CallNumberBackupService.class)
public JsonObject generateBookNumbers() { ... }

ISBN and ISSN

ISBN and ISSN are referred to very often in this fascicle. Here is a quick reminder on
terminology:

* ISBN (International Standard Book Number): Thirteen-digit book identifier which is
intended to be unique.

* ISSN (International Standard Serial Number): Eight-digit serial number used to uniquely
identify a serial publication.

7.3.3. Timing Out

Fallbacks are good when the remote microservice is not available at all. But what if it’s there but is
taking too long due to being overloaded or due to network latency?

226

Let’s say that to create a book we need to invoke a remote microservice to get an ISSN. Getting ISSN
numbers can actually take longer than expected. What happens to the Book microservice invoking
a long-running Number microservice to get the ISSN numbers? It hangs too, and we don’t want that
to happen, we would rather time it out. For that, we add the @Timeout annotation to the method
createBook() method (see Listing 171). @Timeout takes the number of milliseconds it has to wait
before timing out.

Listing 171. Timing out if the Invocation Takes Long

("/books™")
(MediaType.APPLICATION_JSON)

public class BookResource {

NumberProxy numberProxy;

(250)
(fallbackMethod = "fallbackCreateBook")
public Book createBook() {

// Invoking microservice
JsonObject issnNumber = numberProxy.generateIssn();

Book book = new Book();

book.title = faker.book().title();
book.issn = issnNumber.getString("isbn10");
book.generatedAt = Instant.now();

return book;

}

private Book fallbackCreateBook() {
Book book = new Book();
book.title = "dummy title";
book.issn = "dummy issn";
book.generatedAt = Instant.now();
return book;

}
}

Note that the timeout is configured to 250ms. If the createBook() method in Listing 171 was
annotated with just @Timeout (and no @Fallback) and invoking the Number microservice takes longer
than 250ms, then the request is interrupted with a TimeoutException:

227

ERROR [QuarkusErrorHandler] HTTP Request to /books failed
org.jboss.resteasy.spi.UnhandledException: org.eclipse.microprofile.faulttolerance
.exceptions.TimeoutException:
Timeout[org.agoncal.fascicle.quarkus.faulttolerance.book.BookResource#icreateBook]
timed out

By default, if the execution takes longer than the specified timeout, the TimeoutException will be
thrown and the execution result will be discarded. That’s it if you only have a @Timeout annotation.
That’s what’s shown in the sequence diagram in Figure 44. But you might want to add an extra
@Fallback annotation to the method (like in Listing 171). In this case, if the TimeoutException
exception is caught, the fallback method is automatically invoked.

Book Microservice Number Microservice
‘ BookResource NumberService NumberResource ©
Client : : :
| | | |
E createBook())i i E
| | | |
eneratelssn
| 9 U |
I |] 1
! ! @Timeout / !
: : ' HTTP GET /api/issn)(ID
| | | |
: : __TimeoutException |
: : . i ;
: @Timeout @Fallback / ! !
: : ' HTTP GET /api/issn)(ID
I I | |
: : __TimeoutException |
| | | |
! I fallbackCreateBook() ! !
I <€ | I
I } } |
Client .
BookResource NumberService NumberResource ®
Figure 44. HTTP request timing out
@Timeout, @Fallback, etc. annotations can be bound at the class level or method
o level. If the annotation is bound to the class level, it applies to all the methods of

the class.

228

7.3.4. Circuit Breaker

Having fallback and timeout is a good start. But it doesn’t solve the problem that the client could
still be doing HTTP requests on a resource. Invocations will timeout and fall back, but the client
could just keep sending load in the network and hammering the resource which could be already
overloaded. A circuit breaker is useful for stopping sending load to the system, when part of the
system becomes temporarily unstable.

A circuit breaker prevents repeated failures, so that dysfunctional services or APIs fail fast. As
shown in Figure 45, a circuit breaker is similar to an electrical circuit breaker since it has the
following states:

* Closed: A closed-circuit represents a functional system available to its clients. When some
failures are detected, the state changes to half-open.

* Half-open: In this state, it checks whether the failed component is restored. If so, it closes back
the circuit. Otherwise, it moves to an open state.

* Open: An open state means the service is temporarily disabled. After checks have been made, it
verifies whether it’s safe to switch to a half-open state.

Book Microservice Number Microservice
‘ BookResource || ‘ NumberProxy ll ‘ NumberResource ||
|
|
Closed /

generatelsbn()

>

>
generatelsbn()

>
HTTP GET /api/isbn

| |
| |
| I
| |
| |
| |
| |
' HTTP GET /api/isbn :
| |
| |
| I
| |
| |
| I

>

Open /
' generatelsbn()

>
HTTP GET /api/isbn

X

fallback

‘ BookResource II ‘ NumberProxy ‘I

Figure 45. Closed and open circuit

‘ NumberResource II

229

As you can see in Listing 172, the Eclipse MicroProfile Fault Tolerance API uses the @CircuitBreaker
annotation to control incoming requests. This annotation records successful and failed invocations
of the createlegacyBook() method, and when the ratio of failed invocations reaches the specified
threshold, the circuit breaker opens and blocks all further invocations of that method for a given
time. In closed state, the requestVolumeThreshold and failureRatio parameters may be configured in
order to specify the conditions under which the breaker will transition the circuit to open.

Listing 172. Circuit Breaker on the Book Resource

("/books")
(MediaType.APPLICATION_JSON)

public class BookResource {

NumberProxy numberProxy;

(fallbackMethod = "fallbackCreatelLegacyBook")
(requestVolumeThreshold = 4, failureRatio = 0.5,
delay = 2000, successThreshold = 2)
public Book createlegacyBook() {

// Invoking microservice
JsonObject issnNumber = numberProxy.generateIssn();

Book book = new Book();

book.title = faker.book().title();
book.issn = issnNumber.getString("isbn10");
book.generatedAt = Instant.now();

return book;

}

private Book fallbackCreatelegacyBook() {
Book book = new Book();
book.title = "dummy legacy title";
book.issn = "dummy legacy issn";
book.generatedAt = Instant.now();
return book;

In Listing 172, if, within the last four invocations (requestVolumeThreshold) , 50% failed (
failureRatio), then the circuit transits to an open state. The circuit will stay open for 2,000 ms (
delay). After 2 consecutive successful invocations (successThreshold), the circuit will be back to close
again.

230

If you want to test the circuit breaker code, and see it opening and closing, you
need to add some load. One easy way is to loop through a cURL command. On
bash, you could write the following:

$ while true; do sleep 1; curl -X POST http://localhost:9080/books;
echo; done

7.4. Summary

By design, in a microservice architecture, microservices have to talk to each other. Being RESTful
web services, they use the HTTP protocol to target specific URLs, with given parameters, verbs and
passing payloads following different formats (a.k.a. media types or mime types) and dealing with
headers, requests and responses. Consuming HTTP can be cumbersome, that’s why JAX-RS comes
with a client API. But Eclipse MicroProfile REST Client goes further and simplifies the consumption
of a remote microservice response. By using interfaces as proxies, the client code invokes a method
on an interface without worrying about the underlying complexity.

In this chapter, we also looked at Cross-Origin Resource Sharing (CORS). It is a way to prevent
browsers' requests from crossing different domains. Quarkus allows us to configure CORS so
requests can be accepted or not, depending on the level of security you need.

But once requests start to flow from domain to domain, from microservice to microservice, failures
start to appear. Eclipse MicroProfile Fault Tolerance allows us to improve the resiliency of our
applications, without having an impact on the complexity of our business logic. Fault tolerance is
about leveraging different strategies to guide the execution and result of some logic. Fallbacks,
timeouts and circuit breakers are popular patterns in this area of distributed systems.

Even if REST is a very common architectural style when it comes to microservices, it’s not the only
one. In the next chapter, Event-Driven Microservices, you will see how reactive programming and
reactive messaging can be used to decouple microservices.

[160] CORS https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

[161] WHATWG https://fetch.spec.whatwg.org

[162] REST Client https://microprofile.io/project/eclipse/microprofile-rest-client

[163] REST Client GitHub https://github.com/eclipse/microprofile-rest-client

[164] Ruby faker https://github.com/faker-ruby

[165] Fault Tolerance GitHub https://github.com/eclipse/microprofile-fault-tolerance

[166] Fallacies of distributed computing https://en.wikipedia.org/wiki/Fallacies_of distributed_computing

231

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://fetch.spec.whatwg.org
https://microprofile.io/project/eclipse/microprofile-rest-client
https://github.com/eclipse/microprofile-rest-client
https://github.com/faker-ruby
https://github.com/eclipse/microprofile-fault-tolerance
https://en.wikipedia.org/wiki/Fallacies_of_distributed_computing

Chapter 8. Event-Driven Microservices

The theory of microservices is simple and we’ve seen it in the previous chapters: break a monolith
into small, purpose-specific microservices (Chapter 2, Understanding Quarkus), and have them
communicate through HTTP (Chapter 6, HTTP Microservices). But in practice, with the network
being unreliable and the microservices having to be up and running, we need to deal with fault-
tolerance (Chapter 7, Communication and Fault Tolerance).

Event-driven architecture (also called reactive architecture or reactive systems) is another way of
having our microservices talking to each other. It is about microservices sending events (a.k.a.
messages or records) between them. This decouples microservices and brings reliability: events are
sent to the eventing/messaging platform (e.g. a JMS or a Kafka broker) which distributes them to the
microservices. So, instead of thinking "which microservice should I invoke?", you should think of
"what events should my microservice process?" and "what events will my microservice emit?".

In this chapter, you will see two major technologies used for event-driven microservices in
Quarkus. Reactive Programming (with Mutiny) allows your code to react to events using a nice
fluent API. As for Reactive Messaging, it allows microservices to interact through messages in a very
easy way.

Make sure your development environment is set up to execute the code in this
o chapter. You can go to Appendix A to check that you have all the required tools

installed, in particular Kafka. The code in this chapter can be found at

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/reactive

8.1. Reactive Programming

Java is not a "reactive language" in the sense that it doesn’t support it natively. There are other
languages on the JVM (Scala and Clojure) that support reactive models more natively, but Java itself
does not until version 9 with the Flow APL"®" For that, several Java frameworks have emerged
throughout the years to allow reactive programming: RxJava "*? or Reactor "*”". Mutiny is a new
reactive programming library designed after having experienced difficulties with these libraries.

Eclipse Mutiny is a reactive programming library."”” Mutiny provides a guided API, making reactive
programming easy. It avoids having classes with hundreds of methods that are not always very
explicit (e.g. map() or flatmap() on other reactive frameworks). But Mutiny has several converters
from and to other reactive programming libraries, so you can always pivot and use the map()
method if you really wish.

Mutiny was designed years after existing reactive programming libraries. It is based on the
experience of many developers, lost in an endless sequence of map and flatMap operators. Mutiny
does not provide as many operators as the other reactive libraries, focusing instead on the most
used operators. Furthermore, it helps developers by providing a more guided API, which avoids
having classes with hundreds of methods to choose from.

The Eclipse Mutiny APIs and annotations are all defined under the main io.smallrye.mutiny
package, either at the root, or under the other subpackages. Table 49 lists the main subpackages
defined in Eclipse Mutiny version 0.7 (under the root io.smallrye.mutiny package).""

232

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/reactive

Table 49. Main io.smallrye.mutiny Subpackages

Subpackage Description

root Root package of the Mutiny APIs

converters Converters Uni and Multi from/to several formats

operators Operations than can be done on Uni and Multi

Table 50. Main Mutiny APIs
API Description

Uni Lazy asynchronous action that follows the subscription pattern: the action is
only triggered once a subscriber subscribes to it

Multi Publishes an unlimited number of sequenced elements according to the
demand received from its subscriber

Because Quarkus brings imperative and reactive programming together transparently, the Mutiny
extension is often used by several extensions and you don’t have to declare it explicitly. But if you
want to use it in a standalone application, you will have to add the Mutiny extension as seen in
Listing 173.

Listing 173. Mutiny Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-mutiny</artifactId>
</dependency>

8.1.1. Uni and Multi

Mutiny provides two types that are used everywhere: a Uni and a Multi. Both Uni and Multi are
asynchronous types. They receive and fire events, at any time. You can see this as:

e A Uni handles a stream of 0..1 item,;

* A Multi handles a stream of 0..* items (potentially unlimited). You can think of a Multi as being a
publisher.

To understand the difference between these two types, let’s create them. On both Uni and Multi,
Mutiny comes with a set of createFrom() methods allowing you to create these types based on items,
an array of items, a range, etc. Listing 174 shows how to create a Uni based on a single item of type
String. You will soon see how this code really works, but let’s say for now that this item of type
String is transformed to upper case and displayed on the console.

Listing 174. Creating a Uni From an Item
Uni.createFrom().item("Terri Lyne Carrington")

.onltem().transform(s -> s.toUpperCase() + " ")
.subscribe().with(System.out::println);

233

Both Uni and Multi are said to be lazy. The code in Listing 175 constructs a pipeline of actions (i.e.
transforming a String to uppercase), but it’s not until the subscribe() method is invoked that the
pipeline is actually executed.

Listing 175. Lazily Creating a Uni From an Item

// Lazily creates a Uni
Uni<String> uni = Uni.createFrom().item("Terri Lyne Carrington")
.onltem().transform(s -> s.toUpperCase() + " ");

// Subscribes to it
uni.subscribe().with(System.out::println);

If a Uni handles a stream of one item, the Multi handles more than one. You can see how you can
create a Multi out of a stream of several Strings in Listing 176. We have an array of items, and for
each item, we execute the pipeline of actions.

Listing 176. Creates a Multi From Several Items

Multi.createFrom().items("Carla Bley", "John Coltrane", "Juliette Gréco")
.onItem().transform(i -> i.toUpperCase())
.subscribe().with(System.out::println);

Notice in Listing 176 that the with() method takes only one callback (here a System.out.println)
which is invoked when the item is received. But in this case, the method does not handle failure. In
Listing 177, the with() takes two callbacks: one callback invoked when the item is received
successfully, and a second callback invoked when a failure event is received.

Listing 177. Creates a Uni Handling Success and Failure

Uni.createFrom().item("Terri Lyne Carrington")
.onltem().transform(s -> s.toUpperCase() + " ")
.subscribe().with(
item -> System.out.println("Received: " + item),
failure -> System.out.println("Failed with " + failure.getMessage())
)i

You can convert Unis to Multis and vice-versa. In Listing 178, we create a Multi made of three items,
but because we convert it to a Uni (with the toUni() method), only the first item is processed (in our
case, only the String "Carla Bley" will be transformed to uppercase).

Listing 178. Transforms a Multi to a Uni

Multi.createFrom().items("Carla Bley", "John Coltrane", "Juliette Gréco")
.onItem().transform(i -> i.toUpperCase())
.toUni()
.subscribe().with(System.out::println);

234

So far we’ve created Unis and Multis out of items. But you can also create Unis from Unis, or Multis
from Multis. In Listing 179, we first create a Multi called ticks. Notice that we do not invoke the
subscribe() method, so nothing will happen. What we do at this stage is creating a pipeline that will
send ticks every second when subscribed.

With this first Multi, we create a second one that will take the first three ticks and display them.
Only at this stage, when the method subscribe() is invoked, the entire pipeline, composed of two
Multis, will be executed.

Listing 179. Creates a Multi From Another Multi
Multi<Long> ticks = Multi.createFrom().ticks().every(Duration.ofSeconds(1));

Multi.createFrom().publisher(ticks)
.transform().byTakingFirstItems(3)
.subscribe().with(System.out::println);

8.1.2. Events

Creating Unis and Multis is just the first step. Once created, these asynchronous types react to
different kinds of events. Four types of events can flow:

» onItem: This event is triggered once per item. It contains the item itself.

» onCompletion: This event is triggered only once when no more items are emitted.

* onFailure: This event happens zero or once. If there is a failure, a no onCompletion event is sent
indicating that a failure has been encountered.

* subscribe: Indicates that the upstream has taken into account the subscription.

Notice that failure and completion are terminal events. Once they are emitted, no more items are
emitted.

Let’s see how these events work. In Listing 180, we create a Multi with three items of type String.
Then, on each event display a message (Received when onltem is triggered, Completed when
onCompletion is triggered, and so on).

Listing 180. Multi Reacting to Events

Multi.createFrom().items("Carla Bley", "John Coltrane", "Juliette Gréco")
.onltem().invoke(item -> System.out.println("Received " + item))
.onCompletion().invoke(() -> System.out.println("Completed"))
.onFailure().invoke(failure -> System.out.println("Failed " + failure.getMessage()))
.subscribe().with(item -> System.out.println("Subscriber " + item));

The result below shows what happens. Each item triggers an onItem and subscribe event. In the end,
the onCompletion event is triggered only once. In case of failure, we would have received an
onFailure event instead:

235

Received Carla Bley
Subscriber Carla Bley
Received John Coltrane
Subscriber John Coltrane
Received Juliette Gréco
Subscriber Juliette Gréco
Completed

Listing 181 shows the same kind of code but for a Uni instead of a Multi. One difference with the
code in Listing 180 is that the Uni does not need the complete ceremony as the request does not
make a lot of sense.

Listing 181. Uni with No Completion

Uni.createFrom().item("Carla Bley")
.onItem().invoke(item -> System.out.println("Received + item))
.onfFailure().invoke(failure -> System.out.println("Failed " + failure.getMessage()))
.subscribe().with(item -> System.out.println("Subscriber " + item));

n

Below are the events that are triggered when a Uni is executed:

Received Carla Bley
Subscriber Carla Bley

8.2. Reactive Messaging

In Chapter 9, Observability, you saw that one of the goals of Quarkus is to unify imperative and
reactive programming. So Mutiny is heavily used under the hood without you noticing or having to
deal with Unis and Multis if you don’t need to. This is true also for Reactive Messaging which is
based on Mutiny.

Eclipse Reactive Messaging is made for building event-driven, data streaming, and event-sourcing
applications."”” It lets your application interact with various messaging technologies such as
Apache Kafka, AMQP or MQTT. The framework provides a flexible programming model bridging
CDI and event-driven APIs.

The Eclipse Reactive Messaging APIs and annotations are all defined under the main
org.eclipse.microprofile.reactive.messaging package, either at the root, or under the other
subpackages. Table 51 lists the main subpackages defined in Eclipse Reactive Messaging version 1.1
(under the root org.eclipse.microprofile.reactive.messaging package)."””

Table 51. Main org.eclipse.microprofile.reactive.messaging Subpackages

Subpackage Description

root Root package of the Reactive Messaging APIs

converters Converts Uni and Multi from/to several formats

236

Subpackage Description

operators Operations than can be done on Uni and Multi

Table 52 lists a few Reactive Messaging APIs that are used to emit messages to channels. Messages
have an optional set of metadata.

Table 52. Main Reactive Messaging APIs

API Description

Emitter Feeds a channel from imperative code

Message Contains a payload, a set of metadata, and an acknowledgement function
Metadata Stores message metadata that can be related to the transport layer or to the

business / application

Along with APIs, Reactive Messaging comes with a set of annotations. Table 53 lists a subset of the
most commonly used annotations.

Table 53. Main Reactive Messaging Annotations

Annotation Description

@0utgoing Used by publishers to send messages

@Incoming Used to notify a subscriber of incoming messages

@Broadcast Used by publishers to dispatch messages to several subscribers
@Channel CDI qualifier to indicate which channel should be injected

To activate Reactive Messaging into your Quarkus application, you need the extension defined in
Listing 182. This extension uses reactive programming under the hood, and therefore, depends on
Mutiny.

Listing 182. Reactive Messaging Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-reactive-messaging</artifactId>
</dependency>

8.2.1. Understanding Messaging

Before digging into messaging, let’s have a quick look at the difference between synchronous and
asynchronous programming.

Synchronous Programming

Basically, synchronous means that you can only execute one thing at a time. If you look at the code
in Listing 183, that is what we usually do while programming in Java. In this code, we wait for each
method to finish before invoking another method.

237

Listing 183. Synchronous Code

public PurchaseOrder create(PurchaseOrder po) {

bankService.validate(po);

if (po.creditCard.status == VALID) {

po.status = VALID;

inventoryService.prepareltems(po);

shippingService.prepareShipping(po);

} else {
invalidate(po);
}

return po;

}

If you translate the code in Listing 183 to the sequence diagram in Figure 46, it’s easier to see the
time dependency between components. To create a purchase order, several components are
invoked to validate the credit card details and prepare the items to be shipped. And all these
components depend on each other’s execution. For example, if the InventoryService takes too long,

the ShippingService will have to wait until the other task has completed.

PurchaseOrder PurchaseOrder Bank Inventory Shipping
Resource Service Service Service © Service

| I | I |

| I | I |

: create(po)): : : :

i E validate(po))i E E

| | | | |

! Credit Card Valid /! ! !

: ' prepareltems(po) ©): !

| I | I |

! ' prepareShipping(po) !):

| ' T T

| | | | |

! Credit Card Invalid __/ ! !

! ' invalidate(po) : !

| I | I |

1 1 |] |

| I | I |
PurchaseOrder PurchaseOrder Bank Inventory Shipping
Resource Service Service Service © Service

Figure 46. Synchronous method invocation

238

Asynchronous Messages

Asynchronous means that you can execute multiple things at a time and you don’t have to finish
executing the current thing in order to move on to the next one. In Java, asynchronous
programming can be done at a very low-level, such as manipulating threads, or through higher-
level Java APIs (e.g. CompletableFuture or CompletionStage). But you can also use messaging.

Sending messages asynchronously allows temporal decoupling between components so the system
can do several tasks in parallel. In the diagram in Figure 47, we send messages back and forth
between components. So if we take back our example where one component takes too long to
complete, this is what happens now. Once the BankService had validated the credit card, a message
po-validated is sent to several subscribers. These subscribers then execute their own task at their
own pace, not depending on the execution of other components. If the InventoryService takes too
long, the ShippingService does not have to wait for its completion and can prepare the shipping.

PurchaseOrder PurchaseOrder Bank Inventory Shipping
Resource Service Service Service © Service

I purchase-orders =

po-prepared =

I QI ———

......_-......_...)

................... >|

Credit Card Invalid _/

'L_!q_q_—_i_pvalidated =

|
|
|
|
|
|
] L
| 1
| |
| |
| !
| | |
| | |
| | 4
| T T T
| 1 |
| 1 |
| | |
1 1 |
| 1 |
| | |
| | |
| 1 |

PurchaseOrder PurchaseOrder Bank Inventory Shipping
Resource Service Service Service © Service

Figure 47. Sending and receiving asynchronous messages

Broker Architecture

A Broker is a software that enables the exchange of messages asynchronously between
heterogeneous systems. It can be seen as a buffer between systems that produce and consume
messages at their own pace (e.g. one system is 24/7, the other runs only at night). It is inherently
loosely coupled, as producers don’t know who is at the other end of the communication channel to
consume the message and perform actions. The producer and the consumer do not have to be
available at the same time in order to communicate. In fact, they do not even know about each
other, as they use an intermediate buffer. In this respect, a broker differs completely from
synchronous technologies which require an application to know the signature of a remote
application’s methods.

239

A broker (a.k.a. message provider or provider) uses a special vocabulary. The message sender is
called a producer (or an emitter), and the location where the message is sent is called a topic (or a
channel or destination). The component receiving the message is called a consumer (or a subscriber).
What’s exchanged between the producer and the consumer is called a message, an event, or a
record. A message is an envelope wrapping a payload. A message is sent to a specific topic and,
when received and processed successfully, acknowledged. Figure 48 illustrates these concepts.

Broker
Produces a Consumes a

message & message &
————————)(Channel 0(————————-

Producer Consumer

Figure 48. The broker architecture

In a microservice architecture, messages can be exchanged within the microservice itself, or,
between remote microservices (see Figure 49). Having local exchanges allows components to use
reactive programming to react to messages. Remote exchanges allow us to decouple microservices.

Microservice

Component Component)(Channel ()

{
K
K

K

Figure 49. Local and remote message exchanges

There are several frameworks and APIs used to send and receive messages: Quarkus uses Eclipse
Reactive Messaging. There are also several brokers and, as of today, Quarkus interacts with Kafka,
AMQP and MQTT through connectors (more on connectors in the Kafka section below).

8.2.2. Sending Messages

There are two ways of sending messages with Eclipse Reactive Messaging. One is using the
@0utgoing annotation and another one is by programmatically emitting messages into a channel.

The @0utgoing annotation is used to annotate a method to indicate that the method publishes
messages to a specified channel. Inside the application, messages transit on channels that are
identified by a name. So in Listing 184, the message containing a conversion rate of type Float is
sent to a channel called euro-rate. Somewhere, a subscriber listening to the channel will receive the
rate asynchronously.

Listing 184. Sending a Message with @Outgoing

("euro-rate")
public Message<Float> sendEuroRate() {
return Message.of(euroRate);

}

240

To communicate, publishers and subscribers exchange messages. They can either be messages that
are represented by the Message interface, or just the content of the message (a.k.a. payload). This
Message interface is kept minimal so that connectors can provide their own implementations with
additional metadata that is relevant to that connector. For instance, a KafkaRecord implements the
Message interface and provides access to Kafka specific information (such as the topic or the
partition).

Below we see some examples of code manipulating this Message interface. Plain messages are
created using the of () method which wraps a given payload with optional metadata (withMedata()
method). The getPayload() method retrieves the wrapped payload while ack() acknowledges the
message.

// Creating messages with different datatypes

Message<Integer> msg = Message.of(1);

Message<String> msg = Message.of("Janis Joplin tape sold");

Message<CreditCard> msg = Message.of(new CreditCard("1234 5678", AMERICAN_EXPRESS));

// Getting the payload
Message<String> msg = Message.of("Euro rate: 1.345");
assertEquals("Euro rate: 1.345", msg.getPayload());

// Creating messages with metadata

Metadata metadata = Metadata.of(LocalDate.now());

Message<String> msg = Message.of("Jimi Hendrix vinyl sold", metadata);
Message<String> msg = Message.of("Jimi Hendrix vinyl sold").withMetadata(metadata);

// Acknowledging a message
Message<String> msg = Message.of("Ella vinyl sold");
msg.ack();

Manipulating messages can be cumbersome if you don’t use metadata or programmatic
acknowledgement. If you are only interested in the payload, you can just pass it to the channel
(Float instead of Message<Float>). So, the code in Listing 185 is equivalent to the one in Listing 184.

Listing 185. Sending a Payload

("pound-rate")
public Float sendPoundRate() {
return poundRate;

}

It is not rare to combine in a single application imperative parts (JAX-RS, CDI beans) and reactive
parts (beans with @Incoming and @0utgoing annotations). And sometimes you need to send messages
from the imperative part to the reactive part. In this scenario, you can’t use the @0utgoing
annotation on the imperative code but instead use the Emitter class and @Channel annotation.

As shown in Listing 186, the REST endpoint is invoked through an HTTP POST request, not a
message (so @Incoming cannot be used). To be able to send a message, it injects an Emitter which is

241

used to send a message to a specific channel (thanks to the @Channel annotation). Then, it’s just a
matter of invoking the emit() method passing a message, and this message is sent to the channel.

Listing 186. REST Endpoint Sending a Message

("/pomsg")
(MediaType.APPLICATION_JSON)

public class PurchaseOrderMessageResource {

("purchase-orders-msg")
Emitter<Message<PurchaseOrder>> emitter;

public Response create(PurchaseOrder po) {
emitter.send(Message.of(po));

URI temporaryPO = UriBuilder.fromResource(PurchaseOrderMessageResource.class)
.path(tmpId).build();
return Response.temporaryRedirect(temporaryP0).build();
}
}

But the Emitter API can also be used in the reactive world. The code in Listing 187 needs to validate
a purchase order depending on a previous message sent by the bank. If the credit card used to pay
this purchase order is valid, then the purchase order is valid and a message can be sent to the
channel po-validated. If not, the same message is sent to a different channel called po-invalidated.
In this case, we inject two different emitters so we can choose which channel to send the message
to. Notice that here, we are just interested in the payload. So the purchase order is directly sent
instead of a Message<PurchaseOrder> as in Listing 186.

242

Listing 187. Sending Messages to Different Topics

public class PurchaseOrderService {

("po-validated")
Emitter<PurchaseOrder> emitterForValidPO;

("po-invalidated")
Emitter<PurchaseOrder> emitterForInvalidPO;

("bank-validated")
public void validate(PurchaseOrder po) {

if (po.creditCard.status == VALID) {
po.status = VALID;
emitterForValidP0.send(po);

} else {
po.status = INVALID;
emitterForInvalidP0.send(po);

}

}
}

8.2.3. Receiving Messages

Once a message is sent to a channel, it can be consumed by another component (or remote
microservice as we’ll later see). If the @0utgoing annotation indicates the name of the channel to
send messages to, its counterpart @Incoming indicates the name of the channel to consume messages
from. The method in Listing 188 subscribes to the channel purchase-orders-ms. Each time a message
is received, this method is invoked. Notice that this method programmatically acknowledges the
message by invoking the ack() method.

Listing 188. Receiving a Message

("purchase-orders-msg")
public CompletionStage<Void> create(Message<PurchaseOrder> msg) {

PurchaseOrder po = msg.getPayload();
persist(po);

return msg.ack();

}

Again, if you are only interested in the payload and want to rely on automatic acknowledgement,
then you can follow the code in Listing 189: The method takes a PurchaseOrder object as a parameter
instead of a Message<PurchaseOrder>.

243

Listing 189. Receiving a Payload

("po-validated")
public void prepareShipping(PurchaseOrder po) {

for (OrderLine orderLine : po.orderlLines) {
orderLine.status = Status.SHIPPING;
}

shipItems(po);
}

Then, you can use in-memory message exchanges by using @Incoming to produce data and @0utgoing
to consume data. In fact, a method can combine the @Incoming and @0utgoing annotations and will
then act as a reactive streams processor. As shown in Listing 190, matching @0utgoing to @Incoming
annotation forms a chain. When a message arrives in the channel po-prepared it is processed and
then sent to the bank-validated channel and ends in the bank-authorised channel.

Listing 190. Receiving and Sending Messages

("po-prepared")
("bank-validated")
public PurchaseOrder validate(PurchaseOrder po) {

if (complexValidationLogic(po)) {
po.creditCard.status = VALID;
} else {
po.creditCard.status = INVALID;
b

return po;

}

("bank-validated")
("bank-authorised")
public PurchaseOrder authorise(PurchaseOrder po) {
po.creditCard.status = AUTHORISED;
return po;

}

("bank-authorised")
public void pay(PurchaseOrder po) {
makePayment(po);

}

These methods annotated with @Incoming or @0utgoing don’t have to be in the same bean. They can
be distributed among several beans, or, several microservices. In this case, you need remote
interactions, and for that, you need connectors to connect to remote brokers, such as Kafka.

244

You should not programmatically call methods annotated with @Incoming and/or
o @0utgoing directly from your code. They are invoked by the framework. Having
user code invoking them would have an unexpected outcome.

8.2.4. Connectors

So far we’ve seen that Reactive Messaging can handle messages generated from within the
application. In this case, everything happens in-memory, and the streams are created by chaining
methods all together. Each chain is still a reactive stream and enforces the backpressure protocol.
But if you need to send messages to distant microservices, you need a message broker such as
Kafka, AMQP or MQTT. For that, Reactive Messaging uses connectors. A connector is an extension
managing the communication with a specific transport technology:

* It receives messages from the broker and propagates them to the application;

* It sends messages provided by the application to the broker.

From a developer’s point of view, whether the messages come from co-located beans or from a
remote message broker, is transparent. The only thing that we need, is to add a Quarkus extension
depending on the connector’s technology. Let’s see an example with Kafka.

Kafka (or Apache Kafka) is an open source distributed event streaming platform."’ It provides a
unified, high-throughput, low-latency platform for handling real-time data feeds thanks to its
optimised binary TCP-based protocol. To be able to connect to Kafka, we need to add the Kafka
extension described in Listing 191.

Listing 191. Reactive Messaging and Kafka Extensions

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-reactive-messaging-kafka</artifactId>
</dependency>

Quarkus comes with connectors other than Kafka, such as AMQP or MQTT. Each
connector has its own dedicated extension targeting a specific technology.

AMQP (or Advanced Message Queuing Protocol) is an open standard application
layer protocol for message-oriented middleware."”” The defining features of

o AMQP are message orientation, queuing, routing (including point-to-point and
publish-and-subscribe), reliability and security.

MQTT (or Message Queuing Telemetry Transport) is the standard messaging
protocol for the Internet of Things (IoT).'"’" It is designed as an extremely
lightweight publish/subscribe messaging transport that is ideal for connecting
remote devices with a small code footprint and minimal network bandwidth.

Let’s take our previous example of a REST endpoint sending a message to a remote Kafka broker. As

you can see in Listing 192, the code is identical to what we’ve seen before: the Emitter sends a
PurchaseOrder to a channel called po-write.

245

Listing 192. REST Endpoint Sending a Message to a Kafka Topic

(u/pon)
(MediaType.APPLICATION_JSON)

public class PurchaseOrderResource {

("po-write")
Emitter<PurchaseOrder> emitter;

public Response create(PurchaseOrder po) {
emitter.send(po);

URI temporaryPO = UriBuilder.fromResource(PurchaseOrderResource.class)
.path(tmpId).build();
return Response.temporaryRedirect(temporaryP0).build();
}
}

The difference comes from the configuration. Eclipse Reactive Messaging determines, for each
channel, its connector and configuration. The syntax is:

mp.messaging. [outgoing|incoming].{channel-name}.<property>=<value>.

In the application.properties file, to specify that the channel po-write uses a Kafka connector, we
need to set the connector’s type to smallrye-kafka. And because we are sending a JSON
representation of a purchase order, we also need to specify the serializer.

mp.messaging.outgoing.po-write.connector=smallrye-kafka
mp.messaging.outgoing.po-
write.value.serializer=io.quarkus.kafka.client.serialization.JsonbSerializer

On the other side of the Kafka topic, the microservice in Listing 193 listens to messages arriving in
the channel called po-read.

Listing 193. Remote Service Receiving a Message from a Kafka Topic

("po-read")
public PurchaseOrder create(PurchaseOrder po) {

// Create a PO
return po,

}

Notice that the channel used to send a message (po-write) and the channel used to receive the

246

message (po-read) have different names. That’s because we need to map a specific channel to a
remote topic on both the publisher and subscriber sides. This is done through the configuration
defined in Listing 194: the po-read channel listens to the topic called po-write.

Listing 194. Configuring Kafka Topics

mp.messaging.outgoing.po-write.connector=smallrye-kafka
mp.messaging.outgoing.po-
write.value.serializer=io.quarkus.kafka.client.serialization.JsonbSerializer

mp.messaging.incoming.po-read.connector=smallrye-kafka
mp.messaging.incoming.po-read.topic=po-write

mp.messaging.incoming.po-
read.value.deserializer=org.agoncal.fascicle.quarkus.PurchaseOrderDeserializer

Because the purchase order is serialised to JSON, the po-read channel needs to deserialise the JSON
to a PurchaseOrder object. This is done using the JSON-B serialise/deserialise objects. To deserialise
we need to create our own deserialiser and provide a type as shown in Listing 195.

Listing 195. Purchase Order JSON Deserialiser

public class PurchaseOrderDeserializer extends JsonbDeserializer<PurchaseOrder> {
public PurchaseOrderDeserializer() {
super (PurchaseOrder.class);

}
}
When starting, Quarkus needs to connect to Kafka. If Kafka is not up and running,
this is the kind of warning messages that you will get in the console:
o [WARN] [NetworkClient] Connection to node -1 (localhost:9092) could not
be established. Broker may not be available.

[WARN] [NetworkClient] Bootstrap broker localhost:9092 disconnected
Make sure to read Appendix A so you know how to start and stop a Kafka broker.

8.2.5. Configuring Reactive Messages

Table 54. Some Reactive Messaging and Kafka Configuration Properties
Property Default

quarkus.reactive-messaging.health.enabled true
Whether or not a health check is published in case the smallrye-health extension is
present

quarkus.reactive-messaging.metrics.enabled false
Whether or not Reactive Messaging metrics are published in case the smallrye-metrics
extension is present

247

Property Default

quarkus.kafka.health.enabled false
Whether or not a health check is published in case the Kafka extension is present

8.3. Summary

While event-driven microservices may seem difficult initially, they are the future of most
microservices and IT strategies. So, as seen in this chapter, Quarkus is not limited to HTTP
microservices, but also fits perfectly in this event-driven architecture. Why? Because as explained
in Chapter 2, Understanding Quarkus, behind the scenes, Quarkus uses a single reactive engine for
both imperative and reactive code, without you noticing.

There are a number of Reactive libraries or frameworks for the JVM, all under active development.
To a large extent they provide similar features, but increasingly, thanks to Reactive Streams, they
are interoperable. That’s what Eclipse Mutiny is all about. Mutiny is a new reactive framework,
implementing the Reactive Streams, and it is heavily used in Quarkus internals. In this chapter, you
saw how to programmatically use Mutiny APIs (with its Uni and Multi) and its operators (onItem(),
onFailure(), invoke(), etc.).

Mutiny is also hidden behind Eclipse Reactive Messaging. So you don’t have to directly use it for
simple use cases such as receiving or sending simple messages. You just use a few annotations
(eChannel, @0utgoing, @Incoming) and you are ready to process messages within your microservice,
or, thanks to some configuration, use a remote broker such as Kafka.

But reactive microservices can also fail, consume too many resources, or behave incorrectly.
Reactive and HTTP microservices need to be monitored. In the next chapter Observability you will
see how Quarkus helps in checking the health of your microservices and getting some metrics.

[167] Flow API https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Flow.html
[168] RxJava https://github.com/ReactiveX/Rx]Java

[169] Reactor https://projectreactor.io

[170] Mutiny https://github.com/smallrye/smallrye-mutiny

[171] Mutiny GitHub https://github.com/smallrye/smallrye-mutiny

[172] Reactive Messaging https://github.com/eclipse/microprofile-reactive-messaging

[173] Reactive Messaging GitHub https://microprofile.io/project/eclipse/microprofile-reactive-messaging
[174] Kafka https://kafka.apache.org

[175] AMQP https://www.amqp.org

[176] MQTT https://mqtt.org

248

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/Flow.html
https://github.com/ReactiveX/RxJava
https://projectreactor.io
https://github.com/smallrye/smallrye-mutiny
https://github.com/smallrye/smallrye-mutiny
https://github.com/eclipse/microprofile-reactive-messaging
https://microprofile.io/project/eclipse/microprofile-reactive-messaging
https://kafka.apache.org
https://www.amqp.org
https://mqtt.org

Chapter 9. Observability

As you’ve seen in the previous chapters, your architecture can easily mix HTTP Microservices and
Event-Driven Microservices. When it comes to HTTP microservices, the chapter Communication and
Fault Tolerance showed that synchronous communication is not reliable, that’s why we need Eclipse
MicroProfile Fault Tolerance to have fallbacks or circuit breakers.

With all these microservices interacting with each other, over HTTP or messages, it is essential to
allow each microservice to report and publish its health status. This information can then be
collected by a service orchestrator which can take decisions based on the health of the system.
Reporting health status can be achieved with Eclipse MicroProfile Health.

Knowing the health of our microservices is a first step. But that doesn’t tell us if they are processing
correctly in a correct amount of time or with good throughput. Eclipse MicroProfile Metrics brings a
unified way of exporting statistics indicators, such as the number of times and the rate at which a
service has been requested, the duration of each request, and so on.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/observability

9.1. Eclipse MicroProfile Health

Eclipse MicroProfile Health provides the ability to probe the state of a computing node from another
machine."”” The Eclipse MicroProfile Health APIs allow applications to provide information about
their state to external viewers which is typically useful in cloud environments where automated
processes must be able to determine whether the application should be discarded or restarted.
Quarkus implements the Eclipse MicroProfile Health specification through the SmallRye Health
extension.

The Eclipse MicroProfile Health APIs and annotations are all defined wunder the
org.eclipse.microprofile.health package. Table 55 lists the main subpackages defined in Eclipse
MicroProfile Health version 2.2 (under the root org.eclipse.microprofile.health package)."”™

Table 55. Main org.eclipse.microprofile.health Subpackages

Subpackage Description
root Root package of the Health APIs
spi Internal SPIs (Service Provider Interfaces) implemented by the provider

Along with APIs, Health comes with a set of annotations. Table 56 lists a subset of the most
commonly used annotations.

Table 56. Main Health Annotations

Annotation Description
@Liveness Used to define a liveness health check procedure
@Readiness Used to define a readiness health check procedure

249

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/observability
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/observability

When you add the Health extension in your pom.xml (see Listing 196), then some Quarkus
components can automatically expose their health. That’s the case for datasources or reactive
messaging.

Listing 196. Health Extension

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-smallrye-health</artifactId>
</dependency>

9.1.1. Understanding Health Checks

In a microservice architecture, we quickly end-up having hundreds or thousands of processes
running on several servers. If we use a hybrid cloud, we might have a few microservices in-house
and others in different clouds and different datacentre locations. It is important to know the health
of the entire system as well as each individual microservice as shown in Figure 50. So, it may seem
obvious, but a microservice must report its health so it can be collected by a service orchestrator,
which can then use the health to make decisions. For that, there’s a need for standardisation in how
to log health events that ultimately end up collected for querying and viewing.

Figure 50. Microservices up and down

9.1.2. Checks

A service checks its own health by performing necessary self-checks. A self-check can be a check on
anything that the service needs: enough disk space, a successful database connection, a system

250

property, etc. A service reports UP if it is available and reports DOWN if it is unavailable. Although a
service might currently be unhealthy, the service might still be operational. Therefore, Eclipse
MicroProfile Health handles two types of checks:

* Liveness: Checks if the microservice is alive, that is, if it’s able to accept requests and respond.

* Readiness: Checks if the microservice’s dependencies (database, queue services, etc.) are
themselves ready, so the microservice can do what it’s supposed to do.

Eclipse MicroProfile Health allows services to report their health, and it publishes the overall health
status to defined endpoints:

» /health/live: Returns the result of all liveness checks and determines whether or not your
application is up and running.

» /health/ready: Returns the result of all readiness checks and determines whether or not your
application can process requests.

* /health: Accumulates the result of both health check types.

These endpoints are linked to health check procedures annotated respectively with @Liveness and
@Readiness annotations.

Liveness Checks

A liveness check determines if the microservice is running. This means that if this procedure fails,
the microservice can be discarded and restarted. For example, in Listing 197, to check that our
Number endpoint is live, we make sure it can generate ISSN numbers (by invoking the
generatelssn() method and making sure it doesn’t throw an exception). For that, the health check
procedure has to implement the HealthCheck interface and be annotated with the CDI qualifier
@Liveness.

Listing 197. Liveness Check

public class NumberResourceCheck implements HealthCheck {

NumberResource numberResource;

public HealthCheckResponse call() {
numberResource.generateIssn();
return HealthCheckResponse.named("Ping Number REST Endpoint").up().build();

}
}

HealthCheck is a functional interface whose single method call returns a HealthCheckResponse object
which can be easily constructed by the fluent builder API. The call() method is used to return the
health status of a particular service. So, in Listing 197, we invoke the generateIssn() method. If it
throws an exception, the response will be DOWN. If it succeeds, the response will be UP. As you can

251

add multiple checks, you need to give every check a dedicated name. The
HealthCheckResponse.named() method is used to indicate what service the health check is done for.

The liveness check is accessible at /health/live. Access this URL (browser or cURL) and you should
see a JSON output similar to Listing 198.

Listing 198. Liveness Check Result in [SON

{
"status": "UP",
"checks": [
{
"name": "Ping Number REST Endpoint",
"status": "UP"
}
]
}

Readiness Checks

Once we know that a microservice is alive, we need to know if it is actually ready to process
requests. Generally, the liveness procedures determine whether the microservice should be
restarted, while readiness procedures determine whether it makes sense to contact the
microservice with requests. As shown in Listing 199, a readiness check is very similar to a liveness
check. You need a Java class that implements HealthCheck and is annotated with @Readiness. Here,
the call() method checks that the environment variable server.name is set. If not, the service is
down and is not ready to process requests.

Listing 199. Readiness Check

public class ServerVariableCheck implements HealthCheck {

public HealthCheckResponse call() {
if (System.getProperty("server.name") == null) {
return HealthCheckResponse.named("System Variable Check").down().build();
} else {
return HealthCheckResponse.named("System Variable Check").up().build();
}
}
}

When the ServerVariableCheck class in Listing 199 is deployed with the microservice, you can access
the health/ready endpoint. You will get the health checks defined with the @Readiness qualifier (see
Listing 200).

252

Listing 200. Readiness Check Result in [SON

{
"status": "DOWN",
"checks": [
{
"name": "System Variable Check",
"status": "DOWN"
}
]
}

If you access the health endpoint, you will get back both liveness and readiness checks as shown in
Listing 201.

Listing 201. Liveness and Readiness Checks

{
"status": "DOWN",
"checks": [
{
"name": "Ping Number REST Endpoint",
"status": "UP"
Iy,
{
"name": "System Variable Check",
"status": "DOWN"
}
]
}

All of the health REST endpoints return a simple JSON object with two fields:

» status: The general status of the health check is computed as a logical AND of all the declared
health check procedures.

* checks: An array of individual checks.
Built-In Quarkus Checks

The Eclipse MicroProfile Health specification does not implement any health checks, it just gives
you the APIs to implement your own. But SmallRye and Quarkus come with some already
implemented health checks for checking common services:

* SocketHealthCheck: Checks if the host is reachable using a socket.
* UrlHealthCheck: Checks if the host is reachable using an HTTP URL connection.
* IpetAddressHealthCheck: Checks if the host is reachable using InetAddress.isReachable method.'

Listing 202 uses the UrlHealthCheck to check that a URL is pingable or not.

253

Listing 202. Checking a URL

public class BlogCheck {

HealthCheck checkURL() {
return new UrlHealthCheck("https://antoniogoncalves.org").name("Blog Check");
}
}

9.1.3. Constructing a Response

Liveness and readiness health checks implement the call() method that returns a
HealthCheckResponse. Up to now, we’ve seen that a response contains a name to identify a check
from other checks and a UP or DOWN flag, to indicate the state. But there is more to it.
HealthCheckResponse also provides a way for the applications to supply arbitrary data in the form of
key-value pairs sent to the consuming end. This can be done by using the withData(key, value)
method shown in Listing 203. Instead of using the up() and down() method, we can calculate the
state with the state() method. In Listing 203, we check for free disk space as the service might rely
on storage to persist files. If there is more than 100Mb of free space, then a status of UP is returned.

Listing 203. Response with Data and State

public class DiskCheck implements HealthCheck {

public HealthCheckResponse call() {

File file = new File("/");
long totalSpace = file.getTotalSpace() / 1024 / 1024;
long freeSpace = file.getFreeSpace() / 1024 / 1024;

return HealthCheckResponse
.named(DiskCheck.class.getSimpleName() + "Readiness")
.withData("totalSpace", totalSpace)
.withData("remainingSpace", freeSpace)
.state(freeSpace > 100)
.build();

The JSON result of the health check in Listing 203 is shown in Listing 204. As you can see, the data
node is an array of key/value pairs containing the metadata of our response.

254

Listing 204. Readiness Check with Array of Data

{
"status": "UP",
"checks": [
{
"name": "DiskCheckReadiness",
"status": "UP",
"data": {
"remainingSpace": 1897665,
"totalSpace": 1908108
}
}
]
}

The HealthCheckResponse can be easily constructed by the fluent Dbuilder API
HealthCheckResponseBuilder. In Listing 205, we get a builder, and depending on whether or not the

system variable server.name is declared, we gather different data and take different actions (up or
down).

Listing 205. Building a Response

public class ServerVariableCheck implements HealthCheck {

public HealthCheckResponse call() {

HealthCheckResponseBuilder builder = HealthCheckResponse
.named(ServerVariableCheck.class.getSimpleName() + "Liveness")
.withData("variable", "server.name");

if (System.getProperty("server.name") == null) {
return builder
.withData("server", "not available")
.down()
.build();
} else {
return builder
.withData("server", "available")
up()
.build();

No matter which health endpoint you target, Eclipse MicroProfile Health will return the same
status codes:

255

* 200-0K for a health check with a positive status (UP).
* 503-Service Unavailable in case the overall status is negative (DOWN).

* 500-Internal Server Error in case the producer wasn’t able to process the health check request
(i.e. error in procedure).

9.1.4. Visualising Health Checks with Health-UI

Getting health checks in JSON format is fine for tooling, but can be cumbersome for a human to
read if there are many checks. MicroProfile has a set of extensions, and one of them is a web
interface nicely displaying the JSON output. It is called Health UL"*” Figure 51 shows what Health
UI looks like and how it displays the list of checks with their status up or down.

DA MicroProfile Health Ul €%

DiskCheckReadiness ServerVariableCheckLiveness
remainingSpace 1897665 server not available
totalSpace 1908108 variable server.name

Figure 51. Health UI

9.1.5. Configuring SmallRye Health

As usual, Quarkus comes with a set of properties to configure SmallRye Health, the implementation
of Eclipse MicroProfile Health. These properties have the quarkus.smallrye-health. namespace.”""
Table 57. Some Quarkus Health Configuration Properties

Property Default

quarkus.smallrye-health.root-path /health
Root path for health-checking endpoints

quarkus.smallrye-health.liveness-path /live
The relative path of the liveness health-checking endpoint

quarkus.smallrye-health.readiness-path /ready
The relative path of the readiness health-checking endpoint

9.2. Eclipse MicroProfile Metrics

Knowing the health of a single microservice or the entire system is crucial. But it doesn’t tell you if
one component is slowing down or not responding as it used to respond. For that, you need to
gather metrics. Eclipse MicroProfile Metrics provides a unified way for MicroProfile servers to
export monitoring data to management agents."*"’ Metrics will also provide a common Java API for
exposing their telemetry data. MicroProfile Metrics allows applications to gather various metrics

256

and statistics that provide insights into what is happening inside the application. The metrics can
be read remotely using a JSON or OpenMetrics format so that they can be processed by additional
tools such as Prometheus, and stored for analysis and visualisation. Quarkus implements the
Eclipse MicroProfile Metrics specification through the SmallRye Metrics extension.

The Eclipse MicroProfile Metrics APIs and annotations are all defined under the main
org.eclipse.microprofile.metrics package, either at the root, or under the other subpackages. Table
58 lists the main subpackages defined in Eclipse MicroProfile Metrics version 2.3 (under the root

org.eclipse.microprofile.metrics package)."*”

Table 58. Main org.eclipse.microprofile.metrics Subpackages

Subpackage Description
root Root package of the Metrics APIs
annotation APIs for annotating methods and classes to get metrics from

Along with APIs, Metrics comes with a set of annotations. Table 59 lists a subset of the most
commonly used annotations.

Table 59. Main Metrics Annotations

Annotation Description

@Counted Marks a method, constructor, or class invocation as counted
@Gauge Simplest metric type that just returns a value

@Metered Measures the rate at which a set of events occur

@Timed Tracks the duration of an event

Like for Health, when you add the Metrics extension in your pom.xml (see Listing 206), then some
Quarkus components start automatically gathering metrics. That’s the case, for example, for
database connection pools, Hibernate ORM, RESTeasy or reactive messaging.

Listing 206. Metrics Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>

9.2.1. Understanding Measures

In the world of Microservices, knowing how servers, applications, containers, etc. are doing is
crucial. You want to be able to query for JVM state, CPU utilisation, GC executions, the container
memory, the disk or the network. Also you need to know how many times a service is being called,
how long this service took to execute, and several other metrics that help to manage services before
they become unavailable.

By themselves, metrics are just an up-to-date snapshot of the platform state (see Figure 52). If you
want to compare these snapshots over time, metrics should be retrieved at constant periods of time

257

and gathered. Gathering, analysing and displaying metrics will help you for capacity planning, or to
decide when to scale a service to run with more or fewer resources.

G4 r- 1> G
A I
|
|
|

) Y
@1 '(“‘ @l

Figure 52. Measuring microservices performances

There is already JMX (Java Management Extensions) as standard to expose metrics, but remote-JMX
is not easy to deal with."* Eclipse MicroProfile Metrics is specially targeted at exposing remote
APIs to collect metrics.

9.2.2. Metrics
Eclipse MicroProfile Metrics handles three types of metrics:

* Base Metrics: Metrics that all MicroProfile vendors have to provide.
» Vendor Metrics: Vendor specific metrics (optional).

» Application Metrics: Application-specific metrics (optional).

Each metric has a different endpoint. The Eclipse MicroProfile Metrics architecture consists of four
endpoints:

* /metrics/base: Set of metrics that all MicroProfile-compliant servers have to provide.
» /metrics/vendor: Vendor-specific metrics on top of the basic set of required metrics.
* /metrics/application: Metrics provided by the application at runtime.

» /metrics: Aggregates all the metrics.

Base Metrics

Base metrics is a list of metrics that all vendors need to implement. This scope provides data on,

258

among other things, heap memory, thread count, and available processors. Table 60 gives you the
list of all the required metrics. Each vendor can also implement base metrics that are marked as
optional by the specification."*"

Table 60. Base Metrics

Subpackage Description

Used Heap Memory Amount of used heap memory in bytes

Committed Heap Memory = Amount of memory committed for the JVM to use

Max Heap Memory Maximum amount of heap memory that can be used for memory
management

Garbage Collection Count Total number of GC collections that have occurred

Garbage Collection Time Approximate accumulated GC collection elapsed time

JVM Uptime Time elapsed since the start of the JVM

Thread Count Current number of live threads (both daemon and non-daemon
threads)

Daemon Thread Count Current number of live daemon threads

Peak Thread Count Peak live thread count since the JVM started

Current Loaded Class Count Number of classes that are currently loaded in the JVM
Total Loaded Class Count Total number of classes loaded since the JVM has started execution

Total Unloaded Class Count Total number of classes unloaded since the JVM has started
execution

Available Processors Number of processors available to the JVM

As an example, Listing 207 shows the output in JSON format of what based metrics can look like.

259

Listing 207. Base Metrics in [SON

{

"classloader.loadedClasses.count": 6697,
"classloader.loadedClasses.total": 6697,
"classloader.unloadedClasses.total": @,
"cpu.availableProcessors": 20,
"cpu.processCpulLoad”: 0.00019676867466752725,
"cpu.systemLoadAverage": 2.38916015625,
"gc.time;name=61 01d Generation": 0,
"gc.time;name=G1 Young Generation": 44,
"gc.total;name=61 01d Generation": 0,
"gc.total;name=G1 Young Generation": 7,
"jvm.uptime": 95261,
"memory.committedHeap": 1346371584,
"memory.maxHeap": 17179869184,
"memory.usedHeap": 65131392,
"thread.count": 74,
"thread.daemon.count": 24,
"thread.max.count": 74

Vendor Metrics

Vendor scope exposes vendor-specific information. Each vendor may have different
implementations or internal components that can be monitored. On the opposite of base metrics,
vendor metrics don’t need to be portable between different implementations.

Listing 208 shows metrics that are specific to Quarkus. Different vendors may provide other
metrics. Quarkus exposes internal core metrics (such as CPU, memory or memory pool), but each
Quarkus extension will have its own built-in metrics exposed. These are described in the guide for
each particular extension that supports built-in metrics."*”

260

Listing 208. Vendor Metrics in JSON

{
"cpu.processCpuTime": 4913697000,
"cpu.systemCpulLoad": 0.0,
"memory.committedNonHeap": 57540608,
"memory.freePhysicalSize": 1280987136,
"memory.freeSwapSize": 1283719168,
"memory.maxNonHeap": -1,
"memory.usedNonHeap": 54142672,
"memoryPool.usage.max;name=CodeHeap 'non-nmethods'": 1269248,
"memoryPool.usage.max;name=CodeHeap 'non-profiled nmethods'": 10081024,
"memoryPool.usage.max;name=Compressed Class Space": 4532448,
"memoryPool.usage.max;name=G1 Eden Space": 100663296,
"memoryPool.usage.max;name=61 01ld Gen": 37993176,
"memoryPool.usage.max;name=G1 Survivor Space": 12582912,
"memoryPool.usage.max;name=Metaspace": 38250944,
"memoryPool.usage;name=CodeHeap 'non-nmethods'": 1269248,
"memoryPool.usage;name=CodeHeap 'non-profiled nmethods'": 10088832,
"memoryPool.usage;name=Compressed Class Space": 4532448,
"memoryPool.usage;name=G1 Eden Space": 0,
"memoryPool.usage;name=61 01d Gen": 0,
"memoryPool.usage;name=G1 Survivor Space": 12582912,
"memoryPool.usage;name=Metaspace": 38251744

Application Metrics

Base and vendor metrics give you some statistics about the system, but applications may also want
to expose specific information. Application specific metrics need to be provided by the application
at runtime. Therefore Eclipse MicroProfile Metrics provides an API supporting Counters, Gauges,
Meters and Time. Let’s have a look at these APIs.

Counter

A counter is increased by one each time a request is made. In Listing 209, we want to know how
many times the getRandomBook() has been invoked. For that, we just annotate the method with
@Counted.

Listing 209. Counting Method Invocations

@GET
@Path("/random")
@Counted(name = "countGetRandomBook",
description = "Counts how many times the createBook method has been invoked")

public Response getRandomBook() {

Book book = service.findRandomBook();

return Response.ok(book).build();
}

261

Now, if we target the /metrics/application endpoint, we will see a counter increasing its value at
each call:

{

"BookResource.countGetRandomBook": 274

Gauge

A gauge is the simplest metric type that just returns a value. Although you could depend on simple
counters to describe the state of any given service, with gauge, you can create your own metric. In
Listing 210, the method countAl1Books() is annotated with @Gauge and returns the number of books
from a datastore. So, when the value of the gauge is retrieved, the underlying countAl1Books()
method is called to return the size of the inventory.

Listing 210. Getting Database Rows

(name = "gaugeCountAl1Books",
description = "Instantaneous time of the countAl1Books method",
unit = "correctness")
public Long countAl1Books() {
return service.countAl1Books();

}

Like the counter, the JSON output of the gauge is just a number and looks like this:

{
"BookResource.gaugeCountAl1Books": 5507847

}

Meter

So far we’ve seen how to count requests, but that doesn’t tell us if we are charging the endpoint
with requests? Well, we can measure the usage rate with @Metered. The meter in Listing 211
measures the rate at which the method getBook() is invoked.

262

Listing 211. Measuring Usage Rate

@GET
@Path("/{id}")
@Metered(name = "meteredGetBook",
description = "Measures throughput of the getBook method")
public Response getBook(@PathParam("id") Long id) {
Optional<Book> book = service.findBookById(id);
if (book.isPresent()) {
return Response.ok(book).build();
} else {
return Response.status(NOT_FOUND).build();
}
}

The result is richer than what we’ve seen so far. The JSON output gives you a detailed report about
the invocation rates:

* count: The number of observations.

* meanRate, oneMinRate, fiveMinRate, fifteenMinRate: Mean throughput and one-, five-, and fifteen-
minute exponentially-weighted moving average throughput.

{
"BookResource.meteredGetBook": {
"count": 278,
"meanRate": 0.657970418481868,
"oneMinRate": 0.6481905990593267,
"fiveMinRate": 0.6436398552008425,
"fifteenMinRate": 0.6214981180132817
}
}
Timed

The @Timed annotation goes further, as it tracks how frequently the method is invoked and how long
it takes for each invocation of the method to complete. Listing 212 benchmarks how much time the
getRandomBook () method takes. Notice that you can have multiple metrics annotations on a method
(here @Counted and @Timed).

263

Listing 212. Measuring How Long a Method Takes

@GET
@Path("/random")
@Counted(name = "countGetRandomBook",
description = "Counts how many times the createBook method has been invoked")
@Timed(name = "timeGetRandomBook",
description = "Times how long it takes to invoke the getRandomBook method",
unit = MetricUnits.MILLISECONDS)
public Response getRandomBook() {
Book book = service.findRandomBook();
return Response.ok(book).build();
}

This is a timer, therefore a compound metric with all durations expressed in milliseconds. It
consists of these values:

* min: The shortest duration it took to perform a request.

» max: The longest duration.

* mean: The mean value of the measured durations.

e stddev: The standard deviation.

p50, p75, p95, p99, p999: Percentiles of the durations. For example, the value in p95 means that
95% of the measurements were faster than this duration.

{
"BookResource.countGetRandomBook": 274,
"BookResource.timeGetRandomBook": {
"p99": 1014.066566,
"min": 18.458872,
"max": 1014.28636,
"mean": 587.7500411272563,
"p50": 576.884334,
"p999": 1014.28636,
"stddev": 285.88828298456485,
"p95": 994.982235,
"p98": 1014.066566,
"p75": 853.727789,
"count": 274,
"meanRate": 0.6484994811976507,
"oneMinRate": 0.6140485447801801,
"fiveMinRate": 0.6285496448252238,
"fifteenMinRate": 0.6165465198104992

The count, oneMinRate, fiveMinRate, fifteenMinRate and meanRate are the same as the one described
for @Metered.

264

9.2.3. Metrics Format

So far we’ve seen metrics representation in JSON. But in fact, data exposed via the REST endpoints
under /metrics can be expressed in two different data formats:

* JSON format: Used when the HTTP Accept header matches application/json.

* OpenMetrics format: Used when the HTTP Accept header matches text/plain. If the Accept
header is not present, or equally accepts both text/plain and application/json, then this format
is returned.

The metrics are exposed either in JSON or OpenMetrics format so that they can be processed by
additional tools such as Prometheus, and stored for analysis and visualisation."*"

When using JSON, the REST API will respond to GET requests. You just need to pass the right Accept
header:

$ curl -X GET -H "Accept: application/json" http://localhost:8080/metrics/application

This returns the metrics data:

{

"BookResource.meteredGetBook": {
"count": 278,
"meanRate": 0.657970418481868,
"oneMinRate": 0.6481905990593267,
"fiveMinRate": 0.6436398552008425,
"fifteenMinRate": 0.6214981180132817

But there is also a shadow tree that responds to OPTIONS that provides the metadata associated to a
metric. The following cURL command changes the GET verb to OPTIONS:

$ curl -X OPTIONS -H "Accept: application/json"
http://localhost:8080/metrics/application

The result is different. The output doesn’t give you any measures, but instead, the metadata
associated with a metric (here you can see the type of the measure and the description that we’ve
set in our annotation in Listing 211):

265

"BookResource.meteredGetBook": {
"unit": "per_second",
"type": "meter",
"description”: "Measures throughput of the getBook method",
"displayName": "",
"tags": []

Data can be exposed in the OpenMetrics text format. If you prefer an OpenMetrics export rather
than the JSON format, remove the -H "Accept: application/json" argument from the command
line:

$ curl -X GET http://localhost:8080/metrics/application

Unlike the JSON format, the OpenMetrics format does not support OPTIONS requests. That’s because
the metadata is included as part of the OpenMetrics text format.

HELP BookResource_meteredGetBook_total Measures throughput of the getBook method
TYPE BookResource meteredGetBook total counter

BookResource _meteredGetBook total 278

TYPE BookResource_meteredGetBook_rate_per_second gauge
BookResource_meteredGetBook_rate_per_second 0.657970418481868

TYPE BookResource_meteredGetBook_one_min_rate_per_second gauge
BookResource_meteredGetBook_one_min_rate_per_second 0.6481905990593267

TYPE BookResource_meteredGetBook_five_min_rate_per_second gauge
BookResource_meteredGetBook_five_min_rate_per_second 0.6436398552008425

TYPE BookResource_meteredGetBook_fifteen_min_rate_per_second gauge
BookResource_meteredGetBook_fifteen_min_rate_per_second 0.6214981180132817

9.2.4. Visualising Metrics with Prometheus

Having metrics is one thing but visualising them is another. That’'s when Prometheus comes into
play. Prometheus is an open source systems monitoring and alerting toolkit."*” Out of the box, you
get a lot of basic JVM metrics or even metrics of Prometheus itself, which are useful.

Thanks to its admin console, it’s really easy to get a graph from our metrics. For example, Figure 53
shows the one_min_rate_per_second metric of the getBook() method over 30 minutes. As you can see,
a tool like Prometheus can store metrics for analysis and visualisation.

266

Prometheus

 Enable query history

Load time: 38ms
application_org_agoncal_fascicle_quarkus_observability_metrics_application_BookResource_meteredGetBook_one_min_rate_per_second g Resolution: 7s

Total time series: 1
m - insert metric at cursor *

Graph Console

- 30m + « | Until » Res. (s) O stacked

0.7
0.68
0.66

0.64

:09:15 :09:30

Remove Graph

Figure 53. Visualising metrics on Prometheus

9.2.5. Configuring SmallRye Metrics

Like most Quarkus extensions, SmallRye Metrics has a few properties that you can find under the
quarkus.smallrye-metrics. namespace (see Table 61) and configure."""

Table 61. Some Quarkus Metrics Configuration Properties

Property Default
quarkus.smallrye-metrics.path /metrics
The path to the metrics handler

quarkus.smallrye-metrics.extensions.enabled true
Whether or not metrics published by Quarkus extensions should be enabled
quarkus.smallrye-metrics.micrometer.compatibility false

Apply Micrometer compatibility mode

9.3. Summary

One of the challenges of distributed architecture is monitoring. You end up with microservices
deployed in different locations, they communicate using an unreliable network, the logs are
distributed all over and some processes might take longer to accomplish than expected. Without
monitoring, you can’t easily react to a malfunctioning system.

The first thing to know about a microservice is: "Is the service running, and how well is it doing?" To
differentiate between these states, the Eclipse MicroProfile Health API has the concept of liveness
and readiness. You develop a class that tests the health of your component, service, or runtime, add

267

a simple annotation (@Liveness or @Readiness) and Quarkus will expose the health of the entire
system on a special endpoint.

On the other side, Metrics presents instant or periodical metrics on how services are reacting to
consumer requests. Using Eclipse MicroProfile Metrics increases the transparency of your
production resulting in higher reliability. Both Health and Metrics are critical for monitoring
microservices.

Talking about production, the next chapter is about Cloud Native. You will learn how Quarkus can
help you to package your microservices into Docker containers and orchestrate them with
Kubernetes.

[177] Health https://microprofile.io/project/eclipse/microprofile-health

[178] Health GitHub https://github.com/eclipse/microprofile-health

[179] InetAddress https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InetAddress.html#isReachable(int)
[180] Health UI https://github.com/microprofile-extensions/health-ext/tree/master/health-ui

[181] Metrics https://microprofile.io/project/eclipse/microprofile-metrics

[182] Metrics GitHub https://github.com/eclipse/microprofile-metrics

[183] JMX https://en.wikipedia.org/wiki/Java_Management_Extensions

[184] Optional and required base metrics https:/download.eclipse.org/microprofile/microprofile-metrics-2.0.2/microprofile-
metrics-spec-2.0.2.html#required-metrics

[185] Quarkus Guide https://quarkus.io/guides
[186] OpenMetrics https://openmetrics.io
[187] Prometheus https://prometheus.io

268

https://microprofile.io/project/eclipse/microprofile-health
https://github.com/eclipse/microprofile-health
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/net/InetAddress.html%23isReachable(int
https://github.com/microprofile-extensions/health-ext/tree/master/health-ui
https://microprofile.io/project/eclipse/microprofile-metrics
https://github.com/eclipse/microprofile-metrics
https://en.wikipedia.org/wiki/Java_Management_Extensions
https://download.eclipse.org/microprofile/microprofile-metrics-2.0.2/microprofile-metrics-spec-2.0.2.html%23required-metrics
https://download.eclipse.org/microprofile/microprofile-metrics-2.0.2/microprofile-metrics-spec-2.0.2.html%23required-metrics
https://quarkus.io/guides
https://openmetrics.io
https://prometheus.io

Chapter 10. Cloud Native

With Chapter 6, HTTP Microservices and Chapter 8, Event-Driven Microservices, we know now how
to develop microservices. A microservice architecture is made up of several microservices
accessing data stores (Chapter 5, Data, Transactions and ORM), communicating with each other
(Chapter 7, Communication and Fault Tolerance) and being monitored (Chapter 9, Observability). So
far we’ve executed all these code samples using the development mode (mvn quarkus:dev). That’s the
easiest way to develop microservices with Quarkus as you can change the code and see your
changes live. But when going to production, you need to package your code so it can be executed
either on a server, a VM or a container. And that’s a different story.

With Quarkus, you can package an application using different formats (a.k.a. JVM mode and Native
mode) depending on your needs. And because Quarkus comes with Cloud Native in mind, it has
some extensions to easily build a container image and execute it with an orchestrator. The
container used in this chapter is Docker, and the orchestrator Kubernetes.

Make sure your development environment is set up to execute the code in this
chapter. You can go to Appendix A to check that you have all the required tools

o installed, in particular Docker, VirtualBox and Kubernetes. The code in this
chapter can be found at https://github.com/agoncal/agoncal-fascicle-quarkus/tree/
1.0/cloud

10.1. Packaging Quarkus Applications

Before building a Docker image and executing it with Kubernetes, you need to package the code of
your application or microservice. If you come from the Jakarta EE world, you might already be
familiar with various packaging formats (all being simple zip files):

* JAR: A Java ARchive (.jar extension) is used to package Java code, property files, XML
descriptors, etc. that make up a Java application. It requires a JVM to run.

* WAR: A Web ARchive (.war extension) packages a web application and requires a Jakarta EE
Web Profile application server to run.

* EAR: An Enterprise ARchive (.ear extension) packages an enterprise application and requires a

full Jakarta EE application server.

Quarkus does not support WAR or EAR packaging, only JARs and native executables: we call that
the JVM mode and the Native mode. The different formats are then:
* JVM mode
> JAR,
o Fast JAR,
o Uber JAR.
* Native mode

- Native Executable (OS dependent),

269

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/cloud
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/cloud

o Linux Native Executable.

To choose between these packaging formats, it’s just a matter of changing the quarkus.package.type
configuration property. As usual, you can either change its value in the command line when
packaging (mvn package -Dquarkus.package.type=uber-jar) or in the application.properties file:

Possible values are jar, fast-jar, uber-jar and native
quarkus.package.type=fast-jar

Let’s see all these formats in detail.

10.1.1. JVM Mode

Quarkus is first and foremost a Java framework that lets you package and run classic JAR
applications. So in JVM mode, Quarkus generates an executable JAR and you execute it with the
java -jar command. In this mode, you need a Java runtime environment installed. There are
several JAR formats you can choose from depending on your needs. Some are easier to package and
distribute, some are better suited for containers, others faster to startup, etc. Let’s have a closer
look at these JAR formats.

JAR

When you package your code into a JAR file (either with the default mvn package or mvn package
-Dquarkus.package.type=jar), Quarkus creates a thin JAR and a separate 1ib directory with all the
dependencies. For example, Listing 213 shows the content of the target directory. At its root, we
have the thin JAR (suffixed with -runner.jar extension) and at the same level, a 1ib directory. This is
where Quarkus adds all the dependencies. So depending on the complexity of your application, the
1ib directory can fluctuate and be larger or smaller.

Listing 213. Thin JAR with Separate Lib Directory

target/

— 1ib/

| |— io.quarkus.arc.arc-1.7.0.Final.jar

| |— 1o.quarkus.quarkus-bootstrap-runner-1.7.0.Final.jar
| | 1o.quarkus.quarkus-core-1.7.0.Final.jar

| |— 1o.quarkus.quarkus-development-mode-spi-1.7.0.Final.jar
| | 1o.quarkus.quarkus-netty-1.7.0.Final.jar

| | 1o.quarkus.quarkus-resteasy-1.7.0.Final.jar

| | 1o.quarkus.quarkus-vertx-core-1.7.0.Final.jar

| F— io.vertx.vertx-web-3.9.2.jar

(-

— packaging-rest-1.0-SNAPSHOT-runner.jar

If you need to distribute the application, you need the -runner.jar file together with 1ib directory.
Then, to run the application, it’s just a matter of executing:

270

$ java -jar target/packaging-rest-1.0-SNAPSHOT-runner.jar

Fast-JAR

If you package your code into a Fast-JAR format (mvn package -Dquarkus.package.type=fast-jar),
then Quarkus generates a JAR with faster startup times. The Fast-JAR format was introduced as an
alternative to the default JAR packaging. The main goal of this format is to bring faster startup
times. The idea is that, at build time, Quarkus knows all the classes that are used by the application.
So it creates an index at build time to know which class is under which JAR. The speedup happens
because there is no need to go through each JAR to figure out which contains the class being loaded.
The regular JAR doesn’t have this kind of information and therefore needs to iterate over all the
jars on the ClassPath using the URLClassLoader. As shown in Listing 214, the application and its
dependencies are located under the target/quarkus-app directory as well as the index (the file
quarkus-application.dat).

Listing 214. Thin JAR with Dependencies and Index

target/
L— quarkus-app/
— app/
| — packaging-rest-1.0-SNAPSHOT.jar
F— 1lib/
| — boot/
| | F— io.quarkus.quarkus-bootstrap-runner-1.7.0.Final.jar
| | F— io.quarkus.quarkus-development-mode-spi-1.7.0.Final.jar
I
| — main/
| — do.quarkus.arc.arc-1.7.0.Final.jar
| — do.quarkus.quarkus-core-1.7.0.Final.jar
| — 1o.quarkus.quarkus-netty-1.7.0.Final.jar
| — 1o.quarkus.quarkus-resteasy-1.7.0.Final.jar
| — io.quarkus.quarkus-vertx-core-1.7.0.Final.jar
| — 1o.quarkus.quarkus-vertx-http-1.7.0.Final.jar
| — io.vertx.vertx-web-3.9.2.jar
| =
— quarkus/

| | generated-bytecode.jar
| — quarkus-application.dat
L— quarkus-run.jar

If you need to distribute the application, you need the entire content of the target/quarkus-app
directory. Then, to execute the application, you need to execute the following command:

$ java -jar target/quarkus-app/quarkus-run.jar

JAR and Fast-JAR are targeted at layered Docker images since it is more frequent to change the code
of the application than the libraries it depends on. This way, you build Docker images faster.

271

a It is very likely that future Quarkus versions will adopt the Fast-JAR format as the
default. But until Quarkus 1.9.0.Final, the default format is the JAR.

Uber-JAR

Uber-JARs are not specific to Quarkus and have existed for quite a long time now. An Uber-JAR is a
self-contained executable JAR. Think of it as a JAR containing the classes of the application as well
as all the classes of all the other dependencies. This means that the JAR functions as an all-in-one
distribution of the software, without needing any other Java code. This is why Uber-JARs are often
called Fat-JARs (they consist of a single huge JAR file).

The Quarkus Maven plugin supports the generation of Uber-JARs by specifying a
quarkus.package.type=uber-jar configuration option (either in the application.properties file or via
the mvn package -Dquarkus.package.type=uber-jar command). The original jar will still be present in
the target directory but it will be renamed to contain the .original suffix:

target/
— packaging-rest-1.0-SNAPSHOT-runner.jar
— packaging-rest-1.0-SNAPSHOT.jar.original

And if you unzip the Uber -runner.jar, you will see all the Java classes flatten into their package
structure as shown in Listing 215.

Listing 215. Unzipped Uber-JAR

packaging-rest-1.0-SNAPSHOT-runner.jar/
— META-INF

— application.properties

F— o0/

| — quarkus/.../...

agoncal/fascicle/quarkus/packaging/rest/
— AuthorResource.class
L— AuthorResource Bean.class

—

|

|

— eclipse/
L

10.1.2. Native Mode

As we’ve just seen, in JVM mode, Quarkus lets you package and run executable JARs. But thanks to
GraalVM, you can also compile your Java application into machine-specific code (a.k.a. Native

272

mode). Native compilation is a resource-intensive process, so you might not want to use this mode
during development. But as you will see, it is an interesting format for production when you want
to speed up startup time and improve memory usage. In fact, native executables make Quarkus
applications ideal for containers and serverless workloads. It comes in two flavours: native
executables that run on your operating system, or native executables that run on Linux (if your
operating system is not Linux). This last option is very useful when you deploy your application
onto a Linux environment or a container.

Native Executable

To create a native executable that is specific to your operating system, you need GraalVM installed
(see Appendix A to make sure GraalVM is correctly set up). Also make sure that your pom.xml has the
proper native profile, because creating a native executable can either be done with:

* mvn package -Dquarkus.package.type=native: This will create a native executable but will not run
the native tests (see Chapter 11 for native tests).
* mvn package -Pnative: This is the preferred way as it sets the quarkus.package.type to native and

executes the native tests.

When you execute these commands, the Quarkus Maven plugin will use GraalVM to compile the
application. This long process will output logs that look like the following:

[rest-1.0-runner:6633] classlist: 2 946,66 ms, 0,96 GB
[rest-1.0-runner:6633] (cap): 2 400,01 ms, 0,96 GB
[rest-1.0-runner:6633] (clinit): 593,34 ms, 3,23 GB
[rest-1.0-runner:6633] (objects): 10 701,24 ms, 3,23 GB
[rest-1.0-runner:6633] (features): 432,41 ms, 3,23 GB
[rest-1.0-runner:6633] analysis: 19 751,35 ms, 3,23 GB
[rest-1.0-runner:6633] universe: 743,99 ms, 3,23 GB
[rest-1.0-runner:6633] (inline): 2 137,72 ms, 4,36 GB
[rest-1.0-runner:6633] compile: 14 151,81 ms, 5,51 GB
[rest-1.0-runner:6633] image: 2 381,22 ms, 5,51 GB
[rest-1.0-runner:6633] write: 764,91 ms, 5,51 GB
[rest-1.0-runner:6633] [total]: 44 611,44 ms, 5,51 GB

Then, under the target directory, you will have an executable application that contains all the
libraries and just what it needs from the JVM to run our application.

target/
—— packaging-rest-1.0-SNAPSHOT-runner
L—— packaging-rest-1.0-SNAPSHOT.jar

Maven still produces a JAR file, but that’s Maven’s default behaviour: this JAR file is therefore
useless. What you have to look for is the executable: the file that has no extension (here packaging-
rest-1.0-SNAPSHOT-runner).

You can execute it with the following command:

273

$ target/packaging-rest-1.0-SNAPSHOT-runner

As you can see, we don’t need a Java runtime environment to execute the file (we don’t need a java
-jar command). We just run it as any other binary executable file.

The produced executable is specific to your operating system. For example, if you are running on
macOS, this executable will only work on macOS, not on Linux nor Windows. This is ok for testing,
but for production, you might want to produce a Linux executable to be executed on a Linux box or
on a container. Quarkus can help you in generating such executables.

Linux Native Executable

To create an executable that will run on a Linux machine or in a container, you need to set another
Quarkus variable when using the native profile. So the command would be: mvn package -Pnative
-Dquarkus.native.container-build=true.

The build process is now slightly different than building a native executable for your operating
system as seen above. To produce a 64-bit Linux executable, the build itself needs to run in a
Docker container. This means that, by default, the native executable will be generated using the
quay.io/quarkus/ubi-quarkus-native-image:20.2.0-javal1l Docker image. So you don’t need to have
GraalVM installed locally, the Docker image has everything it needs. But you need Docker installed
(to download and execute the Docker image).

If you want to build a native executable with a different Docker image (for
instance to use a different GraalVM version), use the -Dquarkus.native.builder

o -image=<image name> property. The list of the available Docker images can be found
on quay.io."™ Be aware that a given Quarkus version might not be compatible
with all the images available.

Like before, the 64-bit Linux executable is generated under the target directory:

target/
—— packaging-rest-1.0-SNAPSHOT-runner
L—— packaging-rest-1.0-SNAPSHOT. jar

But, depending on your operating system, it may no longer be runnable. For example, if you are
running on macOS and execute this file, you will get the following error:

$ target/packaging-rest-1.0-SNAPSHOT-runner

Failed to execute process 'target/packaging-rest-1.0-SNAPSHOT-runner'.

Reason: Exec format error

The file 'target/packaging-rest-1.0-SNAPSHOT-runner' is marked as an executable but
could not be run by the operating system.

274

10.1.3. Performances

Each format has its pros and cons. So let’s recap how we build these different executables, how we
execute them, but more importantly, which one is the fastest to boot and which one to choose.

Build and Execute

Let’s first quickly recap the commands that we’ve used. Table 62 summarises the Maven commands
used to build each executable, while Table 63 shows the command to run the generated executable.

Table 62. Command to Build

Packaging Format Command

JAR mvn package -Dquarkus.package.type=jar

Fast-JAR mvn package -Dquarkus.package.type=fast-jar

Uber-JAR mvn package -Dquarkus.package.type=uber-jar

Native mvn package -Pnative

Linux Native mvn package -Pnative -Dquarkus.native.container-build=true

Table 63. Command to Execute

Packaging Format Command

JAR java -jar target/<name>-runner.jar

Fast-JAR java -jar target/quarkus-app/quarkus-run.jar
Uber-JAR java -jar target/<name>-runner.jar

Native target/<name>-runner

Linux Native target/<name>-runner

Executable Size

One easy metric to get is the size of the executable: you package your application picking up a
format, and you get the size in megabytes. Of course, the more complex your application is, the
more dependencies it needs and the larger the executable will be. So in order to compare, Table 64
shows the size of the executable for two different types of application:

» A REST application: A simple JSON REST endpoint.

* A complex application: A JSON REST endpoint with validation, Hibernate ORM with Panache,
transactions, injection and an H2 database.

Table 64. Executable Size

Packaging Format REST App Complex App
JAR (thin jar + target/1ib) 200 Kb + 10 Mb 400 Kb + 30 Mb
Fast-JAR (target/quarkus-app) 11 Mb 31 Mb
Uber-JAR 10 Mb 30 Mb

275

Packaging Format REST App Complex App
Native 27 Mb 69 Mb
Linux Native 27 Mb 69 Mb

On the JVM mode, most JAR formats have the same size (around 10 Mb for a simple REST
application, 30 Mb for a complex one). The same happens for Native mode: a Linux executable is
more or less the same size as the executable for your operating system. The main difference is the
size between JVM and Native modes. The native executables are bigger because they embed the
part of the Java runtime environment needed to execute the application. But in all scenarios, the
more dependencies an application has (i.e. the complex application) the bigger the executable is.

Time to First Request

Another useful measure to take is the time to serve the first request. It is more accurate than just
measuring the startup time as some frameworks can use aggressive lazy initialisation techniques. It
is important to measure the time to serve the first request to most accurately reflect how long a
framework needs to start. Table 65 shows, for each executable format, the time, in milliseconds, it
took to serve the first request of the complex application.

Table 65. Time to First Request

Packaging Format REST App Complex App
JAR 165 ms 170 ms
Fast-JAR 160 ms 160 ms
Uber-JAR 185 ms 190 ms

Native 10 ms 25 ms

The startup time includes the time that Quarkus needs to start but also the time to

first request. The numbers in Table 65 were made on macOS with a JVM 11 with no

optimisation. To get these numbers I followed a recipe described on the Quarkus
: [189]

guide:

* Loop a GET curl command on a REST endpoint;

o * Startup the application;

 Start counting when Quarkus starts, finish counting when the first request is
served,;

* Repeat 10 times and calculate the average time.

Depending on your hardware and JVM version you will get different results.
What’s important here is to be able to compare startup times depending on the
packaging format.

Pros and Cons

So, which format to use? Well, it depends if you want a JVM or Native mode and if you target
deploying the executable on a container or not. Table 66 gives you some pros and cons on each

276

format so you can make up your mind.

Table 66. Pros and Cons
Packaging Format
JAR .

Fast-JAR .

Uber-JAR .

Native .

Linux Native .

Pros

Quick to build

Dependencies in /lib so we
reuse the Docker layers when re-
building an image

Quarkus comes with a Dockerfile
for this format

Fast to start

Dependencies in /lib so we
reuse the Docker layers when re-
building an image

Quarkus comes with a Dockerfile
for this format

Easy to distribute as there is only
one single JAR

Really fast startup

Low memory consumption

Really fast startup
Portable across Linux OS

Quarkus comes with a Dockerfile
for this format

10.1.4. Configuring Packaging

Cons

Not easy to distribute as there
are several files and directories

Not easy to distribute as there
are several files and directories

Impossible to reuse libraries in
Docker layers, takes time to re-
build an image

Quarkus does not come with a
Dockerfile for this format (But
Jib can handle this)

Takes time to build
Only for local operating system

Quarkus does not come with a
Dockerfile for this format

Takes time to build

The packaging type is not the only thing that can be configured in Quarkus. Table 67 shows a subset
of properties dedicated to packaging. You will find these properties under the quarkus.package.

namespace.”""!

Table 67. Some Quarkus Packaging Configuration Properties

277

Property Default

quarkus.package.type jar
The requested output type (jar, fast-jar, uber-jar and native).

quarkus.package.output-directory
The output folder in which to place the output, this is resolved relative to the build
systems target directory.

quarkus.package.output-name
The name of the final artifact.

quarkus.package.user-configured-ignored-entries
Files that should not be copied to the output artifact.

quarkus.package.runner-suffix -runner
The suffix that is applied to the runner jar and native images.

10.2. Docker

Now that you have chosen the way you want to package your application, you might want to
distribute it as a container image. Quarkus comes with several artifacts to ease building container
images. First of all, when generating a Quarkus application, you get several Dockerfiles to help you
build your Docker image: either manually or with a Docker extension. But if you don’t want to
maintain Dockerfiles, Quarkus lets you build these images without a Docker environment, thanks to
its Jib extensions. Let’s take a look at these different artifacts.

10.2.1. Dockerfiles

When bootstrapping a Quarkus application (either with the Web Interface, IDE plugin or Maven
plugin), you get several Dockerfiles into the src/main/docker folder."”” Each of these files targets a
specific packaging format (notice that there is no generated Dockerfile for the Uber-JAR packaging):

* JAR: Dockerfile.jvm

» Fast-JAR: Dockerfile.fast-jar

* Linux Native Executable: Dockerfile.native
A Dockerfile is a plain text file that contains a set of commands that assemble an image so that it
can be executed by Docker. Each Dockerfile matches with a specific format (JAR, Fast-JAR, Native)
and has a different set of instructions. You can use them as they are or use them as templates and

change their content to suit your needs. Table 68 shows a subset of Dockerfile commands that are
used in the samples below.

Table 68. Some Docker Commands

Command Description

ADD Defines files to copy from the Host file system onto the container

CMD Command that will run when the container starts

ENTRYPOINT Sets the default application used every time a container is created from the image

278

Command Description

ENV Sets/modifies the environment variables within containers created from the image
EXPOSE Defines which container ports to expose

FROM Selects the base image to build the new image on top of

USER Defines the default user all commands will be run as within any container created

from your image

WORKDIR Defines the default working directory for the command defined in the ENTRYPOINT
or CMD instructions

JVM Mode

In JVM mode, Quarkus generates two Dockerfiles: one for JAR (Dockerfile.jvm) and another one for
Fast-JAR (Dockerfile.fast-jar). In both scenarios, these Dockerfiles have in common the same base
image. UBI, or Red Hat Universal Base Image, is a subset of the Red Hat Enterprise Linux operating
system, stripped down to the bare essentials, and is perfect for containers."”"’ Meaning that these
Dockerfiles use a Linux environment to run your application.

FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1

In JVM mode, we need a Java runtime environment to execute the application. But because UBI is
such a light Linux operating system, it does not contain a JVM. Therefore, both Dockerfile.jvm and
Dockerfile.fast-jar need to install a JVM for a specific version of the JVM:

ARG JAVA_PACKAGE=java-11-openjdk-headless

RUN microdnf install curl ca-certificates ${JAVA PACKAGE} \

&& microdnf update \

&& microdnf clean all \

&& mkdir /deployments \

&& chown 1001 /deployments \

&& chmod "g+rwX" /deployments \

&& chown 1001:root /deployments \

&& curl https://repol.maven.org/maven2/io/fabric8/run-java-
sh/${RUN_JAVA_VERSION}/run-java-sh-${RUN_JAVA_VERSION}-sh.sh -o /deployments/run-
java.sh \

&& chown 1001 /deployments/run-java.sh \

&& chmod 540 /deployments/run-java.sh \

&& echo "securerandom.source=file:/dev/urandom" >>
/etc/alternatives/jre/lib/security/java.security

ENV JAVA_OPTIONS="-Dquarkus.http.host=0.0.0.0
-Djava.util.logging.manager=org.jboss.logmanager.LogManager"

The difference between both Dockerfiles is in the content that they copy to get the application up
and running. For example, in the Dockerfile.jvm, we copy the thin JAR file (the one with the

279

-runner.jar extension) as well as the /1ib directory (the directory containing all the JARs the
application depends on):

COPY target/1ib/* /deployments/1ib/
COPY target/*-runner.jar /deployments/app.jar

As for the Fast-JAR, the Dockerfile.fast-jar file just needs to copy the content of the target/quarkus-
app directory where the entire application, dependencies and index is located:

COPY --chown=1001 target/quarkus-app /deployments/

Then, both Dockerfile.jvm and Dockerfile.fast-jar expose the listening port 8080 and execute the
application with a shell script:

EXPOSE 8080
USER 1001

ENTRYPOINT ["/deployments/run-java.sh"]

Linux Native Executable

For the Linux native executable, the Dockerfile.native is totally different. First of all, since there is
no need to use a Java layer to start the application, the image doesn’t need to install a Java runtime
environment. The native executable just runs on Linux (on the Red Hat Universal Base Image), no
need to have a JVM runtime. So it’s just a matter of copying the executable (the *-runner file) and
executing it (the CMD command):

Listing 216. Dockerfile for the Native Image

FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1
WORKDIR /work/
RUN chown 1001 /work \
&& chmod "g+rwX" /work \
&& chown 1001:root /work
COPY --chown=1001:root target/*-runner /work/application

EXPOSE 8080
USER 1001

CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]

10.2.2. Building Docker Images

Now that you have packaged your application into the right executable (JAR, Fast-JAR or Native)
and you understand the structure of its Docker file (Dockerfile.jvm, Dockerfile.fast-jar,
Dockerfile.native), you can easily build its Docker image. In fact, if you are confident with Docker

280

commands, you can manually build a Docker image with just the Dockerfile. If instead you don’t
want to run Docker commands but want to let your build system automatically create the image,
Quarkus comes with a Docker extension for Maven (and Gradle). And if you don’t want to maintain
Dockerfiles, just get rid of them, and rely on the Quarkus Jib extension: a simple Maven command
and Jib will automatically create a Docker image without any Dockerfile.

Building Manually with Docker

If you are used to Docker and prefer to type Docker commands, then you can use your expertise to
build Docker images. Depending on the image you want to build, you just execute a docker image
build command on the appropriate Dockerfile (Dockerfile.jvm, Dockerfile.fast-jar or
Dockerfile.native). Table 69 shows the Docker commands used to build the images. As you can see,
all the commands look the same, except for the Dockerfile name.

Table 69. Command to Build the Docker Image

Packaging Format Command

JAR docker image build -f src/main/docker/Dockerfile.jvm -t
agoncal/quarkus-jar .

Fast-JAR docker image build -f src/main/docker/Dockerfile.fast-jar -t
agoncal/quarkus-fast-jar .

Linux Native docker image build -f src/main/docker/Dockerfile.native -t
agoncal/quarkus-native .

When you execute one of these commands, you will see output traces similar to the following one:

Listing 217. Output When Manually Building Docker Image

Sending build context to Docker daemon

Step 1/11 : FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1

Step 2/11 : ARG JAVA_PACKAGE=java-11-openjdk-headless

Step 3/11 : ARG RUN_JAVA_VERSION=1.3.8

Step 4/11 : ENV LANG="en_US.UTF-8' LANGUAGE='en_US:en'

Step 5/11 : RUN microdnf install curl ca-certificates ${JAVA_PACKAGE} ...
Step 6/11 : ENV JAVA_OPTIONS="-Dquarkus.http.host=0.0.0.0 -Djava.util....
Step 7/11 : COPY target/lib/* /deployments/1lib/

Step 8/11 : COPY target/*-runner.jar /deployments/app.jar

Step 9/11 : EXPOSE 8080

Step 10/11 : USER 1001

Step 11/11 : ENTRYPOINT ["/deployments/run-java.sh"]

Successfully built 32a3ad8393bd
Successfully tagged quarkus/docker-jvm:latest

That’s it. The Docker image is successfully built. If you change your Java code, you need to compile
your code, package it (mvn package) and run the same docker image build command again. To avoid
typing different commands, Quarkus comes with a Docker extension that allows automating this
build process.

281

In this chapter, the Docker images are all named using the agoncal prefix. This
prefix is important because it needs to match the username account on the Docker

A Hub (so images can be pushed). So you should change the agoncal prefix to your
username. If you need more information on Docker Hub, logging into the remote
registry and pushing images, check Appendix A.

Building with the Docker Extension

If you want to avoid typing commands to build Docker images and want to have this process
integrated in your build system, then you should use the Docker extension. To have Quarkus
generate Docker images based on the Dockerfiles located under src/main/docker, just add the Maven
dependency in Listing 218 to the pom.xml.

Listing 218. Docker Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-container-image-docker</artifactId>
</dependency>

Once you’ve added the Docker extension, you execute a Maven command setting the configuration
property quarkus.container-image.build to true (or setting it in the application.properties file). Also
remember that you can add other properties, such as the build format, if you want to build a
Docker image for a specific packaging format (JAR, Fast-JAR or Linux Native). Here are some Maven
commands you could execute:

$ mvn package -Dquarkus.container-image.build=true

$ mvn package -Dquarkus.container-image.build=true -Dquarkus.package.type=jar

$ mvn package -Dquarkus.container-image.build=true -Dquarkus.package.type=fast-jar
$ mvn package -Dquarkus.container-image.build=true -Dquarkus.package.type=native
-Dquarkus.native.container-build=true

These Maven commands will produce an output similar to Listing 219. If fact, if you look carefully
at the outputs in Listing 217 and Listing 219, you realise that they are similar. The Docker extension
just executes a docker image build command on the appropriate Dockerfile.

282

Listing 219. Output When Building Docker Image with Docker Extension

[INFO]
[INFO]
[INFO]
[INFO]

[INFO]

--- quarkus-maven-plugin:build @ container-docker ---
Building thin jar: target/container-docker-1.0-SNAPSHOT-runner.jar
Docker daemon found. Version:'19.03.12'

Building docker image for jar.

Executing the following command to build docker image: 'docker build -f

src/main/docker/Dockerfile.jvm -t agoncal/myapp:1.0 .'

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
-Djava
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

[INFO]
[INFO]
[INFO]

[INFO]
[INFO]
[INFO]

Sending build context to Docker daemon 11.32MB

Step 1/11 : FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1

Step 2/11 : ARG JAVA_PACKAGE=java-11-openjdk-headless

Step 3/11 : ARG RUN_JAVA_VERSION=1.3.8

Step 4/11 : ENV LANG="en_US.UTF-8' LANGUAGE='en_US:en'

Step 5/11 : RUN microdnf install curl ca-certificates ${JAVA_PACKAGE} ...
Step 6/11 : ENV JAVA_OPTIONS="-Dquarkus.http.host=0.0.0.0

.util.logging.manager=org.jboss.logmanager.LogManager"

Step 7/11 : COPY target/lib/* /deployments/1lib/

Step 8/11 : COPY target/*-runner.jar /deployments/app.jar
Step 9/11 : EXPOSE 8080

Step 10/11 : USER 1001

Step 11/11 : ENTRYPOINT ["/deployments/run-java.sh"]

Successfully built a7ddd127c3c3

Successfully tagged agoncal/myapp:1.0
Built container image agoncal/myapp:1.0

For this extension to work, it needs to have Docker installed. If your build environment does not
have Docker or if you don’t want to maintain any Dockerfiles, then you can use the Jib extension.

Building with the Jib Extension

Jib is an open source Java tool from Google in order to create Docker images in an easy and fast
way."” No need to create a Dockerfile, no need to install a Docker daemon, Jib just runs out-of-the-
box. As usual, what you need is to use the appropriate extension. To build Docker images using Jib,
just add the Jib extension dependency shown in Listing 220 to the pom.xml.

Listing 220. Jib Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-container-image-jib</artifactId>
</dependency>

283

You use the Jib extension the same way you use the Docker extension: you pass the required
properties to an mvn package command:

$ mvn package -Dquarkus.container-image.build=true

What differs is the output. As you can see in Listing 221, this time there is no docker image build
command, nor any specific Dockerfile.

Listing 221. Output When Building Docker Image with Jib Extension
[INFO] --- quarkus-maven-plugin:1.7.71.Final:build @ container-jib ---

[INFO] Building thin jar: target/container-jib-1.0-SNAPSHOT-runner.jar

[INFO] Starting container image build

[INFO] Base image 'fabric8/java-alpine-openjdk11-jre’

[INFO] Container entrypoint set to [java, -Dquarkus.http.host=0.0.0.0,
-Djava.util.logging.manager=org.jboss.logmanager.LogManager, -cp,
/app/resources:/app/classes:/app/libs/*, io.quarkus.runner.GeneratedMain]

[INFO] Created container image agoncal/myapp:1.0

[INFO] --------mmmmmmmmmomoee
[INFO] BUILD SUCCESS
[INFO] ----------mmmmmmommoee

By default, the Jib extension uses default values, like the FROM or the ENTRYPOINT. As you can see in
Listing 221, by default the base image is fabric8/java-alpine-openjdk11-jre. If you want to change
it, Quarkus has the property quarkus.jib.base-jvm-image you can use. For example, below we build
a Docker image using OpenJDK 8 instead of 11.

$ mvn package -Dquarkus.container-image.build -Dquarkus.jib.base-jvm
-image=fabric8/java-alpine-openjdk8-jre

10.2.3. Running Docker Images

So far we’ve built Docker images (either manually with Dockerfile, with the Docker extension or
with the Jib extension). Now it’s time to execute them. Once the images are created and registered
in the Docker daemon, you can check that they are available in your local Docker repository by
executing the docker image 1s command.

$ docker image 1s | grep agoncal/

REPOSITORY TAG IMAGE ID SIZE

agoncal/quarkus-jar latest 32a33ad8393bd 502MB
agoncal/quarkus-fast-jar latest 568a78cd8a29 502MB
agoncal/quarkus-native latest 0bofa9ec5b7d 133MB

284

What’s interesting to notice in this output is the size of the images. JVM mode (JAR and Fast-JAR)
need to install a JVM to the UBI, so that’s why they are way larger than the image using native
mode.

Then, depending on the image you’ve built, you need to execute it. Table 70 shows the Docker
command needed to run the image. Despite the Docker image name, they all look the same and use
the same options:

* The -1 flag connects the container to the terminal.

» --rmremoves the container’s file system after the container exits.

* -p 8082:8080 exposes the port 8082 externally, thus mapping to port 8080 on the host machine
(which is the default port Quarkus is listening to).

Table 70. Command to Run the Docker Image

Packaging Format Command

JAR docker container run -i --rm -p 8080:8080 agoncal/quarkus-jar
Fast-JAR docker container run -i --rm -p 8081:8080 agoncal/quarkus-fast-jar
Linux Native docker container run -i --rm -p 8082:8080 agoncal/quarkus-native

Once the container is up and running, you can access your application as you would do if you were
not using containers (e.g. cURL a specific REST endpoint at a specific URL). If you want to check
which container is running, you can execute a docker container 1ls command:

$ docker container 1s

CONTAINER ID IMAGE COMMAND PORTS

98619dcad837 agoncal/quarkus-jar "/deployments/run-ja---" 8080->8080/tcp
be54f30af529 agoncal/quarkus-fast-jar "/deployments/run-ja---" 8081->8080/tcp
5a964dd7e693 agoncal/quarkus-native "./application -Dqua---" 8082->8080/tcp

10.2.4. Pushing Docker Images

Now that we know that our images run as expected, let’s make them available to others by pushing
them to a remote Docker registry (Docker Hub being the default). Docker Hub is a service provided
by Docker for finding and sharing container images.""””

For publishing images on Docker Hub you need to signup, create a free account and login locally
(using the docker login command). Your images name also needs to be the same as your account. So
in the following command you must change agoncal with your Docker Hub account. For pushing
manually a Docker image to Docker Hub, just use the docker image push command:

285

$ docker image push agoncal/quarkus-fast-jar

The push refers to repository [docker.io/agoncal/quarkus-fast-jar]
e62721cac2ee: Pushed
latest: digest: sha256:92ae511aeef73f33b0f1e65ef3 size: 1161

This command will push each layer of the image to the remote registry. As shown in Figure 54, you
can then log on to Docker Hub and check your images.

'===' Q Search for great content (e.g., mysql) Explore Repositories agoncal ~

agoncal e Q' Search by repository name... Create Repository
agoncal / quarkus-native %0 1 ® Public

Updated a few seconds ago

agoncal / quarkus-fast-jar J .
Updated 9 minutes ago pAGY >, 1 ®) Public

agoncal / quarkus-jar J .
Updated 10 minutes ago w0 Y, 2 @ Public

Figure 54. Docker images available on Docker Hub

The docker image push command allows you to manually push a Docker image. But what if we want
to integrate this phase to our building system? Well, if you use the Docker or Jib extension, this can
be done automatically. It is just a matter of setting the quarkus.container-image.push property to
true (either in the application.properties file or on the Maven command). Listing 222 shows the
output of a single Maven command that packages the code into a JAR, builds the Docker image
based on the Dockerfile Dockerfile.jvm and pushes it to a remote registry.

286

Listing 222. Output When Building and Pushing a Docker Image

$ mvn package -Dquarkus.package.type=jar -Dquarkus.container-image.build=true
-Dquarkus.container-image.push=true

[INFO] --- quarkus-maven-plugin:build @ container-docker ---

[INFO] Building thin jar: target/container-docker-1.0-SNAPSHOT-runner.jar
[INFO] Docker daemon found. Version:'19.03.12'
[INFO] Building docker image for jar.

[INFO] Executing the following command to build docker image: 'docker build -f
Dockerfile.jvm -t agoncal/myapp:1.0 .'

[INFO] Sending build context to Docker daemon 11.32MB

[INFO] Step 1/11 : FROM registry.access.redhat.com/ubi8/ubi-minimal:8.1
[INFO] Step 2/11 : ARG JAVA_PACKAGE=java-11-openjdk-headless

[INFO] Step 3/11 : ARG RUN_JAVA_VERSION=1.3.8

[INFO] Step 4/11 : ENV LANG='"en_US.UTF-8' LANGUAGE='en_US:en'

[INFO] Step 5/11 : RUN microdnf install curl ca-certificates ${JAVA_PACKAGE}
[INFO] Step 6/11 : ENV JAVA_OPTIONS="-Dquarkus.http.host=0.0.0.0
-Djava.util.logging.manager=org.jboss.logmanager.LogManager"

[INFO] Step 7/11 : COPY target/lib/* /deployments/1lib/

[INFO] Step 8/11 : COPY target/*-runner.jar /deployments/app.jar

[INFO] Step 9/11 : EXPOSE 8080

[INFO] Step 10/11 : USER 1001

[INFO] Step 11/11 : ENTRYPOINT ["/deployments/run-java.sh"]

[INFO] Successfully built a7ddd127c3c3
[INFO] Successfully tagged agoncal/myapp:1.0
[INFO] Built container image agoncal/myapp:1.0

[INFO] No container image registry was set, so 'docker.io' will be used
[INFO] The push refers to repository [docker.io/agoncal/myapp]

[INFO] 226236a38a0e9: Preparing

[INFO] b8d@e430blad: Preparing

[INFO] d6@ab@fdbcec: Preparing

[INFO] d60418694048: Preparing

[INFO] 2262a6a8a0e9: Pushed

[INFO] 1.0: digest: sha256:4668ccb5fb21f81d2b09e3 size: 1371

[INFO] Successfully pushed docker image agoncal/myapp:1.0

[INFO] == mmmommmeemee

[INFO] BUILD SUCCESS
[T ====mmmmmmmmeeeeeeee

Now that the Docker images are available on a public repository, they can be pulled by anyone. This
also includes orchestrators such as Kubernetes.

287

10.2.5. Configuring Containers

Table 71 shows a subset of properties that can be used to customise the container image build
process. Common properties are defined under the quarkus.container-image. namespace, and
depending on the container implementation (Docker or Jib), you have specific properties under

quarkus.docker. and quarkus.jib.

Table 71. Some Quarkus Container Configuration Properties
Property

quarkus.native.container-build

If the build should be done using a container runtime. If this is set,

Docker will be used by default.

quarkus.native.container-runtime

The container runtime (e.g. docker) that is used to do an image

based build.

quarkus.container-image.group
The group the container image will be part of.

quarkus.container-image.name
The name of the container image.

quarkus.container-image.tag
The tag of the container image.

quarkus.container-image.build
Whether or not an image build will be performed.

quarkus.container-image.push
Whether or not an image push will be performed.

quarkus.docker.dockerfile-jvm-path
Path to the JVM Dockerfile.

quarkus.docker.dockerfile-native-path
Path to the native Dockerfile.

quarkus.jib.base-jvm-image
The base image to be used when a container image is being

produced for the jar build.

quarkus.jib.base-native-image
The base image to be used when a container image is being
produced for the native build.

10.3. Kubernetes

Default

false

${user.name}

${quarkus.application.name:
unset}

${quarkus.application.versi
on:latest}

false

false

src/main/docker/Dockerfile.
jvm

src/main/docker/Dockerfile.
native

fabric8/java-alpine-
openjdk11-jre

registry.access.redhat.com/
ubi8/ubi-minimal

Now that we have verified how simple it is to run Quarkus applications in a container, we will
deploy our application into a Kubernetes-native environment. By adding these dependencies, we

enable the generation of Kubernetes manifests

Kubernetes (a.k.a. K8s) is an orchestrator for containerised applications."*" It takes its name from a

288

Greek word meaning helmsman, or captain: if Docker packages applications inside containers,
Kubernetes is the captain sailing those containers. Kubernetes can schedule, scale, heal, update,
start or stop several containers.

10.3.1. Kubernetes Manifest Files

Deploying a Docker image to a Kubernetes cluster implies several steps. You need to create a
Deployment, associate it several Services, several Pods, etc. All these steps can be done separately
using the command line interface kubectl (see Appendix A if you want to know more about creating
a deployment on the command line). But this can be cumbersome and error prone. The other way
to deploy on Kubernetes is using manifest files.

A Kubernetes manifest file describes the desired state of the cluster, not how we want to achieve
this state, that is Kubernetes' role. For example, the desired state could be "I want three instances of
Quarkus, so that’s 3 pods". K8s installs the desired state in the actual state. If something goes wrong,
and the actual state differs from the desired state (e.g. one instance of Quarkus fails), Kubernetes
will do everything to get back the desired state in the actual state. It is very common to define
manifests in the form of YAML files and send them to the Kubernetes via commands such as kubect1
apply -f vintageStore.yaml or kubectl delete -f vintageStore.yaml. Let’s see how to write manifest
files to deploy one of the Docker images we’ve previously built.

First, we need to define a deployment as shown in Listing 223. Remember that Kubernetes manages
container-based resources. In the case of a Deployment, we are creating a set of resources to be
managed (in our case, the agoncal/quarkus-jar Docker image). The manifest file starts with the
apiVersion. Next, we specify some metadata and give a name to the Deployment. Finally, we get into
the spec object where we actually describe the state of the deployment that we expect. We start, in
this case, by saying that whatever Pods we deploy, we want to have 1 replica (one instance). And
then we select (the selector object) the Pods affected by this Deployment, the ones that match
certain labels (matchLabels) which are defined in Listing 224.

289

Listing 223. Deployment Definition

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app.kubernetes.io/name: quarkus-jar
app.kubernetes.io/version: latest
name: quarkus-jar

spec:
replicas: 1
selector:
matchlLabels:

app.kubernetes.io/name: quarkus-jar
app.kubernetes.io/version: latest
template:
metadata:
labels:
app.kubernetes.io/name: quarkus-jar
app.kubernetes.io/version: latest

spec:
containers:
- env:
- name: KUBERNETES_NAMESPACE
valueFrom:

fieldRef:
fieldPath: metadata.namespace
image: agoncal/quarkus-jar:latest
imagePullPolicy: IfNotPresent
name: quarkus-jar

An important thing to note about the Deployment is that it uses agoncal/quarkus-jar:latest as the
container image of the Pod. In Listing 224, we’re specifying that we want to create a Service (a
Service is an abstraction which defines a logical set of Pods). The spec property includes any
containers, network port, or other pieces that Kubernetes needs to know about.

290

Listing 224. Service Definition

apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/name: quarkus-jar
app.kubernetes.io/version: latest
name: quarkus-jar

spec:
ports:
- name: http
nodePort: 31826
port: 8080
targetPort: 8080
selector:

app.kubernetes.io/name: quarkus-jar
app.kubernetes.io/version: latest
type: NodePort

These manifest files can be applied to the cluster using kubect1:

$ kubectl apply -f vintageStore.yaml

Table 72 lists a few objects that you can find in the Kubernetes manifest file.

Table 72. Some Kubernetes Objects

Keyword Description

apiVersion Which version of the Kubernetes API you're using to create this object

kind What kind of object you want to create (Deployment, Service, Pod, etc.)

metadata Data that helps uniquely identify the object, including a name string, UID, and
optional namespace

spec What state you desire for the object

replicas Number of pods to create during a deployment

selector Optional object that tells the Kubernetes deployment controller to only target pods

that match the specified labels
ports Internal and external listening ports

1mage Docker image name

10.3.2. Building Kubernetes Manifest Files

Now that we have Docker images deployed on a remote registry and we know how a Kubernetes
manifest file works, let’s deploy the Docker images we’ve built to a Kubernetes cluster. As you’ve
just seen, writing a Kubernetes YAML file can be complex and error prone. So why not let Quarkus

291

generate one for us? Like the Jib extension that can create a Docker image, Quarkus comes with
several extensions that generate a YAML file on based our application and its configuration (using
Dekorate)."” But there is an extra level of complexity: Kubernetes manifest files are not standard.
So, depending on the Kubernetes platform you are targeting, the YAML file can differ. For example,
a YAML file for OpenShift is not exactly the same as the one for Minikube. That’s why Quarkus
comes with several Kubernetes extensions targeting specific platforms. Let’s have a look at two of
them: vanilla Kubernetes and Minikube.

Building with the Kubernetes Extension

To have Quarkus generate Kubernetes deployment descriptors you need the appropriate extension
(see Listing 225).

Listing 225. Kubernetes Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-kubernetes</artifactId>
</dependency>

Thanks to this extension, a simple mvn package command will generate two Kubernetes manifest
files (JSON or YAML format) under the target directory:

target/

L— kubernetes/
—— kubernetes.json
L— kubernetes.yml

These manifest files are generated for bare Kubernetes platforms and you usually have to
customise them. If you are developing on your laptop, you might have installed Minikube. And if
you try to deploy these generated manifest files to a Minikube cluster, you will have a few glitches
and will have to slightly change the content of the files. That’s why Quarkus comes with a Minikube
extension: it allows you to seamlessly deploy onto Minikube without any changes.

Building with the Minikube Extension

Minikube allows you to run Kubernetes locally on a developer’s machine."*” It focuses on making
Kubernetes easy to learn and develop by easily setting up and managing a local Kubernetes cluster.
Minikube is a single node Kubernetes cluster that runs on a hypervisor on your local machine. To
have Quarkus generate Minikube manifest files you need the appropriate extension (see Listing
226).

Listing 226. Minikube Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-minikube</artifactId>
</dependency>

292

This extension will generate vanilla Kubernetes manifest files as well as specific ones for minikube:

target/

L— kubernetes/
— kubernetes.json
— kubernetes.yml
— minikube.json
L— minikube.yml

If you look at the differences between kubernetes.yml and minikube.yml you will notice that they are
nearly the same. But if you take other Kubernetes platforms (e.g. OpenShift), then you realise that
the YAML files can be very different.

10.3.3. Deploying to a Minikube Cluster

Now that we know how Quarkus generates Kubernetes manifest files, let’s deploy them on a
Minikube cluster.

For simplicity, I am using the Minikube platform because you can run the same
commands on your personal computer. But to interact with Minikube, I am using
kubectl, which is portable, so you can use the same commands on any Kubernetes
o platform. The only requirement is that, depending on the platform you want to
target (OpenShift, Google, Amazon, Azure, etc.), you will have to change the
manifest files accordingly. Remember to check Appendix A if you need more
information on how to install Minikube, kubectl and on the different commands.

First, let’s check the Kubernetes cluster. If the Minikube cluster is not already started, start it with
the following command:

$ minikube start

Done! kubectl is now configured to use "minikube"
At that moment, you should not see any deployment yet.

~ $ minikube service list

| NAMESPACE | NAME | TARGET PORT | URL |
oo P — | --nmmnnee .
| default | kubernetes | No node port | |
| kube-system | kube-dns | No node port | |

As you’ve seen in the previous section, we now need to package a Quarkus application in a native
executable or executable JAR and build and push the Docker image to a remote repository so it can
be accessible from Minikube. Once these steps are achieved, yow’ll have a generated minikube.yml

293

file that you can manually deploy with the kubectl apply command. But Quarkus can help you with
a single property. No matter if you have used the Kubernetes, Minikube or OpenShift extension, you
can deploy the Docker image with the quarkus.kubernetes.deploy property set to true. It will
automatically build and deploy the Docker image to the targeted platform.

$ mvn package -Dquarkus.kubernetes.deploy=true

[INFO] --- quarkus-maven-plugin:1.7.1.Final:build (default) @ orchestrator-minikube

[INFO] Deploying target 'minikube’
[INFO] Kubernetes API Server at 'https://192.168.99.127:8443/" successfully contacted.

[INFO] Deploying to minikube server: https://192.168.99.127:8443/ in namespace:
default.

[INFO] Applied: ServiceAccount quarkus-jar.

[INFO] Applied: Service quarkus-jar.

[INFO] Applied: Deployment quarkus-jar.

51110 [
[INFO] BUILD SUCCESS
5110 [

Now you should see the deployment under the Minikube cluster. The command minikube service
list also gives you the URL and port where the application is accessible:

~ $ minikube service list

|
| NAMESPACE | NAME | TARGET PORT | URL |
R oo B oo |
default	kubernetes	No node port	
default	quarkus-jar	http/8080	http://192.168.99.127:31826
kube-system	kube-dns	No node port	

So, to execute the agoncal/quarkus-jar image it’s just a matter of invoking the service’s URL. You can
now point the browser (or cURL command) to http://192.168.99.127:31826/authors so it invokes the
REST endpoint.

Recap

To deploy an image to a Kubernetes cluster, this image has to be built, but also deployed on a
remote Docker registry so Kubernetes can pull it and then execute it. So there are several steps
involved, and each step has a Quarkus property that has to be set. Table 73 recaps these properties.

Table 73. Quarkus Properties Used for Deployment

Quarkus Property

294

http://192.168.99.127:31826/authors

Description

quarkus.package.type

Packages a Quarkus application into a jar, fast-jar or native executable
quarkus.container-image.build

Builds a Docker image either based on a Dockerfile or using the Jib extension
quarkus.container-image.push

Pushes the Docker image to a remote registry (default to Docker Hub)
quarkus.kubernetes.deploy

Deploys to the Kubernetes cluster

This means that if you check out a project and want to package, build and deploy it to a Kubernetes
cluster in a single Maven command, you need to do the following:

$ mvn package -Dquarkus.package.type=jar \
-Dquarkus.container-image.build=true \
-Dquarkus.container-image.push=true \
-Dquarkus.kubernetes.deploy=true

10.3.4. Configuring Kubernetes

The Quarkus Kubernetes extension is highly configurable. You will find several properties under
the quarkus.kubernetes. namespace.”'" Table 74 only shows a subset of these properties.
Table 74. Some Quarkus Kubernetes Configuration Properties

Property Default

quarkus.kubernetes.name ${quarkus.container-image.name}

The name of the application

quarkus.kubernetes.version ${quarkus.container-image.tag}

The version of the application

quarkus.kubernetes.host
The host under which the application is going to be exposed

quarkus.kubernetes.replicas 1
The number of desired pods

quarkus.kubernetes.node-port
The nodePort to set when serviceType is set to node-port

quarkus.kubernetes.image-pull-policy always
Image pull policy

quarkus.kubernetes.labels
Custom labels to add to all resources

295

10.4. Summary

Cloud native is all about pushing an application or a microservice to the cloud. Quarkus allows you
to very easily package Docker images and deploy them to different Kubernetes platforms. That’s
what Quarkus means with its tagline "Cloud Native Ready". It comes with all the required
extensions to make our cloud experience easy.

GraalVM, Docker and Kubernetes are very complex tools. Compiling by hand a Java application
with several dependencies on GraalVM is tricky. Writing Dockerfiles can be difficult but nothing
compared to writing a set of Kubernetes manifest files. Of course you have different tools to help
you, but Quarkus make it easy by integrating them and they ease our pain (such as Dekorate for
Kubernetes files).

The next chapter is about Tests. If you liked the way Quarkus simplifies deployment, then you will
love the way it helps you with testing and mocking.

[188] Quarkus Docker Native Image https://quay.io/repository/quarkus/ubi-quarkus-native-image?tab=tags

[189] Measuring startup time https:/quarkus.io/guides/performance-measure#how-do-we-measure-startup-time
[190] Code Quarkus https://code.quarkus.io

[191] UBI https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image

[192] Jib https://github.com/GoogleContainerTools/jib

[193] Docker Hub https://hub.docker.com

[194] Kubernetes https://kubernetes.io

[195] Dekorate https://github.com/dekorateio/dekorate

[196] Minikube https://minikube.sigs.k8s.io

296

https://quay.io/repository/quarkus/ubi-quarkus-native-image?tab=tags
https://quarkus.io/guides/performance-measure%23how-do-we-measure-startup-time
https://code.quarkus.io
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image
https://github.com/GoogleContainerTools/jib
https://hub.docker.com
https://kubernetes.io
https://github.com/dekorateio/dekorate
https://minikube.sigs.k8s.io

Chapter 11. Tests

The previous chapters focused on presenting different technologies and APIs and how they work
together. But what about testing them? If you come from the Jakarta EE world, you might
remember how painful it was to test your components running inside an application server. If you
come from the Spring world, you know how tests can be executed inside the application context.
This takes time but is far more efficient than testing in Jakarta EE. As you’ve seen up to now,
Quarkus has some amazing features (live reload, native compilation, etc.) and testing is one of
them.

Quarkus makes testing easy and fast. When a test is executing, the application is started before the
test is run. So your tests run with the entire application up and running. And as you know by now,
applications tend to start really quickly with Quarkus: so do your tests.

This chapter shows how Quarkus can run tests within the JVM mode as well as the Native mode. It
integrates with JUnit, but also several frameworks such as REST Assured, Hamcrest or
TestContainers, and offers several mocking capabilities. This allows your tests to be as expressive as
possible, easy to write, while being rich, complex and able to interact with several external
resources. And if you need to test a microservice that has several external dependencies, Quarkus
makes it easy to mock these dependencies by integrating Mockito.

o The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/testing

11.1. Quarkus Tests

Quarkus integrates with JUnit 5 (JUnit 4 is not supported). In fact, Quarkus testing depends on JUnit
as tests don’t even work with other frameworks (such as TestNG, for example)."”” Tests can be
executed in JVM mode (this is the default), but also in Native mode: it’s just a matter of using the
appropriate Quarkus JUnit runner.

Quarkus tests come with a set of annotations. Table 75 lists a subset of the most commonly used
annotations.

Table 75. Main Quarkus Test Annotations

Annotation Description

@QuarkusTest Indicates that a test should be run using the JVM mode of Quarkus

ONativeImageTest Indicates that a test should be run using a native image, rather than in
the JVM

@QuarkusTestProfile Defines a test profile that has different configuration options to other
tests

@InjectMock When used on a field of a test class, the field becomes a Mockito mock

297

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/testing
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/testing

11.1.1. JUnit 5

JUnit is an open source framework to write and run repeatable tests."”® JUnit features include:

assertions for testing expected results, fixtures for sharing common test data, and runners for
running tests. The integration with Quarkus is done through a runner. But let’s first see some JUnit
features through a simple example without any Quarkus specific code.

Listing 227 represents a Customer POJO. It has some attributes, including a date of birth,
constructors, getters and setters. It also provides two utility methods to clear the date of birth and
to calculate the age of the customer (calculateAge()).

Listing 227. A Customer Class
public class Customer {

private String firstName;
private String lastName;
private LocalDate dateOfBirth;
private Integer age;

public void calculateAge() {
if (dateOfBirth == null) {
age = null;
return;

}

age = Period.between(dateOfBirth, LocalDate.now()).getYears();
}

public void clear() {
this.dateOfBirth = null;
}

// Constructors, getters, setters

The calculateAge() method uses the dateOfBirth attribute to set the customer’s age. It has some
business logic and we want to make sure the algorithm calculates the age accurately. We want to
test this business logic. For that, we need a test class with some JUnit test methods and assertions.

Test Class

In JUnit, test classes do not have to extend anything. To be executed as a test case, a JUnit class
needs at least one method annotated with @Test. If you write a class without at least one @Test
method, you will get an error when trying to execute it (java.lang.Exception: No runnable methods).
Listing 228 shows the CustomerTest class that initialises the Customer object.

298

Listing 228. A Unit Test Class for Customer
public class CustomerTest {

private Customer customer = new Customer();

Fixtures

Fixtures are methods to initialise and release any common object during tests. JUnit uses
@BeforeEach and @AfterEach annotations to execute code before or after each test. These methods
can be given any name (clearCustomer() in Listing 229), and you can have multiple methods in one
test class. JUnit uses @BeforeAll and @AfterAll annotations to execute specific code only once, before
or after the test suite is executed. These methods must be unique and static. @BeforeAll and
@AfterAll can be very useful if you need to allocate and release expensive resources.

Listing 229. Fixture Executed Before Each Test

public void clearCustomer() {
customer.clear();

}

Test Methods

A test method must use the @Test annotation, return void, and take no parameters. This is
controlled at runtime and throws an exception if not respected. In Listing 230, the test method
ageShouldBeGreaterThanZero creates a new Customer and sets a specific date of birth. Then, using the
assertion mechanism of JUnit (explained in the next section), it checks that the calculated age is
greater than zero.

Listing 230. Method Testing Age Calculation

public void ageShouldBeGreaterThanZero() {
customer = new Customer("Rita", "Navalhas");
customer.setDateOfBirth(LocalDate.of (1975, 5, 27));

customer.calculateAge();

assertTrue(customer.getAge() >= 0);

}

JUnit also allows us to check for exceptions. In Listing 231, we are trying to calculate the age of a
null customer object so the call to the calculateAge() method should throw a NullPointerException.
If it does, then the test succeeds. If it doesn’t, or if it throws a different type of exception than the
one declared, the test fails.

299

Listing 231. Method Testing Nullity

public void shouldThrowAnExceptionCauseDateOfBirtheIsNull() {

customer = null;
assertThrows(NullPointerException.class, () -> {
customer.calculateAge();

1
}

Listing 232 does not implement the shouldCalculateOldAge method. However, you don’t want the
test to fail; you just want to ignore it. You can add the @Disable annotation next to the @Test
annotation. JUnit will report the number of disabled tests, along with the number of tests that
succeeded and failed. Note that @Disable takes an optional parameter (a String) in case you want to
record why a test is being disabled.

Listing 232. Disabling a Method for Testing

("Test is not implemented yet")
public void shouldCalculateOldAge() {
// some work to do

}

JUnit Assertions

Test cases must assert that objects conform to an expected result, such as in Listing 230 where we
assert that the age is greater than zero. For that, JUnit has an Assertions class that contains several
methods. In order to use different assertions, you can either use the prefixed syntax (e.g.
Assertions.assertEquals()) or import the Assertions class statically. Listing 233 shows a simplified
subset of the methods defined in the Assertions class.

300

Listing 233. Subset of JUnit Assertions
public class Assertions {

void assertTrue(boolean condition) { }
void assertFalse(boolean condition) { }

void assertNull(Object actual) { }
void assertNotNull(Object actual) { }

void assertEquals(Object expected, Object actual) { }
void assertNotEquals(Object unexpected, Object actual) { }

void assertArrayEquals(Object[] expected, Object[] actual) { }
void assertlLinesMatch(List<String> expectedlLines, List<String> actuallines) { }

void assertSame(Object expected, Object actual) { }

void assertNotSame(Object unexpected, Object actual) { }

void assertAll(Collection<Executable> executables) { }

void assertTimeout(Duration timeout, Executable executable) { }

<T extends Throwable> T assertThrows(Class<T> expectedType, Executable exec) { }

11.1.2. JVM Mode Tests

When you develop with Quarkus, you want to have live reload and quick tests: so usually you are in
JVM mode. To test your code in JVM mode, it’s just a matter of annotating your tests with
@QuarkusTest (as shown in Listing 234) and enabling the quarkus-junit5 dependency in your pom.xml
(Listing 235). As you can see in Listing 234, the rest of the code uses JUnit with REST Assured as
you’ve seen before. The integration with Quarkus in JVM mode is made through this single
annotation: @QuarkusTest.

301

Listing 234. JVM Mode Test

public class ArtistResourceTest {

public void shouldGetAllArtists() {
given().
when()
.get("/artists").
then()
.statusCode(is(200));

("Test is not implemented yet")
public void shouldCreateAnArtist() {
// some work to do

}
}

JUnit is very well integrated with most IDEs (Intelli] IDEA, Eclipse, NetBeans etc.). When working
with these IDEs, in most cases, JUnit highlights in green to indicate successful tests and in red to
indicate failures. Most IDEs also provide facilities to create test classes.

JUnit is also integrated with Maven through the Surefire plugin used during the test phase of the
build life cycle."” It executes the JUnit test classes of an application and generates reports in XML
and text file formats. That’s mostly how we will be using JUnit in this fascicle: through Maven. To
integrate JUnit in Maven, you just need the JUnit dependency and make sure to declare the Surefire
plugin in the pom.xml as shown in Listing 235.

302

Listing 235. JUnit Dependencies in a Maven pom.xml

<dependencies>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-junit5</artifactld>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>
<systemPropertyVariables>
<java.util.logging.manager>
org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</confiquration>
</plugin>
</build>

The following Maven command runs the JUnit tests through the Surefire plugin:

$ mvn test

Then JUnit executes the tests and gives the number of executed tests, the number of failures and
the number of disabled tests (through warnings).

303

[INFO] =------===mmmmmmmmmmm e -

[INFO] Building Quarkus :: Testing :: JVM Mode

[INFO] ---------mmmmmmm e -

[INFO]

[INFO] --- maven-surefire-plugin:test

[INFO]

[INFO] ----------

[INFO] TESTS

[INFO] ----------

[INFO] Running ArtistResourceTest

[INFO] [io.quarkus] (main) Quarkus on JVM started in 1.169s
[INFO] [io.quarkus] (main) Profile test activated.

[INFO] [i1o.quarkus] (main) Installed features: [cdi, resteasy, resteasy-jsonb]
[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 1, Time elapsed: 3.827 s
[INFO] [io.quarkus] (main) Quarkus stopped in 0.026s

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 1
[INFO]

[INFO] -------------

[INFO] BUILD SUCCESS

[INFO] -------------

The @QuarkusTest annotation does all the magic: it first starts the Quarkus application and then
performs the tests. If you look at the previous logs, you can see this workflow in action:

* Quarkus is started ("Quarkus on JVM started") in test profile ("Profile test activated");

e Tests are executed ("Tests run");

* Quarkus is stopped ("Quarkus stopped").

While Quarkus will listen on port 8080 by default, when running tests it defaults to 8081. This allows
you to run tests while having the application running in parallel.

11.1.3. Native Mode Tests

It is also possible to test native executables using a different annotation: @NativeImageTest. The idea
is to run a set of tests against the binary itself instead of the Java code. This can be very handy as
sometimes native code can behave differently (as you’ll soon see). Listing 236 shows a native test.
As you can see, it extends the JVM test that we previously saw in Listing 234, and is annotated with
@NativeImageTest instead of @QuarkusTest, that’s all. Notice that this class is empty, but it could add
extra methods to test specific native behaviour if needed.

304

Listing 236. Native Mode Test

@NativeImageTest
public class NativeArtistResourcelIT extends ArtistResourceTest {

// Execute the same tests but in native mode.

There is a gotcha with native tests that extend JVM tests. If you have any injections
o in the JVM test, the native test will fail. You will have to override your injection
points on the native test to make it run.

To execute tests on the native executable, there is no specific Quarkus extension to add to the
pom.xml. The only thing is that the Failsafe plugin has to be properly configured (see Listing 237)
under the native profile. Failsafe runs on the verify Maven goal and it sets the native.image.path
property to the binary generated under the target directory.

305

Listing 237. Native Profile

<profile>
<id>native</id>
<activation>
<property>
<name>native</name>
</property>
</activation>
<build>
<plugins>
<plugin>
<artifactId>maven-failsafe-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
<configuration>
<systemPropertyVariables>

<native.image.path>${project.build.directory}/${project.build.finalName}-
runner</native.image.path>
<java.util.logging.manager>
org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<properties>
<quarkus.package.type>native</quarkus.package.type>
</properties>
</profile>

To execute the native tests you need to invoke the native profile with the following command:

$ mvn verify -Pnative

This will execute the JVM mode tests, and then, the native tests. So the workflow is:

* The Surefire plugin executes the JVM mode tests (Quarkus is started in JVM mode);
* GraalVM compiles the code into a binary;

» The Failsafe plugin executes the binary (Quarkus is started in native mode);

306

* The Failsafe plugin runs the native tests.

But remember that the only thing that runs natively is the Quarkus application, not the test itself.
You should see similar traces:

307

[INFO] -----=--=mmmmmmmm e e

[INFO] Building Quarkus :: Testing :: Native Mode

[INFO] --------=mmmmm o e e

[INFO]

[INFO] --- maven-surefire-plugin:test

[INFO]

[INFO] ----------

[INFO] TESTS

[INFO] ----------

[INFO] Running ArtistResourceTest

[INFO] [io.quarkus] (main) Quarkus on JVM started in 1.169s

[INFO] [io.quarkus] (main) Profile test activated.

[INFO] [i1o.quarkus] (main) Installed features: [cdi, resteasy, resteasy-jsonb]
[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 1, Time elapsed: 3.827 s
[INFO] [io.quarkus] (main) Quarkus stopped in 0.026s

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: 1

[INFO]

[INFO] --- quarkus-maven-plugin:build

[INFO] Building native image from Code/Agoncal/agoncal-fascicle-qua...
[INFO] Running Quarkus native-image plugin on GraalVM

[INFO] graalvm-ce-javal1-20.1.0/Contents/Home/bin/native-i...

[runner] classlist: 3,010.30 ms, 0.96 GB

[runner] (clinit): 698.82 ms, 3.24 GB
[runner] universe: 785.52 ms, 3.24 GB
[runner] (parse): 2,001.61 ms, 4.20 GB
[runner] write: 645.63 ms, 5.81 GB
[runner] [total]: 46,119.87 ms, 5.81 GB
[INFO]

[INFO] --- maven-failsafe-plugin:integration-test
[INFO]

[INFO] ----------

[INFO] TESTS

[INFO] ----------

[INFO] Running NativeArtistResourceIT

Executing target/test-jvm-native-mode-1.0-SNAPSHOT-runner

[INFO] [1o0.quarkus] (main) test-jvm-native-mode 1.0-SNAPSHOT native
[INFO] [io.quarkus] (main) Profile prod activated.

[INFO] [io.quarkus] (main) Installed features: [cdi, resteasy, resteasy-jsonb]
[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 3, Failures: @, Errors: @, Skipped: 1

[INFO]

[INFO] -------------

[INFO] BUILD SUCCESS

[INFO] -------------

308

But why would you create tests especially for the native image? Because when building a native
executable, GraalVM operates with a closed world assumption. It analyses the call tree and removes
all the classes/methods/fields that are not used directly. The elements used via reflection are not
part of the call tree so they are dead-code eliminated (if not called directly in other cases). To avoid
such code being eliminated by GraalVM, you need to annotate your beans with
@RegisterForReflection.

For example, Listing 238 shows a bean with JSON-B annotations. JSON libraries use reflection to
serialise the objects to JSON. But GraalVM gets rid of reflection. So if we were to use the Artist class
without the @RegisterForReflection, we would get an exception in native mode. To include these
elements in your native executable, you need to register them for reflection explicitly. This means
that the JVM mode test would succeed, but the native mode test would fail.

Listing 238. Register a Bean for Reflection

public class Artist {

private Integer id;
("first_name")

private String firstName;
("last_name")

private String lastName;

// Constructors, getters, setters

11.1.4. Transactional Tests

In Chapter 5, you saw how you could use Java Persistence API (JPA) and Panache to map entities to
a relational database. Thanks to JTA (Java Transaction API) we can insert, update or delete entities
in a transactional way. So, if we want to execute tests within a transactional context, we can simply
apply the @Transactional annotation to the test method (or test class as shown in Listing 239) and
the transaction interceptor will handle it.

309

Listing 239. Transactional Test

class MusicianTest {

void shouldPersistAMusician() {
Musician musician = new Musician();
musician.firstName = "Janis";
musician.lastName = "Joplin";
musician.date0OfBirth = LocalDate.of(1943, 01, 19);
musician.preferredInstrument = "Voice";

Musician.persist(musician);

assertNotNull(musician.id);

Without this annotation, the test would fail. That’s because the persist() method requires running
within the context of a transaction.

11.1.5. Configuring Quarkus Tests

Some aspects of the JVM and native tests can be configured in Quarkus. One common property that
you might find useful to configure is the listening port used during the tests (quarkus.http.test-port
property). The default is 8081 but if you set it to 0, it will result in the use of a random port (assigned
by the operating system). Table 76 shows other common test properties.

Table 76. Some Quarkus Test Configuration Properties

Property Default

quarkus.http.test-port 8081
The HTTP port used to run tests

quarkus.http.test-ssl-port 8444
The HTTPS port used to run tests

quarkus.test.profile test
The profile to use when testing using @QuarkusTest

quarkus.native.graalvm-home ${GRAALVM_HOME}
The location of the Graal distribution

quarkus.native.java-home ${java.home}
The location of the J]DK

quarkus.test.native-image-wait-time PT5M

Duration to wait for the native image to be built during testing

310

Property Default

quarkus.test.native-image-profile prod
The profile to use when testing the native image

11.2. Testing Frameworks

Integrating JUnit and having one annotation for JVM mode tests (@QuarkusTest) and another one for
native tests (@NativeImageTest) is just the tip of the iceberg. Quarkus goes way further by integrating
several testing frameworks so that tests can be richer and more explicit without too much effort:
Hamcrest for having expressive expressions, REST Assured for testing REST endpoints and
TestContainers for running Docker images during the test lifecycle. Let’s have a look at these
frameworks and see how Quarkus integrates them.

11.2.1. REST Assured

REST Assured is an open source Java library that provides a Domain Specific Language (DSL) for
writing powerful and maintainable tests for RESTful APIs.”"” It supports POST, GET, PUT, DELETE,
OPTIONS, PATCH and HEAD requests and can be used to validate and verify the response of these
requests.

Listing 240 uses REST Assured to execute an HTTP GET on a resource and check that the return
code is 200.

Listing 240. Simple HTTP GET Test

given().

when()
.get("/customers").

then()
.statusCode(200);

Listing 241 and Listing 240 are quite similar. Listing 241 uses the REST Assured DSL to pass certain
parameters to the HTTP GET such as the ACCEPT header.

Listing 241. HTTP GET Test Given Certain Parameters

given()
.baseUri("http://localhost:8081")
.header (ACCEPT, APPLICATION_JSON).
when()
.get("/customers").
then()
.statusCode(200);

As you can see in Listing 242, REST Assured can then help to easily make the GET request and verify
the response as well as its content (thanks to the body() method).

311

Listing 242. HTTP GET Test Checking Response Body

given()
.pathParam("id", 1L).

when()
.get("/customers/{id}").

then()
.statusCode(200)
.contentType (APPLICATION_JSON)
.body("first-name", is("John"))
.body("last-name", is("Lennon"));

Listing 243 shows how to invoke an HTTP POST passing a Customer object and then check that the
response code is a 201 (created).

Listing 243. HTTP POST Test Passing a Body
Customer customer = new Customer().firstName("John").lastName("Lennon");

given()
.body(customer)
.header (CONTENT_TYPE, APPLICATION_JSON)
.header (ACCEPT, APPLICATION_JSON).
when()
.post("/customers").
then()
.statusCode(201);

With Quarkus, when you want to test a REST endpoint, you do it using REST Assured just by adding
a dependency to your pom.xml (see Listing 244).

Listing 244. REST Assured Extension

<dependency>
<groupId>io.rest-assured</groupId>
<artifactId>rest-assured</artifactId>
<scope>test</scope>

</dependency>

Quarkus provides a REST Assured integration that updates the default port used by REST Assured
before the tests are run. So in your REST Assured tests, you don’t have to specify the default test
port 8081 used by Quarkus. But the integration can even go further with the @TestHTTPEndpoint
annotation that automatically sets the correct base path URL (i.e. the default URL that serves as the
root for every request). This annotation can be applied at the class or method level. Listing 245 tests
the ArtistResource endpoint without specifying its URL. This way, if we ever decide to change the
path of the ArtistResource, the test will pick up the correct path without us having to touch it.

312

Listing 245. Testing REST Endpoint Without a URL

(ArtistResource.class)
public class ArtistHTTPResourceTest {

public void shouldGetAllArtists() {
given().
when()
.get().
then()
.statusCode(is(200));

public void shouldGetOneArtist() {

given()
.pathParam("id", 1).

when()
.get("/{id}").

then()
.statusCode(is(200))
.body("first_name", is("John"))
.body("1last_name", is("Lennon"));

11.2.2. Hamcrest

Hamcrest is a framework for writing matcher objects allowing "match" rules to be defined

declaratively.”""

When writing tests it is sometimes difficult to get the balance right between

overspecifying the test, and not specifying enough. Hamcrest allows you to pick out precisely the

aspect being tested and to describe the values it should have.

Listing 246 shows a very simple JUnit test. Instead of using JUnit’s assertEquals() methods, we use
Hamcrest’s assertThat construct and the standard set of matchers, both of which we statically

import.

313

Listing 246. Simple Hamcrest Assertion

class BookTest {

public void shouldTestEquals() {
Book oneBook = new Book("H2G2");
Book anotherBook = new Book("H2G2");
assertThat(oneBook, equalTo(anotherBook));

}
}

The assertThat() method is a stylised sentence for making a test assertion. You can write simple
assertions that are easy to read such as:

assertThat(book.getTitle(), equalTo("H2G2"));
assertThat(book.getYearOfPublication(), equalTo(1979));
assertThat(book, equalTo(anotherBook));

If you want to be even more expressive, you can use some sugar syntax. For example, Hamcrest has
an is matcher that doesn’t add any extra behaviour to the underlying matcher. So the following
assertions are equivalent to the previous ones:

assertThat(book.getTitle(), is(equalTo("H2G2")));
assertThat(book.getYearOfPublication(), is(equalTo(1979)));
assertThat(book, is(anotherBook));
assertThat(book.getTitle(), is(not(nullValue())));
assertThat(book.getIsbn10(), is(nullValue()));
assertThat(book.getNbOfPages(), is(greaterThan(100)));

Hamcrest comes with a library of useful matchers. Table 77 shows some of the most important

ones.

Table 77. Main Hamcrest Matchers

Matchers
anything

is
allof
anyOf
not

equalTo

notNullValue, nullValue

314

Description

Always matches, useful if you don’t care what the object under
test is

Decorator to improve readability

Matches if all matchers match (like Java &&)

Matches if any matchers match (like Java | |)

Matches if the wrapped matcher doesn’t match and vice versa
Tests object equality using Object.equals()

Tests for null

Matchers Description

greaterThan, Tests ordering

greaterThanOrEqualTo, lessThan,

lessThanOrEqualTo

equalToIgnoringCase Tests string equality ignoring case

equalToIgnoringWhiteSpace Tests string equality ignoring differences in runs of whitespace
containsString, endsWith, Tests string matching

startsWith

When you test your REST endpoints with REST Assured, there is no need to add the Hamcrest
dependency to your pom.xml as REST Assured pushes the Hamcrest dependency recursively.

11.2.3. Testing Resources

A very common need is to start some services on which your application depends, before Quarkus
starts for testing. For example, you might want to start a Postgres database, a Kafka broker or an
external microservice before executing some integration tests. For such use cases, Quarkus
integrates with TestContainers and also provides a few annotations to easily manage external
resources during testing.

TestContainers

TestContainers is a Java library that supports JUnit tests, providing lightweight, throwaway
instances of common Docker images.”"” It allows us to use Docker containers within our tests. For
example, it can use a containerised instance of a PostgreSQL database to test a data access layer but
without requiring a complex setup on the developer’s machine. The pre-requisites of using
TestContainers are to have Docker installed and to use a supported JVM testing framework (such as
JUnit or TestNG).

Let’s say our application uses PostgreSQL as a relational database and we want to run some tests
with a running PostgreSQL. With TestContainers it’s easy to make such a test. As you can see in
Listing 247, JUnit integration is provided by means of the @Testcontainers annotation. This
extension finds all fields that are annotated with @Container and calls their container life cycle
methods. Containers declared as static fields will be shared between test methods. They will be
started only once before any test method is executed and stopped after the last test method has
executed. Containers declared as instance fields will be started and stopped for every test method.

315

Listing 247. PostgreSQL TestContainer Test

public class PingPostgreSQLTest {

public static PostgreSQLContainer pg = new PostgreSQLContainer<>("postgres:12.4")
.withDatabaseName("vintageStoreDB")
.withUsername("vintage")
.withPassword("vintage")
.withExposedPorts(5432);

public void shouldPingPostgreSQL() throws Exception {
pg.start();

try (Connection con = DriverManager.getConnection(pg.getJdbcUr1(), pg.getUsername
(), pg.getPassword());
Statement st = con.createStatement();
ResultSet rs = st.executeQuery("SELECT VERSION()")) {

if (rs.next()) {
assertTrue(rs.getString(1).contains("PostgreSQL 12"));
} else {
throw new Exception();

}
}

Pg.stop();
}
}

Testcontainers will try to connect to a Docker daemon. So, to execute the test in Listing 247, make
sure Docker is up and running. If that’s not the case, you will get the following exception:

I1legalStateException: Could not find a valid Docker environment.

With Docker up and running, TestContainers will first download the PostgreSQL image from Docker
Hub if not available locally on your machine. Then, it starts the PostgreSQL container, executes the
test, and stops the PostgreSQL container.””” The output looks like this:

316

INFO --- maven-surefire-plugin:test @ testcontainers ---

Running org.agoncal.fascicle.PingPostgreSQLTest

INFO Accessing docker with local Unix socket

INFO Found Docker environment with local Unix socket
INFO Docker host IP address is localhost

INFO Connected to docker:

INFO Checking the system...

INFO [postgres] - Pulling docker image: postgres. Please be patient;

INFO [postgres] - Starting to pull image

INFO [postgres] - Pulling image layers: @ pending, @ downloaded, @ extracted
INFO [postgres] - Pulling image layers: 13 pending, 1 downloaded, @ extracted
INFO [postgres] - Pulling image layers: 10 pending, 4 downloaded, @ extracted
INFO [postgres] - Pulling image layers: 7 pending, 7 downloaded, 2 extracted
INFO [postgres] - Pulling image layers: 6 pending, 8 downloaded, 3 extracted

INFO [postgres] - Creating container for image: postgres

INFO [postgres] - Starting container with ID: 7731669fe4bb3f7f
INFO [postgres] - Container postgres is starting: 77a1669fe4bb3f7f
INFO [postgres] - Container postgres started

Tests run: 1, Failures: @, Errors: @, Skipped: 0
INFO -------------mmmm -

INFO BUILD SUCCESS

INFO -------------mmmm oo

Quarkus does not have a specific extension for TestContainers. Listing 248 shows the Maven
dependencies you need to use in your pom.xml.

Listing 248. TestContainers Dependencies

<dependency>
<groupld>org.testcontainers</groupld>
<artifactId>testcontainers</artifactId>
<version>${testcontainers.version}</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.testcontainers</groupld>
<artifactId>junit-jupiter</artifactId>
<version>${testcontainers.version}</version>
<scope>test</scope>

</dependency>

317

Quarkus Test Resource

In some simple scenarios you don’t need TestContainers to start and stop a resource before and
after the test suite. Some simple hooks can do. To address this need, Quarkus provides the
@QuarkusTestResource annotation and a QuarkusTestResourcelifecycleManager interface. The idea is
that, you implement QuarkusTestResourcelLifecycleManager to start and stop a resource, and you
annotate any test with @QuarkusTestResource with the implementation. Quarkus provides a few
implementations out of the box to start and stop common resources:

H2 database: H2DatabaseTestResource

Derby database: DerbyDatabaseTestResource

e Kubernetes: KubernetesMockServerTestResource

LDAP server: LdapServerTestResource

For example, the transactional test in Listing 249 uses the @QuarkusTestResource to start and stop an
H2 database before and after running the test.

Listing 249. Testing with an H2 Database

@QuarkusTest
@QuarkusTestResource(H2DatabaseTestResource.class)
@Transactional

class MusicianTest {

@Test

void shouldPersistAMusician() {
/] ...

Quarkus has several extensions for testing resources. In fact, as you can see in Listing 250, each
resource has its own extension.

318

Listing 250. Some Dependencies for Testing Resources

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-test-h2</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-test-derby</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-test-kubernetes-client</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-test-ldap</artifactId>
<scope>test</scope>

</dependency>

11.3. Mocking

Mocking is very often used in testing. Let’s say you have an object, a microservice or an entire
system, that has dependencies on other (complex) objects/microservices/systems. During the test
phase, to isolate the behaviour of these dependencies, you might want to replace these
dependencies by mocks that simulate their real behaviour. Mocking is a way to only test the
functionality of an object/microservice/system and not its dependencies. In Java there are a few
mocking frameworks such as: Mockito “*, EasyMock “*! or JMockit **”. Quarkus integrates with
MocKkito.

As you’ve seen in Chapter 7, it’s quite easy to have microservices communicating with each other
through the Eclipse MicroProfile REST Client. A few annotations (@RestClient, @RegisterRest(Client),
an interface acting like a proxy (IsbnResourceProxy), some configuration (e.g. the URL of the remote
microservice) and you have the BookResource invoking a remote IsbnResource REST endpoint to get
an ISBN number.

319

Listing 251. Book Microservice Invoking the ISBN Microservice

("/api/books")
(MediaType.APPLICATION_JSON)
public class BookResource {

IsbnResourceProxy isbnService;

public Response getRandomBook() {

IsbnNumbers isbnNumbers = isbnService.generateIsbnNumbers();
/] ...

}
}

("/api/numbers")

public interface IsbnResourceProxy {

IsbnNumbers generateIsbnNumbers();

}

But now, with such coupling, we have a problem: to run the tests of the BookResource we need the
IsbnResource REST endpoint to be up and running. Of course, if the IsbnResource Docker image is
available on a registry, we could use TestContainers to download and run it. But we want to avoid
this and just test the BookResource in isolation. For this, as seen in Figure 55, we need to mock the
IsbnResourceProxy interface.

Book Microservice ISBN Microservice

«@Path» «@RegisterRestClient» «@Mock @RestClient» «@Path»
BookResource IsbnResourceProxy MocklsbnResourceProxy IsbnResource

I
| ¢ @Iniect @RestClient |

generatelsbn()

I
>

: generatelsbn()
I

>
|
«@Path» «@RegisterRestClient» «@Mock @RestClient» «@Path»
BookResource IsbnResourceProxy MocklsbnResourceProxy IsbnResource

Figure 55. Mocking microservice invocation

Quarkus supports the use of mock objects using the io.quarkus.test.Mock annotation. To use it, you
simply override the bean you wish to mock with a class in the src/test/java directory, and annotate
it with @Mock. So, to mock the invocation to the remote IsbnResource, we implement the
IsbnResourceProxy interface in src/test/java with the class MockIsbnResourceProxy in Listing 252. As

320

you can see, this class implements the generateIsbnNumbers() method and returns fake data. With
this fake data, testing the BookResource becomes easier and doesn’t depend on any remote
microservice.

Listing 252. Mocking ISBN Microservice for Testing

@Mock

@ApplicationScoped

@RestClient

public class MockIsbnResourceProxy implements IsbnResourceProxy {

@0verride

public IsbnNumbers generateIsbnNumbers() {
IsbnNumbers isbnNumbers = new IsbnNumbers();
isbnNumbers.setIsbn13("@Mock isbn 13");
isbnNumbers.setIsbn10("@Mock isbn 10");
return isbnNumbers;

If you look under the hood, the @Mock annotation is in fact a CDI alternative (refer back to Chapter 4
if you want to know more about CDI alternatives). So the code in Listing 253 is the same as in
Listing 252. We declare the class as being an @Alternative of @Priority(1) and it has the same effect
as @Mock.

Listing 253. Mocking with Alternative

@Alternative
@Priority(1)
@ApplicationScoped
@RestClient

public class MockIsbnResourceProxy implements IsbnResourceProxy {
/] ...

}

This is one way we can provide a global mock that all our Quarkus tests can use. But what if we
don’t want to have a globally defined mock, but would rather have our mock only within the scope
of one test? We can achieve that using @InjectMock. @InjectMock results in a mock implementation
available in a test class.

In Listing 254, the BookResourceTest injects a mock implementation of the IsbnResourceProxy thanks
to @InjectMock. Then, in the @EBeforeEach method we use Mockito to return fake data when the
generateIsbnNumbers() is invoked. This means that when the shouldGetRandomBook test is executed,
the BookResource endpoint is invoked and the fake data returned from the mocked
IsbnResourceProxy implementation.

321

Listing 254. Injecting a Mocked Implementation
public class BookResourceTest {
IsbnResourceProxy isbnServiceProxy;

void mockData() {
Mockito
.when(isbnServiceProxy.generateIsbnNumbers())
.thenReturn(new IsbnNumbers("Dummy isbn 10", "Dummy isbn 13"));

void shouldGetRandomBook() {

given()
.header (HttpHeaders.ACCEPT, MediaType.APPLICATION_JSON).

when()
.get("/api/books").

then()
.statusCode(0K.getStatusCode())
.body("isbn_10", is("Dummy isbn 10"))
.body("isbn_13", is("Dummy isbn 13"))
.body("$", hasKey("title"))
.body("$", hasKey("author"));

The integration with Mockito is done through an extension (see Listing 255). It also gives you extra
annotations such as @InjectMock or @InjectSpy.

Listing 255. Mockito Extension

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-junit5-mockito</artifactId>
<scope>test</scope>

</dependency>

11.4. Quarkus Test Profiles

In Chapter 4, Core Quarkus, you saw how Quarkus allows having multiple configurations in the
same application.properties file and selects between them via a profile name. Quarkus comes with
three profiles (prod, dev and test) and you can create your own. So during the test phase, Quarkus
automatically activates the test profile. That’'s why you can read "Profile test activated" when
Quarkus starts:

322

[INFO] --—-------

[INFO] TESTS

[INFO] ----------

[INFO] Running org.agoncal.fascicle.InvoiceTest

[INFO] [io.quarkus] (main) Quarkus on JVM started in 0.678s.
[INFO] [io.quarkus] (main) Profile test activated.

[INFO] [io.quarkus] (main) Installed features: [cdi]

[INFO] [io.quarkus] (main) Quarkus stopped in 0.001s

Activating the test profile allows us to use the %{profile}.config.key=value syntax to have a
different configuration depending on the profile. For example, in the application.properties in
Listing 256, we configure the default database to be a Postgres database with a specific JDBC URL.
But when testing, and only when testing, we want to use an H2 in-memory database.

Listing 256. Production and Test Properties

quarkus.datasource.db-kind=postgresql
quarkus.datasource.jdbc.url=jdbc:postgresql://localhost:5432/vintageStoreDB
quarkus.hibernate-orm.database.generation=update

%test.quarkus.datasource.db-kind=h2
%test.quarkus.datasource.jdbc.url=jdbc:h2:mem:vintageStoreDB
%test.quarkus.hibernate-orm.database.generation=drop-and-create

This is a very easy way to configure an entire application depending on the profile. But what if we
want to run our tests in different configurations and not only one? For this, Quarkus offers the
concept of a test profile where you can have as many classes as you want, each defining precisely
its own configuration (overriding the application.properties file is needed), that you can apply
individually on each test case.

Let’s say we have a few properties to configure the vat rate and discount rate of an invoice. By
default, the vat rate is set to 10 and the discount is not allowed:

org.agoncal.fascicle.Invoice.vatRate=10
org.agoncal.fascicle.Invoice.discount=false

As we’ve just seen, we could change these values for all our test suite by prefixing each property
with %test. But that’s not what we want. We want to calculate an invoice that is configured
differently per country (where each vat rate is different). For that, we start by implementing a
QuarkusTestProfile as seen in Listing 257. This interface has several default methods that you can
override. For example, here, we configure a specific vat rate for France in the getConfigOverrides()
method (another method getEnabledAlternatives() allows you to enable CDI alternatives, for
example).

323

Listing 257. Custom Test Profile
public class FrenchTestProfile implements QuarkusTestProfile {

public Map<String, String> getConfigOverrides() {
Map<String, String> config = new HashMap();
config.put("org.agoncal.fascicle.Invoice.vatRate", "20");
config.put("org.agoncal.fascicle.Invoice.discount”, "true");
return config;

}
}

Finally, with this configuration in place, we can write a test that is specifically configured for
French invoices. As we can see in Listing 258, the test is annotated with @TestProfile passing our
FrenchTestProfile. It will calculate the vat amount and total amount of the invoice with the custom
vatRate and discount properties overridden from the default application.properties.

Listing 258. Applying a Test Profile

(FrenchTestProfile.class)
class FrenchInvoiceTest {

Invoice invoice;

public void shouldCalculateInvoice() {
invoice.subtotal = 500f;
assertEquals(20f, invoice.vatRate);
assertEquals(100f, invoice.caclculateVatAmount());
assertEquals(587.5f, invoice.caclculateTotal());
assertTrue(invoice.discount);

}

}

11.5. Summary

In this chapter, we saw how Quarkus offers excellent support for testing applications. From simple
things like dependency management, injection and mocking, to more complex aspects like
configuration profiles and native images, Quarkus integrates with many testing and mocking
frameworks to create powerful and clean tests.

With just an annotation (@QuarkusTest and @NativeImageTest), Quarkus starts your entire application
and runs your test suite, either in JVM or native mode. This makes integration tests very easy. These
tests run on top of JUnit, but Quarkus also integrates other popular testing frameworks such as
REST Assured, Hamcrest or TestContainers. And when you need to mock external dependencies or
remote microservices, Quarkus comes in with the @Mock and @InjectMock annotations.

324

In the next chapter, Putting It All Together, you will put together some of the concepts that you saw
in this fascicle. Get ready for a technical wrap up.

[197] TestNG https://testng.org

[198] JUnit https://junit.org/junit5

[199] Maven Surefire Plugin https://maven.apache.org/surefire/maven-surefire-plugin
[200] REST Assured http://rest-assured.io

[201] Hamcrest http://hamcrest.org/JavaHamcrest

[202] TestContainers https://www.testcontainers.org

[203] Docker Hub https://hub.docker.com

[204] Mockito https://site.mockito.org

[205] EasyMock https://easymock.org

[206] JMockit https://jmockit.github.io

325

https://testng.org
https://junit.org/junit5
https://maven.apache.org/surefire/maven-surefire-plugin
http://rest-assured.io
http://hamcrest.org/JavaHamcrest
https://www.testcontainers.org
https://hub.docker.com
https://site.mockito.org
https://easymock.org
https://jmockit.github.io

Chapter 12. Putting It All Together

Now that you’ve read all the previous chapters on Quarkus, it’s time to put some of these concepts
all together and write a slightly more complex example. In this chapter, we will write an
application made of two microservices that generate random books with ISBN numbers. The
architecture diagram in Figure 56 describes the interaction between the two microservices.

Book Microservice ISBN Number Microservice
«Port 8080» «Port 8081» o
Quarkus Quarkus OpenAPI

GET /api/numbers

Figure 56. Architecture diagram
Each microservice has a defined business scope:
* The Isbn Number microservice has a REST endpoint that returns ISBN numbers. It is used by the

Book microservice when it needs to return a new book.

* The Book microservice has one endpoint that returns a random book.

Make sure your development environment is set up to execute the code in this
chapter. You can go to Appendix A to check that you have all the required tools
o installed, in particular JDK 11.0.8 or higher, Maven 3.6.x or higher and GraalVM.
The code in this chapter can be found at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0/putting-together

12.1. Developing the REST ISBN Number Microservice

A book has ISBN (International Standard Book Number) numbers. To return a random book (with a
title, author, genre, etc.), the Book microservice needs to interact with the ISBN Number
microservice. So we need to expose a REST API that generates ISBN numbers of 10 and 13 digits. In
this section, we will:

* Implement a REST API using JAX-RS and Quarkus,

* Inject external configuration,

Customise the JSON Output with JSON-B,

Enable OpenAPI and Swagger Ul,

Check the health of the REST endpoint,

» Configure Quarkus HTTP port listening.

12.1.1. Bootstrapping the ISBN Number Microservice

To bootstrap the ISBN Number microservice we use the following Maven command:

326

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/putting-together
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0/putting-together

mvn io.quarkus:quarkus-maven-plugin:1.9.0.Final:create \
-DplatformVersion=1.9.0.Final \
-DprojectGroupId=org.agoncal.fascicle.quarkus.putting-together \
-DprojectArtifactId=rest-number \
-DprojectVersion=1.0-SNAPSHOT \
-DclassName="org.agoncal.fascicle.quarkus.number.NumberResource" \
-Dpath="/api/numbers" \
-Dextensions="resteasy-jsonb, smallrye-openapi, smallrye-health"

This generates the appropriate directory and package structure with the right Quarkus extensions.
Let’s have a look at what we got.

12.1.2. Maven Dependencies

First, the generated pom.xml. If you look at the dependencies section in Listing 259, you will see all
the required Quarkus extensions used to compile and execute the ISBN Number microservice. This
section only declares the dependencies, not the versions, as they are defined in the Quarkus BOM
(Bill of Materials):

* quarkus-resteasy: REST framework implementing JAX-RS.

» quarkus-resteasy-jsonb: JSON-B serialisation support for RESTEasy.

* quarkus-smallrye-openapi: Documents the REST APIs with OpenAPI and comes with Swagger Ul

* quarkus-smallrye-health: MicroProfile Health dependency so we know our microservices are up
and running.

* javafaker: This external dependency needs to be added as it helps us in generating fake ISBN
numbers.

327

Listing 259. Maven Dependencies

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy</artifactId>
</dependency>
<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jsonb</artifactId>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-openapi</artifactId>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-health</artifactId>
</dependency>
<dependency>
<groupId>com.github.javafaker</groupld>
<artifactId>javafaker</artifactId>
</dependency>

12.1.3. Directories and Files
The ISBN Number microservice only needs a few Java classes as shown in Figure 57:
* NumberResource: REST endpoint with a single method returning a JSON representation of an ISBN
number.
» IsbnNumbers: POJO encapsulating two attributes of an ISBN number (10 and 13 digits).
* NumberApplication: Holds the OpenAPI contract for the microservice.

* NumberResourceHealthCheck: Checks that the NumberResource is up and running.

ISBN Number Microservice

@ «@Path("/api/numbers")» @ IsbnNumbers

NumberResource >

O isbn10: String
O isbn13: String

© generatelsbnNumbers(): Response «@GET»

«@Liveness»
NumberResourceHealthCheck

"2

@«@OpenAPIDefinition
NumberApplication

© call(): HealthCheckResponse

Figure 57. ISBN Number microservice class diagram

328

The classes and files described in Figure 57 follow the Maven directory structure:

src/main/java: The directory for the IsbnNumbers, NumberResource, NumberApplication, and
NumberResourceHealthCheck classes.

» src/main/resources: The application.properties file to configure the listening port.
» src/test/java: The directory for the test case NumberResourceTest.

* pom.xml: The Maven Project Object Model (POM) describing the project and its dependencies.

12.1.4. ISBN Number REST Endpoint

The NumberResource in Listing 260 uses some JAX-RS annotations. As you can see, NumberResource is a
very simple REST endpoint, returning a JSON representation of ISBN numbers on the /api/numbers
path. It returns an IsbnNumbers object containing ISBN 10 and ISBN 13 numbers all generated by the
Java Faker.

The Java Faker library is a port of Ruby’s faker gem that generates fake data.””” It’s useful when
you’re developing a project and need some pretty data for a showcase. Here, we use it to generate
some random data.

Listing 260. REST Endpoint Generating ISBN Numbers

("/api/numbers")
(MediaType.APPLICATION_JSON)
public class NumberResource {

private final static Logger LOGGER = Logger.getlLogger("NumberResource");

public Response generateIsbnNumbers() {
Faker faker = new Faker();
IsbnNumbers isbnNumbers = new IsbnNumbers();
isbnNumbers.setIsbn10(faker.code().isbn10(separator));
isbnNumbers.setIsbn13(faker.code().isbn13(separator));
LOGGER.info("ISBN numbers generated " + isbnNumbers);
return Response.ok(isbnNumbers).build();

The NumberResource returns the IsbnNumbers object defined in Listing 261. As you can see,
IsbnNumbers is just a simple POJO (Plain Old Java Object) with attributes, getters and setters. It holds
the values of ISBN 10 and 13 numbers.

329

Listing 261. Java Class Holding ISBN Numbers
public class IsbnNumbers {

private String isbn10;
private String isbn13;

// Getters and setters
}

As you can see in Listing 260, the definition for the separator attribute (isbn1@(separator)) is
missing. For that reason, the code of the ISBN Number REST endpoint does not compile yet, but if it
did, you would have the following output:

$ curl http://localhost:8080/api/numbers | jq

{
"isbn10": "1932563601",
"isbn13": "9791961975483"

o jq is a nice tool to manipulate JSON in the shell. If you want to know more about jq
and install it, see Appendix A.

12.1.5. Injecting Configuration Value

If you look carefully at Listing 260, yowll notice that the generateIsbnNumbers() method of the
NumberResource uses a separator variable. separator is a boolean that indicates to Java Faker whether
ISBN numbers should be generated with a separator or not. We could easily add a boolean
separator attribute and manually set it to true or false depending on our needs. But instead we can
use Eclipse MicroProfile Configuration to inject this value. In Listing 262, NumberResource injects a
number .separator property.

330

Listing 262. ISBN Number Endpoint Injecting a Property

("/api/numbers")
(MediaType.APPLICATION_JSON)
public class NumberResource {

private final static Logger LOGGER = Logger.getlLogger("NumberResource");

(name = "number.separator", defaultValue = "false")
boolean separator;

public Response generateIsbnNumbers() {
Faker faker = new Faker();
IsbnNumbers isbnNumbers = new IsbnNumbers();
isbnNumbers.setIsbn10(faker.code().isbn10(separator));
isbnNumbers.setIsbn13(faker.code().isbn13(separator));
LOGGER.info("ISBN numbers generated " + isbnNumbers);
return Response.ok(isbnNumbers).build();

If you do not provide a value for a property in the application.properties, the application startup
would fail with a javax.enterprise.inject.spi.DeploymentException. That’'s why we use a default
value (using the property defaultValue). If we don’t declare a value in the application.properties it
would not fail and pick up the defaultValue. Or we can set it up in the application.properties file:

number .separator=true

Now if you run mvn compile quarkus:dev (under the parent project folder) and curl the URL
http://localhost:8080/api/numbers you should see separators on the ISBN numbers.

$ curl http://localhost:8080/api/numbers | jq

{
"isbn10": "1-932563-60-1",
"isbn13": "979-1-9619754-8-3"
}

Alternatively, you can open http://localhost:8080/api/numbers in your browser.

12.1.6. Customising the JSON Output

The JSON output from the ISBN Number microservice is not exactly what we want. We would like to
change the name of the keys: isbn_13 instead of isbn13 and isbn_10 instead of isbn10. To change the
JSON binding, we can use the JSON-B specification.

331

http://localhost:8080/api/numbers
http://localhost:8080/api/numbers

Listing 263 shows the IsbnNumbers class with some JSON-B mapping annotations. For example, the
@JsonbProperty tells the JSON-B provider to change the name isbn10 to isbn_10.

Listing 263. IsbnNumbers with J[SON-B Annotations
public class IsbnNumbers {

@JsonbProperty("isbn_10")
private String isbn10;
@JsonbProperty("isbn_13")
private String isbn13;

// Getters and setters

Without any other change to the Quarkus runtime or configuration, if you execute mvn quarkus:dev
and go back to the same URL, you will see that the JSON has changed and looks like the following:

$ curl http://localhost:8080/api/numbers | jq

{
"isbn_10": "1-383-10381-X",
"isbn_13": "978-0-929138-68-8"
}

12.1.7. OpenAPI

The ISBN Number microservice needs to expose an API to be consumed by the Book microservice.
To document this API, we can use the OpenAPI specification.

Start the application (mvn quarkus:dev) and make a request to the URL http://localhost:8080/openapi.
As you can see in Listing 264, Quarkus automatically generates the OpenAPI documentation for the
ISBN Number microservice.

Listing 264. Default OpenAPI YAML Contract

openapi: 3.0.3
info:
title: Generated API
version: "1.0"
paths:
/api/numbers:
get:
responses:
"200":
description: OK

332

http://localhost:8080/openapi

You can use cURL to change the HTTP header and to retrieve the OpenAPI
document in several formats:

* YAML: curl http://localhost:8080/openapi
* JSON: curl -H "Accept: application/json" http://localhost:8080/openapi

But this contract lacks documentation. The Eclipse MicroProfile OpenAPI allows us to customise the
methods' description of our REST endpoints as well as the entire application itself.

Customising the OpenAPI Contract of the Number REST Endpoint

The Eclipse MicroProfile OpenAPI has a set of annotations to customise the REST endpoint class,
methods and parameters to make the OpenAPI contract richer and clearer for consumers. Listing
265 shows what the NumberResource endpoint looks like once annotated.

Listing 265. Customising the OpenAPI Contract of the REST endpoint
("/api/numbers")
(MediaType.APPLICATION_JSON)
public class NumberResource {

private final static Logger LOGGER = Logger.getlLogger("NumberResource");

(name = "number.separator”, defaultValue = "false")
boolean separator;

(
summary = "Generates ISBN numbers",
description = "These ISBN numbers have several formats: ISBN 13 and ISBN 10")
(
responseCode = "200",
content = (mediaType = MediaType.APPLICATION_JSON,

schema = (implementation = IsbnNumbers.class)))

public Response generateIsbnNumbers() {

Faker faker = new Faker();

IsbnNumbers isbnNumbers = new IsbnNumbers();

isbnNumbers.setIsbn10(faker.code().isbn10(separator));

isbnNumbers.setIsbn13(faker.code().isbn13(separator));

LOGGER.info("ISBN numbers generated " + isbnNumbers);

return Response.ok(isbnNumbers).build();

The @Operation annotation describes the method while @APIResponse gives information about the
HTTP status code (here, a 200 when the method is invoked successfully) and the content of the
Response (which is an IsbnNumbers class).

333

http://localhost:8080/openapi
http://localhost:8080/openapi

Customising the IshnNumbers POJO

The generateIsbnNumbers() method returns an IsbnNumbers object. As you can see in Listing 266, this
object can also be annotated with @Schema to provide more textual description. For example, we can
inform the consumers which attributes are required in the JSON document (@Schema(required =
true)).

Listing 266. Customising the OpenAPI Contract for the IsbnNumbers Class

(description = "Several formats of book ISBN numbers")
public class IsbnNumbers {

(required = true)
("isbn_10")

private String isbn10;
(required = true)
("isbn_13")

private String isbn13;

// Getters and setters

Customising the OpenAPI Contract of the Application

The previous annotations allow you to customise the contract for a given REST endpoint. But it’s
also important to customise the contract for the entire microservice. Eclipse MicroProfile OpenAPI
also has a set of annotations to serve that purpose. The difference is that these annotations cannot
be used on the endpoint itself but, instead, on another Java class which is meant to be configuring
the entire application. For this, the NumberApplication described in Listing 267 needs to extend
javax.ws.rs.core.Application and be annotated with OpenAPI annotations.

334

Listing 267. Custom OpenAPI Documentation for the Application

@ApplicationPath("/")
@0penAPIDefinition(

info = @Info(
title
description
version
contact
externalDocs
url
description

tags = {
@Tag(name
@Tag(name

}
)

"Number API",

= "This API allows to generate all sorts of ISBN numbers",

= "1.0",

= @Contact(name = "@agoncal", url = "https://twitter.com/agoncal")),
= @ExternalDocumentation(

= "https://github.com/agoncal/agoncal-fascicle-quarkus"”,

= "A1l1l the Understanding Quarkus code"),

"api", description = "Public API that can be used by anybody"),
"numbers", description = "Anybody interested in ISBN numbers")

public class NumberApplication extends Application {

}

The Customised OpenAPI Contract

After applying all the previous modifications to the contract meta-data, if you go back to the
http://localhost:8080/openapi endpoint you will see the customised OpenAPI contract described in

Listing 268.

335

http://localhost:8080/openapi

Listing 268. Customised OpenAPI YAML Contract

openapi: 3.0.3
info:
title: Number API
description: This API allows to generate all sorts of ISBN numbers
contact:
name: '@agoncal’
url: https://twitter.com/agoncal
version: "1.0"
externalDocs:
description: All the Understanding Quarkus code
url: https://github.com/agoncal/agoncal-fascicle-quarkus
tags:
- name: api
description: Public API that can be used by anybody
- name: numbers
description: Anybody interested in ISBN numbers
paths:
/api/numbers:
get:
summary: Generates ISBN numbers
description: "These ISBN numbers have several formats: ISBN 13 and ISBN 10"
responses:
"200":
description: OK
content:
application/json:
schema:
$ref: "#/components/schemas/IsbnNumbers'’
components:
schemas:
IsbnNumbers:
description: Several formats of book ISBN numbers
required:
- isbn_10
- isbn_13
type: object
properties:
isbn_10:
type: string
isbn_13:
type: string

The contract in Listing 268 is much richer than the one in Listing 264. There is information about
the entire Number microservice, as well as all the paths that are accessible through HTTP. In the
contract in Listing 268, notice the reference to the IsbnNumbers ($ref:
"#/components/schemas/IsbnNumbers) on the generateIsbnNumbers() method. For the consumer of this
contract, the returned structure is much clearer that the one defined in Listing 264.

336

Swagger Ul

Visualising an OpenAPI contract in YAML or JSON can be cumbersome if the contract is too large.
Instead, we can use Swagger UL

By default, Swagger Ul is accessible at the URL /swagger-ui. So, once your application is started, you
can go to http://localhost:8080/swagger-ui, you will see the contract in a visual format such as Figure
58.

Number AP| ® &

/openapi

This API allows to generate all sorts of ISBN numbers

@agoncal - Website
All the Understanding Quarkus code

ap| Public API that can be used by anybody v
numbers Anybody interested in ISBN numbers v
default v

‘ /api/numbers Generates ISBN numbers

Schemas v

IsbnNumbers v {
description:
Several formats of book ISBN numbers

isbn_10* string
isbn_13* string

}

Figure 58. Swagger UI contract of the Number endpoint

You can visualise your API’s operations and schemas, but you can also invoke them by simply
clicking on the GET button and then the Execute button as shown in Figure 59.

337

http://localhost:8080/swagger-ui

T |

Responses

Curl

curl -X GET "http://localhost:8081/api/numbers" -H "accept: application/json"

Request URL

http://localhost:8081/api/numbers

Server response

Code Details

200 Response body

{
"isbn_10": "1-01-435450-1",

"isbn_13": "979-1-89802-965-5" Download
}

Response headers

content-length: 57
content-type: application/json

Responses
Code Description Links
200 No links

OK

Figure 59. Invoking the method to generate ISBN numbers

12.1.8. Adding Liveness Health Check

To check that our Number microservice is live, we can invoke the generateIsbnNumbers() method on
the NumberResource. For that, we have the NumberResourceHealthCheck class as seen in Listing 269. It
extends HealthCheck and overrides the call() method. That’s where we invoke the endpoint’s
generateIsbnNumbers() method. If the call succeeds, we return an up response (meaning the REST

endpoint is live).

Listing 269. Checks the Liveness of the Number Microservice

public class NumberResourceHealthCheck implements HealthCheck {

NumberResource numberResource;

public HealthCheckResponse call() {
numberResource.generateIsbnNumbers();
return HealthCheckResponse.named("Ping Number REST Endpoint").up().build();
}
}

338

With Quarkus started in dev mode, you can now invoke the http://localhost:8080/health/live url in
your browser or by using cURL. Because we defined our health check as a liveness procedure (with
@Liveness qualifier) the health check procedure is now present in the checks array.

Listing 270. Liveness JSON Result of the Number Microservice

{
"status": "UP",
"checks": [
{
“name": "Ping Number REST Endpoint",
"status": "UP"
}
]
}

12.1.9. Running the ISBN Number Microservice

By now you’ve already executed the Number microservice by starting Quarkus and invoking some
cURL commands. But let’s go further with hot reloading the application and configuring it.

Live Reload

With Quarkus running in dev mode (mvn quarkus:dev), cURL the following URL http://localhost:8080/
api/numbers. You should see something like this:

{
"isbn_10": "1-383-10381-X",
"isbn_13": "978-0-929138-68-8"
}

Now, update the method NumberResource.generateIsbnNumbers() by setting a dummy ISBN number
with isbnNumbers.setIsbn10("dummy"). Save the NumberResource file if your IDE does not do it
automatically, and execute the cURL command again. As you can see, the output has changed
without you to having to stop and restart Quarkus:

{

"isbn_10": "dummy",
"isbn_13": "978-0-929138-68-8"
}

You can also change the application.properties file by setting the number.separator to false. Execute
the cURL command again, and you will notice that the ISBN numbers do not use separators
anymore.

339

http://localhost:8080/health/live
http://localhost:8080/api/numbers
http://localhost:8080/api/numbers

Configuring Quarkus Listening Port

Because we will end-up running several microservices, let’s configure Quarkus so it listens to a
different port than 8080. This is quite easy as we just need to add one property in the
application.properties file:

quarkus.http.port=8081

Now you need to restart the application to change the port. From now on, check the endpoint at
http://1ocalhost:8081/api/numbers instead of http://localhost:8080/api/numbers.

12.1.10. Testing the ISBN Number Microservice

So far so good, but wouldn’t it be better with a few tests, just in case? When we bootstrapped the
microservice, some extra Maven dependencies were added to the pom.xml file (see Listing 271).

* quarkus-junith: Junit 5 support in Quarkus.

* rest-assured: REST Assured to test the REST endpoint.

Listing 271. Maven Test Dependencies

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-junit5</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupld>io.rest-assured</groupId>
<artifactId>rest-assured</artifactId>
<scope>test</scope>

</dependency>

In Listing 272, the @QuarkusTest runner instructs JUnit to start the application before the tests. Then,
the shouldGenerateIsbnNumbers() method checks the HTTP response status code and the JSON
content. Notice that these tests use REST Assured.”””

340

http://localhost:8081/api/numbers
http://localhost:8080/api/numbers

Listing 272. Testing the Generation of ISBN Numbers

public class NumberResourceTest {

void shouldGenerateIsbnNumbers() {
given()
.header (HttpHeaders.ACCEPT, MediaType.APPLICATION_JSON).
when()
.get("/api/numbers").
then()
.statusCode(0K.getStatusCode())
.body("$", hasKey("isbn_10"))
.body("$", hasKey("isbn_13"));

}
}
If you like the format of this fascicle and are interested in Quarkus, check out the
o references for my Practising Quarkus fascicle in Appendix E. In the Practising
fascicle, you will develop, test, build, package and monitor an entire microservice
application.

Now execute the test with mvn test or from your IDE. The test should pass and you should see
similar logs to those in Listing 273.

Listing 273. Successful Test Output

[INFO] -----=mmmmmmmmmm i m o m e

[INFO] TESTS

[INFO] ------mmmm e m o e

[INFO] Running org.agoncal.fascicle.quarkus.number.NumberResourceTest

[INFO] Quarkus started in 0.586s. Listening on: http://0.0.0.0:8081

[INFO] Profile test activated.

[INFO] Installed features: [cdi, resteasy, resteasy-jsonb, smallrye-health, smallrye-
openapi, swagger-ui]

[INFO] ISBN numbers generated BookNumbers{isbn10="'1-9635127-0-7', isbn13="'978-1-7424-
9845-4"}

[INFO] Quarkus stopped in 0.029s

[INFO] Results:

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: 0
[INFO]

[INFO] --------mmmmmmmmmm e
[INFO] BUILD SUCCESS

[INFO] --------mmmmmmmmmm oo

341

12.2. Developing the REST Book Microservice

Now, it’s time to develop a microservice that returns books. The Book microservice returns random
book data such as the book’s title, the author, the genre and the publisher. But the Book
microservice also needs to interact with the ISBN Number microservice to get an ISBN. In this
section, we will:

* Implement a Book REST API using JAX-RS and Quarkus,

Generate the JSON Output with JSON-P,

Invoke the ISBN Number microservice thanks to REST Client,
» Handle fault tolerance,

¢ Add metrics.

12.2.1. Bootstrapping the Book Microservice

To bootstrap the Book microservice we use the following Maven command (remember that you can
also go to https://code.quarkus.io if you prefer):

Listing 274. Command to Bootstrap the Book Microservice

mvn io.quarkus:quarkus-maven-plugin:1.9.0.Final:create \
-DplatformVersion=1.9.0.Final \
-DprojectGroupId=org.agoncal.fascicle.quarkus.putting-together \
-DprojectArtifactId=rest-book \
-DprojectVersion=1.0-SNAPSHOT \
-DclassName="org.agoncal.fascicle.quarkus.book.BookResource" \
-Dpath="/api/books" \
-Dextensions="resteasy-jsonb, rest-client, smallrye-fault-tolerance, smallrye-
metrics"

12.2.2. Maven Dependencies

Once the code of the application is generated, you will see all the extensions needed to compile and
execute the Book microservice in the pom.xml in Listing 275:

» quarkus-resteasy: REST framework implementing JAX-RS.

* quarkus-resteasy-jsonb: JSON-B serialisation support for RESTEasy.

* quarkus-rest-client: REST Client in order to interact with the ISBN number microservice.

e quarkus-smallrye-fault-tolerance: The communication with the ISBN number microservice
being inherently unreliable, we need the Fault Tolerance dependency.

* quarkus-smallrye-metrics: The Fault Tolerance dependency gathers metrics relating to the time
it takes to process a request.

* javafaker: You need to add this dependency manually so you can generate fake book data.

342

https://code.quarkus.io

Listing 275. Maven Dependencies

<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-resteasy</artifactId>
</dependency>
<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-resteasy-jsonb</artifactId>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-rest-client</artifactId>
</dependency>
<dependency>
<groupld>io.quarkus</groupld>
<artifactId>quarkus-smallrye-fault-tolerance</artifactId>
</dependency>
<dependency>
<groupId>io.quarkus</groupld>
<artifactId>quarkus-smallrye-metrics</artifactId>
</dependency>
<dependency>
<groupId>com.github.javafaker</groupld>
<artifactId>javafaker</artifactId>
</dependency>

12.2.3. Directories and Files
The Book microservice only needs a few Java classes, as shown in Figure 60:

* BookResource: REST endpoint returning a JSON representation of a book.
e IsbnNumbers: ISBN 10 and 13 numbers obtained by invoking the ISBN number microservice.

* NumberResourceProxy: REST Client proxy to invoke the ISBN number microservice.

Book Microservice

@IsbnNumbers

O isbn10: String
O isbn13: String

A
I
@ «@Path("/api/books")» !
BookResource . . «@RegisterRestClient»
_ _ @Inject @RestClient > NumberResourceProxy
© getRandomBook(): Response «@GET»«@Fallback»
| fallbackGetRandomBook(): Response © generatelsbnNumbers(): IsbnNumbers «@GET»

Figure 60. Book microservice class diagram

The classes and files described in Figure 60 follow the Maven directory structure:

343

12.

src/main/java: The directory for the BookResource, IsbnNumbers classes and the
NumberResourceProxy interface.

src/main/resources: The application.properties file to configure the microservice invocation.

src/test/java: The directory for the test case BookResourceTest and the mock class
MockNumberResourceProxy.

pom.xml: The Maven Project Object Model (POM) describing the project and its dependencies.

2.4. Book REST Endpoint

To expose a REST API to get a random book, we need a REST endpoint using JAX-RS. Listing 276
shows the BookResource class. The @Path annotation tells us that the API will be accessible through

the

/api/books and will produce JSON. The getRandomBook() is accessible through an HTTP GET and

returns a random book as a JsonObject.

Listing 276. Book REST Endpoint Retrieving a Random Book

("/api/books")
(MediaType.APPLICATION_JSON)

public class BookResource {

}

private final static Logger LOGGER = Logger.getlLogger("BookResource");

public Response getRandomBook() {
IsbnNumbers isbnNumbers = numberResourceProxy.generateIsbnNumbers();

Faker faker = new Faker();

JsonObject book = Json.createObjectBuilder()
.add("isbn_13", isbnNumbers.getIsbn13())
.add("isbn_10", isbnNumbers.getIsbn10())

.add("title", faker.book().title())

.add("author", faker.book().author())

.add("genre", faker.book().genre())

.add("publisher", faker.book().publisher())
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();

LOGGER.info("Random book " + book);
return Response.ok(book).build();

}

Listing 277 shows the code of the IsbnNumbers. It holds two values (the 10 and 13 digits ISBN
numbers) and uses JSON-B annotations to bind the JSON result, and Bean Validation annotations to
make sure the numbers are not null. Notice that validation happens automatically, you don’t have
to invoke programmatically the Bean Validation APIs.

344

Listing 277. POJO with Bean Validation and JSON-B Annotations

("/api/books")
(MediaType.APPLICATION_JSON)
public class BookResource {

private final static Logger LOGGER = Logger.getlLogger("BookResource");

public Response getRandomBook() {
IsbnNumbers isbnNumbers = numberResourceProxy.generateIsbnNumbers();

Faker faker = new Faker();

JsonObject book = Json.createObjectBuilder()
.add("isbn_13", isbnNumbers.getIsbn13())
.add("isbn_10", isbnNumbers.getIsbn10())

.add("title", faker.book().title())

.add("author", faker.book().author())

.add("genre", faker.book().genre())

.add("publisher", faker.book().publisher())
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();

LOGGER.info("Random book " + book);
return Response.ok(book).build();

}
}

12.2.5. Book Microservice Invoking the Number Microservice

In Listing 276, there is something missing. To get the ISBN numbers, the method getRandomBook()
invokes a numberResourceProxy. That’s when we want the Book microservice to invoke the Number
microservice so that it gets the ISBN numbers.

For that, we wuse the REST Client API with the @RestClient annotation to inject the
NumberResourceProxy interface (see Listing 276). This interface allows us to remotely invoke the
Number microservice through HTTP to return both ISBN 10 and 13 numbers.

345

Listing 278. Book REST Endpoint Injecting the Proxy

("/api/books")
(MediaType.APPLICATION_JSON)
public class BookResource {

private final static Logger LOGGER = Logger.getlLogger("BookResource");

NumberResourceProxy numberResourceProxy;

public Response getRandomBook() {
IsbnNumbers isbnNumbers = numberResourceProxy.generateIsbnNumbers();

Faker faker = new Faker();

JsonObject book = Json.createObjectBuilder()
.add("isbn_13", isbnNumbers.getIsbn13())
.add("isbn_10", isbnNumbers.getIsbn10())

.add("title", faker.book().title())

.add("author", faker.book().author())

.add("qgenre", faker.book().genre())

.add("publisher", faker.book().publisher())
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();

LOGGER.info("Random book " + book);
return Response.ok(book).build();
}
}

Using the Eclipse MicroProfile REST Client is as simple as creating a NumberResourceProxy interface
using the proper JAX-RS and MicroProfile annotations (see Listing 279):

* @RegisterRestClient allows Quarkus to know that this interface is meant to be available for CDI
injection as a REST Client,

* @Path and @GET are the standard JAX-RS annotations used to define how to access the service,

* @Produces defines the expected content-type.

346

Listing 279. The Proxy Interface

("/api/numbers")
(MediaType.APPLICATION_JSON)

public interface NumberResourceProxy {

IsbnNumbers generateIsbnNumbers();

}

The generateIsbnNumbers() method gives our code the ability to get ISBN numbers from the Number
microservice. Eclipse MicroProfile REST Client will handle all the networking and marshalling,
leaving our code clean of such technical details.

But where is the Number microservice located? In order to determine the base URL to which REST
calls will be made, the REST Client uses a configuration from the application.properties file. The
name of the property needs to follow a certain convention which is displayed in the following code:

org.agoncal.fascicle.quarkus.book.NumberResourceProxy/mp-
rest/url=http://localhost:8081
org.agoncal.fascicle.quarkus.book.NumberResourceProxy/mp-
rest/scope=javax.inject.Singleton

Having this configuration means that all requests performed using the NumberResourceProxy
interface will use http://localhost:8081 as the base URL. Using this configuration and the code in
Listing 279, calling the generateIsbnNumbers() method of NumberResourceProxy would result in an
HTTP GET request being made to http://localhost:8081/api/numbers.

12.2.6. Falling Back

Getting random books works great... until we Kkill the Number microservice. What happens? Well,
the Book microservice cannot invoke the Number microservice anymore and breaks with a
ConnectException:

ERROR [io0.qua.ver.htt.run.QuarkusErrorHandler] HTTP Request to /api/books failed
org.jboss.resteasy.spi.UnhandledException: javax.ws.rs.ProcessingException:
RESTEASY004655: Unable to invoke request: java.net.ConnectException: Connection
refused (Connection refused)

One of the challenges brought by the distributed nature of microservices is that communication
with external systems is inherently unreliable. Distribution increases the demand for resilient
applications. So let’s provide a fallback for getting ISBN numbers in case of failure. For example, we
could serialise the JSON representation of a book into a file so it can be processed later. Or store a
temporary book into a database, or send a message to an event-bus. We will just be sending back
dummy data to make it simple.

347

http://localhost:8081
http://localhost:8081/api/numbers

For that, we add one fallback method to the BookResource called fallbackGetRandomBook and a
@Fallback annotation to the getRandomBook () method (see Listing 280).

Listing 280. Falling Back on Getting a Random Book

("/api/books")
(MediaType.APPLICATION_JSON)
public class BookResource {

private final static Logger LOGGER = Logger.getlLogger("BookResource");

NumberResourceProxy numberResourceProxy;

(fallbackMethod = "fallbackGetRandomBook")
public Response getRandomBook() {

IsbnNumbers isbnNumbers = numberResourceProxy.generateIsbnNumbers();

Faker faker = new Faker();

JsonObject book = Json.createObjectBuilder()
.add("isbn_13", isbnNumbers.getIsbn13())
.add("isbn_10", isbnNumbers.getIsbn10())

.add("title", faker.book().title())

.add("author", faker.book().author())

.add("genre", faker.book().genre())

.add("publisher", faker.book().publisher())
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();

LOGGER.info("Random book " + book);
return Response.ok(book).build();
}

private Response fallbackGetRandomBook() {
LOGGER.warning("Falling back on creating a book");
JsonObject dummyBook = Json.createObjectBuilder()
.add("title", "Dummy book")
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();
return Response.ok(dummyBook).build();
}
+

The fallbackGetRandomBook() method must have the same method signature as getRandomBook() (in
our case, it takes no arguments and returns a Response object). In case the Book microservice cannot
invoke the Number microservice, the fallbackGetRandomBook() is invoked and some dummy data is
returned.

348

12.2.7. Adding Metrics

Before running the application, we would like to add some metrics so we know how many times the
getRandomBook () method is invoked. For that, we need to annotate the method with @Counted as seen
in Listing 281.

Listing 281. Metrics on the Method to Get a Random Book

("/api/books")
(MediaType.APPLICATION_JSON)
public class BookResource {

private final static Logger LOGGER = Logger.getlLogger("BookResource");

(name = "getRandomBook",
description = "Counts how many times the getRandomBook method has been invoked")
public Response getRandomBook() {

IsbnNumbers isbnNumbers = numberResourceProxy.generateIsbnNumbers();

Faker faker = new Faker();

JsonObject book = Json.createObjectBuilder()
.add("isbn_13", isbnNumbers.getIsbn13())
.add("isbn_10", isbnNumbers.getIsbn10())

.add("title", faker.book().title())

.add("author", faker.book().author())

.add("genre", faker.book().genre())

.add("publisher", faker.book().publisher())
.add("timestamp", String.valueOf(LocalDateTime.now()))
.build();

LOGGER.info("Random book " + book);
return Response.ok(book).build();
}
}

12.2.8. Running the Book Microservice

Let’s see if this code works. For that, it’s just a matter of starting both Quarkus instances and
executing a few cURL commands. First, start both Quarkus instances, one for the Book
microservice, and the other one for the Number microservice:

rest-book$ mvn quarkus:dev
rest-number$ mvn quarkus:dev

Then, make sure both microservices are up and running by executing a few HTTP GET cURL
commands.

349

$ curl -X GET http://localhost:8081/api/numbers | jq

{
"isbn_10": "0-06-448352-5",
"isbn_13": "979-0-09-133656-0"
}

$ curl -X GET http://localhost:8080/api/books | jq
{

"isbn_13": "978-1-9774472-4-1",

"isbn_10": "1-911871-53-6",

"title": "The House of Mirth",

"author": "Mr. Cindy Lowe",

"genre": "Narrative nonfiction",

"publisher": "Ace Books",

"timestamp": "2020-09-24714:39:24.278586"

If the ISBN numbers are set on the book, that means that the Book microservice has managed to
invoke the Number microservices. Now we are ready to test the fallback. For that, kill the Number
microservice and invoke the Book microservice again. You should see the following:

$ curl -X GET http://localhost:8080/api/books | jq

{
"title": "Dummy book",

"timestamp": "2020-09-24T14:43:15.431364"
}

Restart the Number microservice and keep on generating new books: the books are returned with
their ISBN numbers. At the same time, to view the metrics of the Book microservice in JSON format,
execute the following command:

$ curl -H "Accept: application/json" http://localhost:8080/metrics/application

{
"BookResource.getRandomBook": 13,
"BookResource.getRandomBook.invocations.total": 13,
"BookResource.getRandomBook.fallback.calls.total": 1
}

12.2.9. Testing the Book Microservice

To test the Book microservice, we need the same Maven dependencies as the ones for the Number
microservice described in Listing 271. Same as before, we annotate our test in Listing 282 with
@QuarkusTest. Then, the shouldGetRandomBook () method checks the HTTP response status code as well
as the JSON content with REST Assured.

350

Listing 282. Testing Random Book

public class BookResourceTest {

void shouldGetRandomBook() {

given()
.header (HttpHeaders.ACCEPT, MediaType.APPLICATION_JSON).

when()
.get("/api/books").

then()
.statusCode(0K.getStatusCode())
.body("$", hasKey("isbn_10"))
.body("$", hasKey("isbn_13"))
.body("$", hasKey("title"))
.body("$", hasKey("author"))
.body("$", hasKey("genre"))
.body("$", hasKey("publisher"));

But remember that the Book microservice now depends on the Number microservice. So now, to
test the Book microservice we need the Number microservice to be up and running. This creates a
huge dependency on both microservices, and that’s not what we want. To avoid this, we need to
Mock the Number REST API interface. For this, we mock the NumberResourceProxy interface with a
MockNumberResourceProxy with @Mock as seen in Listing 283.

Listing 283. Class Mocking the Proxy Invocation

public class MockNumberResourceProxy implements NumberResourceProxy {

public IsbnNumbers generateIsbnNumbers() {
IsbnNumbers isbnNumbers = new IsbnNumbers();
isbnNumbers.setIsbn13("dummy isbn 13");
isbnNumbers.setIsbn10("dummy isbn 10");
return isbnNumbers;

}
}

So instead of invoking the NumberResourceProxy, the alternative MockNumberResourceProxy is
automatically called during the test phase. Now if you execute the tests (with mvn test) they should
pass.

351

12.3. Summary

In this chapter, you didn’t use all the Quarkus APIs, tips and concepts that you previously saw in
this fascicle, but you did use some of them. The idea was to put some of these concepts together and
develop a more complex example on how to use Quarkus.

You bootstrapped two microservices, thanks to the Quarkus Maven plugin that scaffolds a basic
directory structure, Maven dependencies, some code and test classes. The ISBN Number
microservice generates book numbers and uses injection, JSON binding, OpenAPI and health
checks. As for the Book microservice, it needs REST Client to invoke remotely the ISBN Number
microservice. Use fallback if the call fails and expose some metrics so we know how many books
have successfully been generated. We ended up testing both microservices and running them.

Time to wrap up. The next chapter will summarise what you’ve seen in this fascicle. Then,
remember to check the Appendix if you want to know more about the releases of Quarkus
(Appendix B) or the Eclipse MicroProfile Specification Versions.

[207] Ruby faker https://github.com/faker-ruby
[208] REST Assured http://rest-assured.io

352

https://github.com/faker-ruby
http://rest-assured.io

Chapter 13. Summary

This fascicle started with some terminology to make sure you would understand all the concepts
around Quarkus. Chapter 2, Understanding Quarkus defined Microservices, Reactive Systems,
MicroProfile, Cloud Native, GraalVM, and briefly presented Quarkus.

Then, thanks to Chapter 3, Getting Started, you bootstrapped a simple example and made sure your
development environment was up and running: developing, debugging, testing some code, but also
using live reload or GraalVM to build native executable and containerising it.

Chapter 4, Core Quarkus focused on the fundamentals of Quarkus (injection, configuration, profiles,
logging and life cycle). Data, Transactions and ORM uses these fundamentals to add extensions that
deal with data validation, object-relational mapping or transactions.

Microservices fail into two main categories: HTTP Microservices and Event-Driven Microservices.
HTTP-related technologies usually use synchronous communication and therefore need to deal
with invocation failure (Chapter 7, Communication and Fault Tolerance). They can be synchronous
or asynchronous, when there are many microservices, observability becomes mandatory as
explained in Chapter 9, Observability.

Then, comes production time. Today, with all the Cloud Native philosophy, we need to package our
microservices into containers, deploy them and orchestrate them. Chapter 10 showed you some
Quarkus extensions to easily interact with Docker and Kubernetes.

With Chapter 11, Tests you saw how easy it was to create JVM and Native tests with Quarkus. That’s
because Quarkus integrates many testing and mocking frameworks and makes them work with
simple code as well as complex microservice architecture.

We finished this fascicle with a final Putting It All Together chapter. We took some of the concepts
seen previously, put them together, and built a slightly more complex application.

This is the end of the Understanding Quarkus fascicle. I hope you liked it, learnt a few things, and
more importantly, will be able to take this knowledge back to your projects.

Remember that you can find all the code for this fascicle at https://github.com/agoncal/agoncal-
fascicle-quarkus/tree/1.0. If some parts were not clear enough, or if you found something missing, a
bug, or you just want to leave a note or suggestion, please use the GitHub issue tracker at
https://github.com/agoncal/agoncal-fascicle-quarkus/issues.

If you liked the format of this fascicle, you might want to read others that I have written. Check out
Appendix E for the full list of fascicles.

353

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0
https://github.com/agoncal/agoncal-fascicle-quarkus/issues

Appendix A: Setting up the Development
Environment on macOS

This appendix focuses on setting up your development environment so you can do some hands-on
work by following the code snippets listed in the previous chapters. This fascicle has lots of code
samples, and even has a chapter with a "Putting It All Together" section. This section provides a
step-by-step example showing how to develop, compile, deploy, execute and test the components. To
run these examples, you need to install the required software.

Bear in mind that I run all of these tools on macOS. So, this appendix gives you all of the installation
guidelines for the macOS operating system. If your machine runs on Linux or Windows, check
online to know how to install the following tools on your platform.

A.1. Homebrew

One of the pre-requisites is that you have Homebrew installed. Homebrew is a package manager for
mac0S.""”

A.1.1. A Brief History of Homebrew

The name Homebrew is intended to suggest the idea of building software on the Mac depending on
the user’s taste. It was written by Max Howell in 2009 in Ruby.”'” On September 2016, Homebrew
version 1.0.0 was released. In January 2019, Linuxbrew was merged back into Homebrew, adding
beta support for Linux and the Windows Subsystem for Linux to Homebrew’s feature set. On
February 2, 2019, Homebrew version 2.0.0 was released.

A.1.2. Installing Homebrew on macOS

To install Homebrew, just execute the following command:

$ /bin/bash -c¢ "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install.sh)"

You also need Homebrew Cask which extends Homebrew and brings installation and management
of GUI macOS applications.”"" Install it by running:

$ brew tap homebrew/cask

A.1.3. Checking for Homebrew Installation

Now you should be able to execute a few Homebrew commands:

354

$ brew --version

Homebrew 2.4.13
Homebrew/homebrew-core
Homebrew/homebrew-cask

A.1.4. Some Homebrew Commands

* brew commands: Lists the built-in and external commands.
* brew help: Displays help.

* brew doctor: Checks for potential problems.

* brew install: Installs a formula.

* brew uninstall: Uninstalls a formula.

» brew list: Lists all installed formulae.

* brew upgrade: Upgrades outdated casks and formulae.
e brew update: Fetches the newest version of Homebrew.
* brew cask help: Displays Homebrew Cask help.

* brew cask install: Installs a cask.

* brew cask uninstall: Uninstalls a cask.

* brew cask list: Lists installed casks.

* brew cask upgrade: Upgrades all outdated casks (or the specified casks).

A.2.Java 11

Essential for the development and execution of the examples in the fascicle is the Java Development
Kit (JDK).”"" The JDK includes several tools such as a compiler (javac), a virtual machine, a
documentation generator (javadoc), monitoring tools (Visual VM) and so on.”** The code in this
fascicle uses Java 11 (JDK 11.0.8).

A.2.1. Architecture

One design goal of Java is portability, which means that programs written for the Java platform
must run similarly on any combination of hardware and operating system with adequate run time
support. This is achieved by compiling the Java language code to an intermediate representation
called bytecode, instead of directly to a specific machine code. This bytecode is then analysed,
interpreted and executed on the Java Virtual Machine (JVM).

The Interpreter is the one interpreting the bytecode. It does it quickly, but executes slowly. The
disadvantage of the interpreter is that, when one method is called multiple times, a new
interpretation is required every time. That’s when the Just In Time (JIT) compiler kicks in. JIT is
basically the component that translates the JVM bytecode (generated by your javac command) into
machine code which is the language that your underlying execution environment (i.e. your

355

processor) can understand—and all that happens dynamically at runtime! When the JIT finds
repeated code, it compiles the bytecode and changes it to native code. This native code will then be
used directly for repeated method calls, which improves the performance of the system. This JIT is
also called the Java HotSpot (a.k.a. Java HotSpot Performance Engine, or HotSpot VM).”"* Then, the
Garbage Collector will collect and remove unreferenced objects.

When using GraalVM you have the choice of doing just-in-time or ahead-of-time compilation.
GraalVM includes a high performance Java compiler, itself called Graal, which can be used in the
HotSpot VM.

A.2.2. A Brief History of Java

James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June
1991. Java was originally designed for interactive television, but it was too advanced for the digital
cable television industry at the time. The language was initially called Oak after an oak tree that
stood outside Gosling’s office. Later, the project went by the name Green and was finally renamed
Java, from Java coffee. Gosling designed Java with a C/C++-style syntax that system and application
programmers would find familiar. Sun Microsystems released the first public implementation as
Java 1.0 in 1996. Following Oracle Corporation’s acquisition of Sun Microsystems in 2009-10, Oracle
has described itself as the "steward of Java technology" since then.”"”

A.2.3. Installing the JDK on macOS

To install the JDK 11.0.8, go to the official website, select the appropriate platform and language,
and download the distribution.”*® For example, on macOS, download the file jdk-11.0.8_osx-
x64_bin.dmg shown in Figure 61 (you should check out the Accept License Agreement check box
before hitting the download link to let the download start). If you are not on Mac, the download
steps are still pretty similar.

Java SE Development Kit 11.0.8

This software is licensed under the Oracle Technology Network License Agreement for Oracle Java SE

Product / File Description File Size Download

Linux Debian Package 148.77 MB B,i, jdk-11.0.8_linux-x64_bin.deb

Linux RPM Package 155.45 MB A,i, jdk-11.0.8_linux-x64_bin.rpm

Linux Compressed Archive 172.66 MB “,i, jdk-11.0.8_linux-x64_bin.tar.gz
macOS Installer 166.84 MB ﬂ,'i, jdk-11.0.8_osx-x64_bin.dmg

macOS Compressed Archive 167.23 MB ‘:i, jdk-11.0.8_osx-x64_bin.tar.gz
Solaris SPARC Compressed Archive 186.49 MB ‘:i, jdk-11.0.8_solaris-sparcv9_bin.tar.gz
Windows x64 Installer 15173 MB B,i, jdk-11.0.8_windows-x64_bin.exe

Figure 61. Downloading the DK distribution

Double-click on the file jdk-11.0.8_osx-x64_bin.dmg. This will bring up a pop-up screen (see Figure
62), asking you to start the installation.

356

#® |nstall JDK 11.0.8

Welcome to the JDK 11.0.8 Installer

Introduction

This program will guide you though the installation
process for the Java SE Development Kit 11.0.8.

Continue

Figure 62. Installation pop-up screen

The wizard invites you to accept the licence for the software and install the JDK successfully (see
Figure 63).

357

#® |nstall JDK 11.0.8

The installation was completed successfully.

Introduction

Destination Select I nStal I Succeed ed

Installation Type

Installation Visit the Java SE Documentation to access tutorials, API
documentation, developer guides, release notes and more to

Summary help you get started with the JDK.

Figure 63. Successful JDK installation

There is also an easier way to install Java using Homebrew. First of all, check if you already have
the Java formula installed on your machine:

$ brew cask list javall
Error: Cask 'javall' is not installed.

If the Java formula is not installed, execute the following Homebrew commands to install it:

$ brew tap homebrew/cask-versions
$ brew cask install javall

javall was successfully installed!

A.2.4. Checking for Java Installation

Once the installation is complete, it is necessary to set the JAVA_HOME variable and the $JAVA_HOME/bin
directory to the PATH variable. Check that your system recognises Java by entering java -version as
well as the Java compiler with javac -version.

358

$ java -version

java version "11.0.8" 2020-07-14 LTS

Java(TM) SE Runtime Environment 18.9 (build 11.0.8+10-LTS)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.8+10-LTS, mixed mode)

$ javac -version
javac 11.0.8

Notice that, in the previous output, the HotSpot build is displayed. This is one easy way to know that
you are using the HotSpot VM instead of the Graal VM.

A.3. GraalVM 20.2.0

GraalVM is an extension of the Java Virtual Machine (JVM) to support more languages and several
execution modes.”"” It is itself implemented in Java. GraalVM supports a large set of languages:
Java, of course, other JVM-based languages (such as Groovy, Kotlin etc.) but also JavaScript, Ruby,
Python, R and C/C++.

But it also includes a new high performance Java compiler, itself called Graal. Running your
application inside a JVM comes with startup and footprint costs. GraalVM has a feature to create
native images for existing JVM-based applications. The image generation process employs static
analysis to find any code reachable from the main Java method and then performs full Ahead-Of-
Time (AOT) compilation on the Substrate VM. The resulting native binary contains the whole
program in machine code form for its immediate execution. This improves the performance of Java
to match the performance of native languages for fast startup and low memory footprint.

HotSpot’s execution engine has a Just-in-Time (JIT) compiler. HotSpot starts interpreting the code,
the methods are compiled at the client compilation level and then finally move to the server
compilation level. Even with the improvements in the compilation levels, HotSpot still starts
interpreting its bytecode and then moves on to JIT-ing it.

On the other hand, the Ahead-of-Time (AOT) compilation improves the startup time by loading pre-
compiled classes.”" This helps avoid running those classes in the interpreted mode or at a sub-
optimised compilation level.

A.3.1. Installing GraalVM on macOS

GraalVM can be installed from the GraalVM web site.””” As shown in Figure 64, it shows two
versions of GraalVM:

* Community Edition: Available for free for any use and built from the GraalVM sources available
on GitHub.

 Enterprise Edition: Provides additional performance, security, and scalability relevant for
running applications in production.

359

Graa IVM Start Learn Download Contribute 0 B ¢ Star | 13,668

GraalVM is a high performance runtime for Java, JavaScript, LLVM-based languages such as C and C++, and other dynamic
languages. Learn more —

Current Release Annual Release Nightly Builds
GraalVM Community 20.2.0 GraalVM Enterprise 20.2.0
Details — Details —

. Free for all purposes . Free for evaluation and development

- Runs any program that runs on GraalVM Enterprise - Additional performance, scalability and security

. Based on OpenJDK 8u262 and 11.0.8 . Based on Oracle JDK 8u261 and 11.0.8
" macOS & Linux == Windows " macOS & Linux == Windows
Release Notes — Documentation — Release Notes — Documentation —

Figure 64. Community and enterprise edition of GraalVM

Using the community edition is enough. So you will be redirected to the GitHub account of GraalVM
(see Figure 65) where you can download the latest versions.””"! Make sure you pick up version
20.2.0 and download the GraalVM file specific to your OS platform. For example, on macOS,
download the file graalvm-ce-javall-darwin-amd64-20.2.0.tar.gz shown in Figure 65. If you are not
on Mac, the download steps are still pretty similar.

360

B graalvm / graalvm-ce-builds ®Watch ~ 37 ¢ star 329 % Fork 32

<> Code 1 Pull requests) Security |~ Insights

GraalVM Community Edition 20.2.0

©vm-20.2.0

- - .
s9 €zzarghili released this on Aug 18
- 771d7a8 =~ @ 9 °

Verified
e GraalVM is a high performance runtime for Java, JavaScript, LLVM-based languages such as C and C++, and other dynamic languages.

Compare ~ Additionally, GraalVM allows efficient interoperability between programming languages and compiling Java applications ahead-of-time
into native executables for faster startup time and lower memory overhead.

This distribution of GraalVM Community includes:

¢ Java runtime with the GraalVM compiler
¢ Node.js runtime with the GraalVM JavaScript interpreter
¢ LLVM bitcode runtime

¢ Developer monitoring and debuggin tools

The GraalVM environment can be extended with optionally available components such as Native Image, Ruby, R, Python, LLVM
Toolchain, and WASM using the GraalVM Updater tool.

The release notes can be found on the website: https://www.graalvm.org/release-notes/20_2/#2020

~ Assets 27
@ graalvm-ce-javall-darwin-amd64-20.2.0.tar.gz 403 MB
@ graalvm-ce-javall-linux-aarch64-20.2.0.tar.gz 413 MB

Figure 65. Download GraalVM

Double-click on the file graalvm-ce-javall-darwin-amd64-20.2.0.tar.gz and this will install GraalVM.
Once installed, configure the GRAALVM_HOME environment variable to point to the directory where
GraalVM is installed (e.g. on macOS it will be /Library/Java/JavaVirtualMachines/graalvm-ce-javall-
20.2.0/Contents/Home).

A.3.2. Installing the Native Image Generator

The Native Image Generator, or native-image, is a utility that processes all the classes of your
application and their dependencies, including those from the JDK.”*” It statically analyses these
classes to determine which classes and methods are reachable and used during application
execution (a.k.a. closed-world). Then it passes all this reachable code as the input to the GraalVM
compiler which ahead-of-time compiles it to the native binary.

So we need to install the native-image tool. This can be done by running the following command
from your GraalVM directory (inside the bin directory).

$GRAALVM_HOME/bin $./gu install native-image

A.3.3. Checking for GraalVM Installation

Once installed and setup, you should be able to run the following command and get the following
output.

361

$ $GRAALVM_HOME/bin/native-image --version
GraalVM Version 20.2.0 (Java Version 11.0.8)

A.4. Maven 3.6.x

All the examples of this fascicle are built and tested using Maven.””” Maven offers a building
solution, shared libraries, and a plugin platform for your projects, allowing you to do quality
control, documentation, teamwork and so forth. Based on the "convention over configuration"
principle, Maven brings a standard project description and a number of conventions such as a
standard directory structure. With an extensible architecture based on plugins, Maven can offer
many different services.

A.4.1. A Brief History of Maven

Maven, created by Jason van Zyl, began as a subproject of Apache Turbine in 2002. In 2003, it was
voted on and accepted as a top-level Apache Software Foundation project. In July 2004, Maven’s
release was the critical first milestone, v1.0. Maven 2 was declared v2.0 in October 2005 after about
six months in beta cycles. Maven 3.0 was released in October 2010, being mostly backwards
compatible with Maven 2.

A.4.2. Project Descriptor

Maven is based on the fact that a majority of Java projects face similar requirements when building
applications. A Maven project needs to follow some standards as well as define specific features in
a project descriptor, or Project Object Model (POM). The POM is an XML file (pom.xml) placed at the
root of the project and contains all the metadata of the project. As shown in Listing 284, the
minimum required information to describe the identity of a project is the groupId, the artifactId,
the version, and the packaging type.

Listing 284. Header of a Maven Project Descriptor

<?xml version="1.0" encoding="UTF-8"7>

<project xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://maven.apache.org/POM/4.0.0"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>org.agoncal.fascicle</groupId>
<artifactId>chapter@1</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

</project>

A project is often divided into different artifacts. These artifacts are then grouped under the same
groupld (similar to packages in Java) and uniquely identified by the artifactId. Packaging allows
Maven to produce each artifact following a standard format (jar, war, ear etc.). Finally, the version

362

allows the identifying of an artifact during its lifetime (version 1.1, 1.2, 1.2.1 etc.). Maven imposes
versioning so that a team can manage the life of its project development. Maven also introduces the
concept of SNAPSHOT versions (the version number ends with the string -SNAPSHOT) to identify an
artifact that is being developed and is not released yet.

The POM defines much more information about your project. Some aspects are purely descriptive
(name, description etc.), while others concern the application execution such as the list of external
libraries used, and so on. Moreover, the pom.xml defines environmental information to build the
project (versioning tool, continuous integration server, artifact repositories), and any other specific
process to build your project.

A.4.3. Managing Artifacts

Maven goes beyond building artifacts; it also offers a genuine approach to archive and share these
artifacts. Maven uses a local repository on your hard drive (by default in ~/.m2/repository) where it
stores all the artifacts that the project’s descriptor references. The local repository is filled either by
the local developer’s artifacts (e.g. myProject-1.7.jar) or by external ones (e.g. javax.annotation-
api-1.2.jar) that Maven downloads from remote repositories.

A Maven project can reference a specific artifact including the artifact’s dependencies in the POM
using groupld, artifactId, version and scope in a declarative way as shown in Listing 285. If
necessary, Maven will download them to the local repository from remote repositories. Moreover,
using the POM descriptors of these external artifacts, Maven will also download the artifacts they
need (so-called "transitive dependencies"). Therefore, the development team doesn’t have to
manually add the project dependencies to the classpath. Maven automatically adds the necessary
libraries.

Listing 285. Maven Dependencies

<dependencies>
<dependency>
<groupId>org.eclipse.persistence</groupld>
<artifactId>javax.persistence</artifactId>
<version>2.1</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupld>org.glassfish</groupId>
<artifactId>javax.ejb</artifactId>
<version>3.2</version>
<scope>provided</scope>
</dependency>
</dependencies>

Dependencies may have limited visibility (called scope):

* test: The library is used to compile and run test classes but is not packaged in the produced
artifact (e.g. war file).

 provided: The library is provided by the environment (persistence provider, application server

363

etc.) and is only used to compile the code.

» compile: The library is necessary for compilation and execution. Therefore, it will be packaged
as part of the produced artifact too.

* runtime: The library is only required for execution but is excluded from the compilation (e.g.
Servlets).

A.4.4. Installing Maven on macOS

The examples of this fascicle have been developed with Apache Maven 3.6.x. Once you have
installed the JDK 11.0.8, make sure the JAVA_HOME environment variable is set. Then, check if you
already have the Maven formula installed on your machine:

$ brew list maven
Error: No such keg: /usr/local/Cellar/maven

If the Maven formula is not installed, execute the following Homebrew command to install it:

$ brew install maven

maven was successfully installed!
You should now see the Maven formula in Homebrew:

$ brew list maven
/usr/local/Cellar/maven/3.6.3_1/bin/mvn
/usr/local/Cellar/maven/3.6.3_1/bin/mvnDebug
/usr/local/Cellar/maven/3.6.3_1/bin/mvnyjp

A.4.5. Checking for Maven Installation

Once you’ve got Maven installed, open a command line and enter mvn -version to validate your
installation. Maven should print its version and the JDK version it uses (which is handy as you
might have different JDK versions installed on the same machine).

$ mvn -version

Apache Maven 3.6.3
Maven home: /usr/local/Cellar/maven/3.6.3_1/libexec

Be aware that Maven needs Internet access so it can download plugins and project dependencies
from the Maven Central and/or other remote repositories.”””! If you are behind a proxy, see the
documentation to configure your settings.

364

A.4.6. Some Maven Commands

Maven is a command line utility where you can use several parameters and options to build, test or
package your code. To get some help on the commands you can type, use the following command:

$ mvn --help

usage: mvn [options] [<goal(s)>] [<phase(s)>]

Here are some commands that you will be using to run the examples in the fascicle. Each invokes a
different phase of the project life cycle (clean, compile, install etc.) and uses the pom.xml to
download libraries, customise the compilation, or extend some behaviours using plugins:

* mvn clean: Deletes all generated files (compiled classes, generated code, artifacts etc.).

* mvn compile: Compiles the main Java classes.

* mvn test-compile: Compiles the test classes.

* mvn test: Compiles the main Java classes as well as the test classes and executes the tests.

* mvn package: Compiles, executes the tests and packages the code into an archive (e.g. a war file).

* mvn install: Builds and installs the artifacts in your local repository.

* mvn clean install: Cleans and installs (note that you can add several commands separated by
spaces, like mvn clean compile test).

Maven allows you to compile, run, and package the examples of this fascicle. It
decouples the fact that you need to write your code (within an IDE) and build it. To

o develop you need an Integrated Development Environment (IDE). I use Intelli] IDEA
from JetBrains, but you can use any IDE you like because this fascicle only relies
on Maven and not on specific Intelli] IDEA features.

A.5. cURL 7.x

To invoke the REST Web Services described in this fascicle, we often use cURL.

cURL is a command-line tool for transferring files with url syntax via protocols such as HTTP, FTP,
SFTP, SCP, and many more.”* 1t is free, open source (available under the MIT Licence) and has been
ported to several operating systems. You can send HTTP commands, change HTTP headers, and so
on. It is a good tool for simulating a user’s actions at a web browser.

A.5.1. A Brief History of cURL

cURL was first released in 1997. The name stands for Client URL, that’s why you can stumble on the
spelling cURL instead of Curl or CURL. The original author and lead developer is the Swedish
developer Daniel Stenberg.”””

365

A.5.2. Installing cURL on macOS

Usually macOS already provides cURL and installing another version in parallel can cause all kinds
of trouble. So first, double check if cURL is already installed just by executing the following cURL
command:

$ curl --version
If cURL is not installed, then it is just a matter of installing it with a single Homebrew command:

$ brew install curl

A.5.3. Checking for cURL Installation

Once installed, check for cURL by running curl --version in the terminal. It should display cURL
version:

$ curl --version

curl 7.54.0 (x86_64-apple-darwin18.0) libcurl/7.54.0 LibreSSL/2.6.5 z1ib/1.2.11
nghttp2/1.24.1

Protocols: dict file ftp ftps gopher http https imap imaps ldap ldaps pop3 pop3s rtsp
smb smbs smtp smtps telnet tftp

Features: AsynchDNS IPv6 Largefile GSS-API Kerberos SPNEGO NTLM NTLM_WB SSL 1libz HTTP2
UnixSockets HTTPS-proxy

A.5.4. Some cURL Commands

cURL is a command line utility where you can use several parameters and options to invoke URLs.
You invoke curl with zero, one or several command lines and a URL (or set of URLSs) to which the
data should be transferred. cURL supports over two hundred different options and I would
recommend reading the documentation for more help.”” To get some help on the commands and
options, you can use the following command:

$ curl --help

Usage: curl [options...] <url>

You can also opt to use curl --manual which will output the entire man page for cURL plus an
appended tutorial for the most common use cases.

Here are some sample cURL commands that you will be using to invoke the RESTful web service
examples in this fascicle.

e curl http://localhost:8080/authors: HTTP GET on a given URL.

366

http://localhost:8080/authors

e curl -X GET http://localhost:8080/authors: Same effect as the previous command, an HTTP
GET on a given URL.

e curl -v http://localhost:8080/authors: HTTP GET on a given URL with verbose mode on.

e curl -H 'Content-Type: application/json' http://localhost:8080/authors: HTTP GET on a given
URL passing the JSON Content Type in the HTTP Header.

e curl -X DELETE http://localhost:8080/authors/1: HTTP DELETE on a given URL.

A.5.5. Formatting the cURL JSON Output with JQ

Very often when using cURL to invoke a RESTful web service, we get some JSON payload in reply.
cURL does not format this JSON, so you will get a flat String such as:

$ curl http://localhost:8080/vintage-store/artists
[{"id":"1","firstName":"John","lastName":"Lennon"}, {"id":"2", "firstName":"Paul", "lastN
ame": "McCartney"},{"id":"3","firstName":"George", "lastName": "Harrison"},{"id":"4","fir
stName":"Ringo", "lastName":"Starr"}]

But what we really want is to format the JSON payload to make it easier to read. For that, there is a
neat utility tool called jq. It is a tool for processing JSON inputs, applying the given filter on them
and producing the filtered results as JSON on standard output.””” You can install it on macOS with a
simple brew install jg. Once installed, it’s just a matter of piping the cURL output to jq like this:

$ curl http://localhost:8080/vintage-store/artists | jq

[

{
"id": "1",
"firstName": "John",
"lastName": "Lennon"

I

{
"id": "2",
"firstName": "Paul",
"lastName": "McCartney"

I

{
"id": "3",
“firstName": "George",
"lastName": "Harrison"

I

{
"id": "4",
“firstName": "Ringo",
"lastName": "Starr"

}

]

367

http://localhost:8080/authors
http://localhost:8080/authors
http://localhost:8080/authors
http://localhost:8080/authors/1

A.6. Docker

Docker is a set of platform-as-a-service (PaaS) products that use OS-level virtualisation to deliver
software.”™ It makes it easier to create, deploy and run applications by using containers.
Containers are isolated from one another and bundle their own software, libraries and
configuration files; they can communicate with each other through well-defined channels.
Containers allow developers to package an application with all its dependencies and ship it all out
as one package.

A.6.1. A Brief History of Docker

Docker was founded by Solomon Hykes and Sebastien Pahl during the Y Combinator Summer 2010
startup incubator group and launched in 2011.%*" Hykes started the Docker project in France as an
internal project within dotCloud (a Platform-as-a-Service company). Docker debuted to the public in
Santa Clara at PyCon in 2013. It was released as open source in March 2013. At the time, it used LXC
as its default execution environment. One year later, with the release of version 0.9, Docker
replaced LXC with its own component, which was written in the Go programming language.

A.6.2. Installing Docker on macOS

The infrastructure in this fascicle uses Docker to ease the installation of the different technical
services (database, monitoring...). So for this, we need to install docker and docker-compose First of
all, check if you already have the Docker formula installed on your machine:

$ brew cask list docker
Error: Cask 'docker' is not installed.

If the Docker formula is not installed, execute the following Homebrew command to install it:

$ brew cask install docker

docker was successfully installed!
You should now see the Docker formula in Homebrew:

$ brew cask list docker
==> App
/Applications/Docker.app

A.6.3. Checking for Docker Installation

After installing Docker, you should have both docker and docker-compose available in your PATH. But
the command docker should not be able to connect to the Docker daemon. You should have the
following error:

368

$ docker version

Cannot connect to the Docker daemon at unix:///var/run/docker.sock.
Is the docker daemon running?

That’s because you need to launch the Docker Desktop application. To do that, you can either click
on the Docker.app icon located under /Applications, launch it using Spotlight or execute the
following command:

$ open -a Docker

On your Mac top menu bar you should see the logo of a whale. Click on it and you should see a
menu that looks like Figure 66.

369

About Docker Desktop

Preferences...
Check for Updates...
Troubleshoot

Documentation
Learn...
Docker Hub

Dashboard

agoncal
Repositories
Kubernetes

Restart
Quit Docker Desktop

Figure 66. Docker icon on the menu bar

Click on the About menu, a window that looks like Figure 67 should give you the versions of the
installed Docker tools.

370

i docker desktop

community

Version 2.3.0.4 (46911) /;/
7

Channel stable

er. All rights reserved

cker Inc. registered in the U.S. and other countries.

Figure 67. About Docker desktop

Now, if you type the same Docker command, it should connect to the daemon:

371

$ docker version

Client: Docker Engine - Community

Version: 19.03.12

API version: 1.40

Go version: go1.13.10

Git commit: 48366213fe

Built: Mon Jun 22 15:41:33 2020
0S/Arch: darwin/amd64
Experimental: false

Server: Docker Engine - Community

Engine:

Version: 19.03.12

API version: 1.40 (minimum version 1.12)

Go version: go1.13.10

Git commit: 48366213fe

Built: Mon Jun 22 15:49:27 2020

0S/Arch: linux/amd64

Experimental: true

containerd:

Version: v1.2.13

GitCommit: 7ad184331fa3e55e52b890ea95e65ba5b81ae3429
runc:

Version: 1.0.0-rc10

GitCommit: dc9208a3303feef5b3839f4323d9beb36df0a9dd
docker-init:

Version: 0.18.0

GitCommit: fec3683

You can check that Docker Compose is also working:

$ docker-compose version

docker-compose version 1.26.2, build eefe@d31
docker-py version: 4.2.2

CPython version: 3.7.7

OpenSSL version: OpenSSL 1.1.1g 21 Apr 2020

Finally, you can run your first container. The docker container run command will execute a
container that is located on your computer. If not, it will pull the image from the Docker Hub
registry and then execute it.”*” That’s what happens when you execute an image for the very first
time.

Below, the docker container run method wants to execute the Docker image called hello-world. It
doesn’t find it locally, therefore it pulls the image from the default Docker Hub registry:
https://hub.docker.com/_/hello-world. Then it executes it:

372

https://hub.docker.com/_/hello-world

$ docker container run hello-world

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world

Pull complete

Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get-started/

A.6.4. Building, Running, Pushing and Pulling Images

Let’s now see the typical flow on how to get started on using docker images and containers.
Basically you create a Dockerfile, build it into a local Docker image and run it inside a container. To
make your local image available to others (external team developers but also tools such as
Kubernetes), push the image to a remote Docker registry (the default one being Docker Hub). Then,
if your local image has been removed, just pull it from the remote repository and execute it again.

But first, you need to create an account on a remote Docker repository. Let’s take the default one:
Docker Hub.

Remote Docker Repository

Docker Hub is a service provided by Docker for finding and sharing container images.”* It will be
used to push and pull our Docker images.

To create a Docker account, sign up on https:/hub.docker.com/signup. The name of the account is
very important as it will be used to name the Docker images so they can be pushed to your remote
repository (the image name and account name have to be the same). Figure 68 shows a Docker hub
account called agoncal (you should have your own).

373

https://hub.docker.com/signup

Explore Repositories Organizations GetHelp ¥ agoncal ¥ | o)
o 4

Billing Plan

agoncal
L User ® Joined November 13, 2014

Figure 68. Docker hub account

Now back to your local computer. You should be able to login to your newly created Docker hub
account with the following command:

$ docker login

Login with your Docker ID to push and pull images from Docker Hub.
Username: agoncal

Password:

Login Succeeded

Dockerfile

Now, let’s create a very simple Dockerfile. The Dockerfile below is based on the Alpine image which
is a very lightweight Linux (only 5 MB in size). Then, it uses the echo command to display the
message Hello Fascicle. Take any text editor, create a file called Dockerfile and add the following:

FROM alpine
CMD echo "Hello Fascicle"

Building the Docker Image

Now, using this Dockerfile, build the Docker image using the following command:

$ docker image build -t agoncal/hello-fascicle .

Sending build context to Docker daemon 2.048kB
Step 1/2 : FROM alpine

Step 2/2 : CMD echo "Hello Fascicle"

Successfully built a89619983057

Successfully tagged agoncal/hello-fascicle:latest

The last message of the trace indicates that the Docker image has been successfully built and is
called agoncal/hello-fascicle:latest. Notice that the prefix agoncal is the name of the Docker hub
account (change it accordingly to yours). To check that this image is now locally installed, type the
following command:

374

$ docker image 1s --filter "reference=agoncal/hello-fascicle"

REPOSITORY TAG IMAGE ID SIZE
agoncal/hello-fascicle latest d036b3b86cd4 5.57MB

Running the Docker Image

Now that the image is available locally, let’s execute it. The following command executes our image
which echoes a message to the console:

$ docker container run agoncal/hello-fascicle

Hello Fascicle

Pushing to a Docker Registry

Now that we know that our image runs as expected, let’s make it available to others by pushing it to
the remote Docker registry. This is done with a simple push command. For consuming existing
public images from Docker Hub, you don’t need to be authenticated. But for publishing your own
images, you need to be authenticated. The docker image push command assumes that you’ve already
authenticated with the remote registry (otherwise execute docker login before hand):

$ docker image push agoncal/hello-fascicle

The push refers to repository [docker.io/agoncal/hello-fascicle]
50644c29ef5a: Mounted from library/alpine
latest: digest: sha256:608aa60a8d32b6b3 size: 528

Go back to the Docker Hub website to see the newly-pushed image. It should look like the repository
shown in Figure 69.

'===' Q search for great content (e.g., mysq|) Explore Repositories agoncal ~

agoncal v Q Search by repository name... Create Repository
agoncal / hello-fascicle % 0 d3 @ Public

Updated 38 minutes ago

Figure 69. Docker image available on Docker Hub

Pulling from a Docker Registry

Now let’s remove our image on our local system:

375

$ docker image rm agoncal/hello-fascicle -f

Untagged: agoncal/hello-fascicle:latest
Untagged: agoncal/hello-fascicle@sha256:608aab0a8d32bbb3
Deleted: sha256:d036b3b86cd4a2a82234202dac26ebbf39f8aae?

$ docker image 1s --filter "reference=agoncal/hello-fascicle"
REPOSITORY TAG IMAGE ID SIZE

The docker image 1s command confirms that the rm command has been successful and that the
image agoncal/hello-fascicle has been removed. This means that we can’t execute our image
anymore. Well, this is not exactly true. If we run our image again, Docker automatically downloads
(pulls) the images that don’t yet exist locally, creates a container, and starts it.

$ docker container run agoncal/hello-fascicle

Unable to find image 'agoncal/hello-fascicle:latest' locally

latest: Pulling from agoncal/hello-fascicle

df20fa9351a1: Already exists

Digest: sha256:608aa60a8d32bbb36ef595e1bf81c046bcf3504b06da787d1cbfe848e31da8db
Status: Downloaded newer image for agoncal/hello-fascicle:latest

Hello Fascicle
This has exactly the same effect as pulling the image first, and executing it after:

$ docker image pull agoncal/hello-fascicle

Using default tag: latest

latest: Pulling from agoncal/hello-fascicle

df20fa9351a1: Already exists

Digest: sha256:60833a60a8d32bbb36ef595e1bf81c@46bcf3504b06da787d1cbfe848e31da8db
Status: Downloaded newer image for agoncal/hello-fascicle:latest
docker.io/agoncal/hello-fascicle:latest

$ docker container run agoncal/hello-fascicle

Hello Fascicle

A.6.5. Some Docker Commands

Docker is a command line utility where you can use several parameters and options to start/stop a
container. You invoke docker with zero, one or several command-line options with the container or
image ID you want to work with. Docker comes with several options that are described in the
documentation if you need more help.”** To get some help on the commands and options, you can
use the following command:

376

$ docker help

Usage: docker [OPTIONS] COMMAND

$ docker help attach

Usage: docker attach [OPTIONS] CONTAINER

Attach local standard input, output, and error streams to a running container

Here are some commands that you will be using to start/stop containers in this workshop.

* docker login: Logs into to a Docker registry.
* docker image 1s: Lists images.
» docker image push: Pushes a local Docker image to the remote Docker repository.

» docker image pull: Pulls a Docker image from the remote Docker repository to the local
repository.

* docker container 1s:Lists containers.
* docker container run <CONTAINER>: Starts one or more stopped containers.
 docker container stop <CONTAINER>: Stops one or more running containers.

* docker-compose -f docker-compose.yaml up -d: Starts all containers defined in a Docker Compose
file.

* docker-compose -f docker-compose.yaml down: Stops all containers defined in a Docker Compose
file.

A.7. VirtualBox

Depending on the version of Minikube or Docker that you have installed, you might need
VirtualBox to make Minikube work on your machine. Recent versions of Minikube can work
straight with Docker, but older versions need a hypervisor to be installed. There are several
hypervisors running on macOS (xhyve, VMware Fusion or Parallels Desktop) but VirtualBox is the
most popular one. VirtualBox is an open source virtualization product that runs on Windows,
Linux, Macintosh, and Solaris hosts and supports a large number of guest operating systems.”*”

A.7.1. A Brief History of VirtualBox

VirtualBox was first offered by the German company Innotek GmbH under a proprietary software
license.”*” In January 2007, Innotek GmbH released VirtualBox Open Source Edition (OSE) as free
and open source software. Sun Microsystems acquired Innotek in February 2008. Oracle
Corporation acquired Sun in January 2010 and re-branded the product as "Oracle VM VirtualBox".

A.7.2. Installing VirtualBox on macOS

First of all, check if you already have the VirtualBox formula installed on your machine:

377

$ brew cask list virtualbox
Error: Cask 'virtualbox' is not installed.

If the VirtualBox formula is not installed, execute the following Homebrew command to install it:

$ brew cask install virtualbox

virtualbox was successfully installed!
You should now see the VirtualBox formula in Homebrew:

$ brew cask list virtualbox
==> Pkg
VirtualBox.pkg (Pkg)

A.7.3. Checking for VirtualBox Installation

To check that VirtualBox is installed you can invoke the VBoxManage command (which is the
command-line interface for VirtualBox) and also VirtualBox itself:

$ VBoxManage -version
6.1.12r139181

$ VirtualBox -help
Oracle VM VirtualBox VM Selector v6.1.12

$ 11 /Applications/VirtualBox.app/

Now, to execute VirtualBox, you can either click on the VirtualBox.app icon located under
/Applications, launch it using Spotlight or execute the following command:

$ VirtualBox

You should see a user interface that looks like Figure 70.

378

Oracle VM VirtualBox Manager

E & AR @

Preferences : Import Export : New Add

N\

g

Welcome to VirtualBox!

The left part of application window contains
global tools and lists all virtual machines and
virtual machine groups on your computer. You
can import, add and create new VMs using
corresponding toolbar buttons. You can popup a
tools of currently selected element using
corresponding element button.

You can press the 3?2 key to get instant help, or
visit www.virtualbox.org for more information
and latest news.

Figure 70. Launching VirtualBox

A.8. Kubernetes

Kubernetes (a.k.a. K8s) is an orchestrator for containerised applications.””” It takes its name from a
Greek word meaning helmsman, or captain: if Docker packages applications inside containers,
Kubernetes is the captain sailing those containers. Kubernetes can schedule, scale, heal, update,
start or stop several containers.

A.8.1. A Brief History of Kubernetes

Back in the beginning, Google was already using containers way before Docker. They built in-house
tools to orchestrate their millions of containers: Borg and Omega.”” They opened source their
orchestration technology and called it Kubernetes. It is now maintained by the Cloud Native
Computing Foundation (CNCF)."”””

A.8.2. Different Kubernetes Flavours

There are several ways to jump into Kubernetes. You can install it manually from scratch on your
Linux machines with tools such as kubeadm.”*” But this is pretty advanced and you might want to
use already packaged Kubernetes distributions for local development (Minikube, Minishift, Kind,
etc.) or hosted for a production environment (Google Container Engine, OpenShift, Amazon Elastic
Container Service for Kubernetes, Azure Kubernetes Service, etc.). In this fascicle, I use Minikube as
it is the most widely used Kubernetes distribution for local development.

A.8.3. Installing Minikube on macOS

Minikube allows you to run Kubernetes locally on a developer’s machine.”*" It focuses on making
Kubernetes easy to learn and develop by easily setting up and managing a local Kubernetes cluster.

379

Minikube is a single node Kubernetes cluster that runs on a hypervisor on your local machine. All
you need is Docker, a hypervisor and Kubernetes. So before installing Minikube, make sure you
have Docker and VirtualBox up and running. Then, it’s just a matter of installing Minikube and
kubectl, the command line interacting with Minikube.

Installing Kubectl

kubectl is the command line interface that lets you interact with your Minikube Kubernetes cluster.
It sends requests to the Kubernetes API server running on the cluster to manage your Kubernetes
environment.

Before installing kubectl, let’s check if you already have it on your machine:

$ brew list kubectl
Error: No such keg: /usr/local/Cellar/kubernetes-cli

If the kubectl formula is not installed, execute the following Homebrew command to install it:

$ brew install kubectl

kubectl was successfully installed!
You should now see the kubectl formula in Homebrew:

$ brew list kubectl

/usr/local/Cellar/kubernetes-c1i/1.19.0/bin/kubectl
/usr/local/Cellar/kubernetes-cli/1.19.0/etc/bash_completion.d/kubectl
/usr/local/Cellar/kubernetes-c1i/1.19.0/share/man/ (224 files)
/usr/local/Cellar/kubernetes-cli/1.19.0/share/zsh/site-functions/_kubectl

Installing Minikube

Now that we have the client interface installed to interact with Minikube, let’s install Minikube with
Homebrew. Again, let’s first check if it’s already installed on your machine:

$ brew list minikube
Error: No such keg: /usr/local/Cellar/minikube

If the Minikube formula is not installed, execute the following Homebrew command to install it:

$ brew install minikube

minikube was successfully installed!

You should now see the Minikube formula in Homebrew:

380

$ brew list minikube

/usr/local/Cellar/minikube/1.12.3/bin/minikube
/usr/local/Cellar/minikube/1.12.3/etc/bash_completion.d/minikube
/usr/local/Cellar/minikube/1.12.3/share/zsh/site-functions/_minikube

A.8.4. Checking for Kubernetes Installation

After installing Minikube and the client interface, you should have both minikube and kubectl
available in your PATH. But the command kubectl should not be able to connect to the Minikube
cluster if it has not been started. You should have the following error:

$ kubectl version

(lient Version: version.Info {Major:"1", Minor:"19", Platform:"darwin/amd64"}
Unable to connect to the server: dial tcp 192.168.64.2:8443: i/0 timeout

That’s because you need to start Minikube. Do so with the following command:

$ minikube start

minikube v1.12.3 on Darwin 10.15.6

Using the virtualbox driver based on user configuration
Starting control plane node minikube in cluster minikube
Creating virtualbox VM (CPUs=2, Memory=6000MB, Disk=20000MB) ...
Preparing Kubernetes v1.18.3 on Docker 19.03.8 ...

Verifying Kubernetes components...

Enabled addons: default-storageclass, storage-provisioner

Done! kubectl is now configured to use "minikube"

If it’s the first time that you’re starting Minikube, the command will download all the packages
required and this can take a while. The last line indicates that "kubectl is now configured to use
minikube", so you can now execute the kubectl command again and you should have a different
output: a client version, as well as the server version this time. Notice that the server (Minikube)
runs a Linux platform (not a macOS):

$ kubectl version

Client Version: version.Info {Major:"1", Minor:"19", Platform:"darwin/amd64"}
Server Version: version.Info {Major:"1", Minor:"18", Platform:"linux/amd64"}

You can check the status of Minikube:

381

$ minikube status
minikube

type: Control Plane
host: Running

kubelet: Running
apiserver: Running
kubeconfig: Configured

Minikube has a powerful feature called profiles. This allows you to create different virtual
machines based on a name. When you start Minikube, the name of the default profile is minikube
(you could start Minikube with a different profile using minikube start --profile fascicle-profile
for example). Execute minikube profile list to check the available profiles. As you can see,

VirtualBox is used as the hypervisor and Docker as the runtime:

$ minikube profile list

[--mmeee [-emoeeneees e | -emmmmneneeee D |
| Profile | VM Driver | Runtime | IP | Port | Status

| -emeeee R | =emeee e | -noe e |
| minikube | virtualbox | docker | 192.168.99.107 | 8443 | Running |

If you launch the VirtualBox user interface (see Figure 71) you will notice that the minikube cluster

is up and running.

o @® Oracle VM VirtualBox Manager
%Htﬁ Tools {:} {g} 2
New Settings Discard Show
5PN minikube a= = General = preview
@ ‘5<> Running Qe Name: minikube
Operating System: Linux 2.6 / 3.x / 4.x (64-bit)
[&] system

Base Memory: 6000 MB

Processors: 2

Boot Order: Optical, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, PAE/NX,
KVM Paravirtualization

M Dpisplay

Video Memory: 8 MB
Graphics Controller: VBoxVGA
Remote Desktop Server: Disabled
Recording: Disabled

Figure 71. Launching VirtualBox

If VirtualBox is not installed and you want to start the Minikube cluster, you will get the following

error:

382

$ minikube start

minikube v1.12.3 on Darwin 10.15.6

'virtualbox' driver reported an issue: unable to find VBoxManage in $PATH
Suggestion: Install VirtualBox

virtualbox does not appear to be installed

To fix it, just install VirtualBox and set the vm-driver configuration. You can also use this
configuration if you have several hypervisors installed on your machine and you want to make
sure that VirtualBox is used. Change the configuration with the following command if needed:

$ minikube config set vm-driver virtualbox

A.8.5. Deploying a Docker Image to a Kubernetes Cluster

Now that you have Docker, VirtualBox, Minikube and kubectl configured and running, let’s deploy
and execute a remote Docker image into a Minikube cluster. But first we need to start the Minikube
cluster, and set the deployment, pods and services so we can execute the Docker image.

The Docker image is called agoncal/hello-fascicle and is available on Docker Hub.
o “41 1t just displays a "Hello Fascicle" message when invoking a /hello URL. So
nothing too fancy. Feel free to use another image if you want.

Starting the Kubernetes Cluster

If the Minikube cluster is not already started, start it with the following command:

$ minikube start

Done! kubectl is now configured to use "minikube"

Once the cluster is started, you can invoke the Minikube dashboard to have a visual representation
of the cluster. Executing the following command will open the dashboard on your default browser:

$ minikube dashboard

Enabling dashboard ...

Verifying dashboard health ...

Launching proxy ...

Verifying proxy health ...

Opening http://127.0.0.1:64465/api/v1/namespaces/kubernetes-
dashboard/services/http:kubernetes-dashboard:/proxy/ in your default browser...

Figure 72 shows the Overview tab of the Minikube dashboard.

383

kubernetes

Cluster

Cluster Roles
Namespaces
Nodes

Persistent Volumes

Storage Classes

Namespace

default

Overview

Workloads

Q Search

Discovery and Load Balancing

Services

127.0.01

Name Namespace Labels

@ kubemetes default

component: apiserver

provider: kubernetes

Cluster IP Internal Endpoints External Endpoints Created 1

kubernetes:443
10.96.0.1 TCP - 8 minutes ago
kubernetes:0 TCP

1-10f1

Config and Storage

Secrets

Cron Jobs
Name Namespace Labels Type Created 1

Daemon Sets

Deployments default-token-t9lc5 default kuherne’t’esl.lo/servlce- 7 minutes ago

Jobs 1-10f1

Pods
Replica Sets
Replication Controllers

Stateful Sets

Discoveli and Load Balancini

Figure 72. Minkube dashboard

Creating a Deployment

In Kubernetes, the idea is to describe a desired state of the cluster. Here, we want to have a single
instance of a Java application running somewhere on a node. This desired state is called a
Deployment. And a deployment manages one or several Pods. A Kubernetes pod is a group of one or
more containers (in our case, it is the container running the agoncal/hello-fascicle image), tied
together for the purposes of administration and networking. The deployment checks on the health
of the pods and restarts the pod’s container if it terminates. Deployments are the recommended
way to manage the creation and scaling of pods.

The following kubectl command creates a deployment called fascicle-deployment. This deployment
manages a pod that runs a container based on the provided Docker image.

$ kubectl create deployment fascicle-deployment --image=agoncal/hello-fascicle

deployment.apps/fascicle-deployment created

View the Deployment:

$ kubectl get deployments

NAME
fascicle-deployment

READY UP-TO-DATE AVAILABLE
0/1 1 0

AGE
13s

View the Pod:

384

$ kubectl get pods

NAME

fascicle-deployment-6b6db4b547-mm9d9

READY

1/1

STATUS RESTARTS AGE
Running 0 24s

Now that we have the name of the pod, we can invoke a Linux command into this pod. For
example, the following 1s command lists the files under the deployments directory. This is where
you’ll find the Java application of the agoncal/hello-fascicle image.

$ kubectl exec fascicle-deployment-6b6db4b547-mm9d9 -- 1s -1 deployments

-rw-r--r-- 1 root root 245449 Sep

drwxr-xr-x 2 root root
-r-Xr----- 1 1001 root

4096 Sep
20218 Sep

113:
1 13:
1 13:

51 app.jar
49 1ib
48 run-java.sh

$ kubectl exec fascicle-deployment-6b6db4b547-mm9d9 -- 1s -1 deployments/lib

-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
-rw-r--r-- 1 root root
1.7.1.Final.jar

-rw-r--r-- 1 root root
1.7.1.Final.jar

-rw-r--r-- 1 root root

Creating a Service

276413 Sep
613466 Sep
164638 Sep
28101 Sep

3032 Sep

204316 Sep

_ e

13:48 commons-io.commons-io-2.7.jar

13:48
13:48
13:48
13:48

13:48

io0.netty.netty-codec-http-4.1.49.Final.jar
io.quarkus.arc.arc-1.7.1.Final.jar
io.quarkus.quarkus-bootstrap-runner-

i0.quarkus.quarkus-container-image-docker-

i0.quarkus.quarkus-core-1.7.1.Final.jar

By default, the pod is only accessible by its internal IP address within the Kubernetes cluster. To
make the container accessible from outside the Kubernetes virtual network, you have to expose the
pod as a Kubernetes service. Expose the pod to the cluster using the kubectl expose command:

$ kubectl expose deployment fascicle-deployment --type=NodePort --port=8080

service/fascicle-deployment exposed

The --type=NodePort flag indicates that you want to expose the service port. View the Service you

just created:

$ kubectl get services

NAME
fascicle-deployment
kubernetes

TYPE
NodePort
ClusterIP

CLUSTER-IP EXTERNAL-IP PORT(S)
10.103.14.182 <none> 8080:31699/TCP
10.96.0.1 <none> 443/TCP

385

Running the Docker Image

To get the URL and port to access our application, we use:

~ $ minikube service list

| I |
| NAMESPACE | NAME | TARGET PORT | URL |
oo | -mmmom e | --mmmneeee oo |
| default | fascicle-deployment | 8080 | http://192.168.99.114:31699 |
| default | kubernetes | No node port |
| kube-system | kube-dns | No node port | |
| | |

So, to execute the agoncal/hello-fascicle image it’s just a matter of invoking the service’s URL. You
can now point the browser (or cURL command) to http://192.168.99.114:31699/hello so it invokes the
REST endpoint and displays "Hello Fascicle".

Now, you can go back to the dashboard. This time, you will see all the available resources, as in
Figure 73. You can check the status of the deployments, pods, and services.

127.0.01

kubernetes Q[search
= Overview
Cluster
Workloads
Cluster Roles
Namespaces Workload Status -
Nodes
Persistent Volumes
Storage Classes
Namespace
default v
Overview
Deployments Pods Replica Sets
Workloads
Cron Jobs
PLETIREE Deployments = -
Deployments
Jobs Name Namespace Labels Pods Created 1 Images
Pods Q fascicle-deployment default app: fascicle-deployment 171 7 minutes ago agoncal/hello-fascicle
Replica Sets
1-10f1
ion C
Stateful Sets
Pods = -
Discovery and Load Balancing
Name Namespace Labels Node Status Restarts CPU Usage (cores) MemoryUsage ¢ropioq 4
Ingresses (bytes)
Services app: fascicle-deployment
fascicle-deployment- L " . .
[V] - default . minikube Running 0 - - 7 minutesago 3
Config and Storage 6b6db4b547-mm9d9 Ezggi;"pla'&h“h’ 6b6d
Config Maps 1-10f1
Persistent Volume Claims

S —"
Figure 73. Minkube dashboard with available resources

Cleaning Up

Now you can clean up the resources you created in your cluster:

386

http://192.168.99.114:31699/hello

$ kubectl delete service fascicle-deployment
service "fascicle-deployment" deleted

$ kubectl delete deployment fascicle-deployment
deployment.apps "fascicle-deployment" deleted

Optionally, stop the Minikube virtual machine (VM):

$ minikube stop

Stopping node "minikube"
1 nodes stopped.

Optionally, delete the Minikube VM:

$ minikube delete

Deleting "minikube" in virtualbox ...
Removed all traces of the "minikube" cluster.

A.8.6. Kubernetes Manifest Files

So far, we’ve been working exclusively on the command line to create a deployment with a service
and a pod. But imagine doing so when you have several pods and complex deployments? There is
an easier and more useful way to do it: creating configuration files using YAML and applying the
entire file to a Minikube cluster (using the kubectl command).

For example, Listing 286 shows the YAML file that describes our fascicle-deployment. This file first
describes some metadata (apiVersion, kind and metadata) and then the object spec describes the
desired state of the deployment. This is basically deploying the agoncal/hello-fascicle Docker
image and setting the port 8080.

387

Listing 286. Deployment Definition

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app.kubernetes.io/name: fascicle-deployment
app.kubernetes.io/version: latest
name: fascicle-deployment

spec:
replicas: 1
selector:
matchlLabels:

app.kubernetes.io/name: fascicle-deployment
app.kubernetes.io/version: latest
template:
metadata:
labels:
app.kubernetes.io/name: fascicle-deployment
app.kubernetes.io/version: latest

spec:
containers:
- env:
- name: KUBERNETES_NAMESPACE
valueFrom:
fieldRef:

fieldPath: metadata.namespace
image: agoncal/hello-fascicle:latest
imagePullPolicy: IfNotPresent
name: fascicle-deployment

ports:
- containerPort: 8080
name: http

protocol: TCP

Then we have another YAML file to describe the service. As you can see in Listing 287, the file starts
with some metadata again, and describes the desired state of the service (the spec object). It sets the
type of service to NodePort (which opens a port on the node of the cluster) and configures the
external (30574) and internal port (8080 is the port Quarkus listens to).

388

Listing 287. Service Definition

apiVersion: v1
kind: Service
metadata:
labels:
app.kubernetes.io/name: fascicle-deployment
app.kubernetes.io/version: latest
name: fascicle-deployment

spec:
ports:
- name: http
nodePort: 30574
port: 8080
targetPort: 8080
selector:

app.kubernetes.io/name: fascicle-deployment
app.kubernetes.io/version: latest
type: NodePort

When you create a Kubernetes object (Deployment, Service, Pod, etc.), either with
commands or manifest files, you can always get its YAML description with the

o following commands:

$ kubectl get deployments/fascicle-deployment -o yaml

A.8.7. Some Kubernetes Commands

Minikube and kubectl are commands that use several parameters and options. To get some help on
the commands and options, you can use the following commands:

$ minikube help
$ minikube start --help

$ kubectl help
$ kubectl config --help

Here are some commands that you will be using to start/stop containers in this workshop.

* minikube start: Starts a local Kubernetes cluster.
* minikube status: Gets the status of a local Kubernetes cluster.
* minikube stop: Stops a local Kubernetes cluster running in VirtualBox.

* minikube delete: Deletes a local Kubernetes cluster.

minikube dashboard: Accesses the Kubernetes dashboard running within the minikube cluster.

» kubectl apply: Applies a configuration to a resource.

389

* kubectl create: Creates a resource (deployment, service, role, namespace, etc.).

* kubectl get: Displays one or many resources.

A.9. Kafka

Kafka (or Apache Kafka) is an open source distributed event streaming platform.”** It provides a
unified, high-throughput, low-latency platform for handling real-time data feeds thanks to its
optimised binary TCP-based protocol. Kafka uses ZooKeeper to manage and coordinate the cluster
topology. ZooKeeper is a centralised service for maintaining configuration information, naming,
providing distributed synchronization, and providing group services.”*" All of these kinds of
services are used in some form or another by distributed applications. ZooKeeper enables this
distributed coordination in a highly reliable way.

A.9.1. A Brief History of Kafka

Kafka was originally developed by Jay Kreps at LinkedIn, and was subsequently open sourced in
early 2011.%* Graduation from the Apache Incubator occurred in 2012. Jay Kreps chose to name
the software after the author Franz Kafka because it is "a system optimised for writing", and he liked
Kafka’s work. He then created the company Confluent in 2014 to give support and professional
resources around Kafka.

A.9.2. Installing Kafka on macOS

First of all, check if you already have the Kafka and the ZooKeeper formulae installed on your
machine:

$ brew list kafka
Error: No such keg: /usr/local/Cellar/kafka

$ brew list zookeeper
Error: No such keg: /usr/local/Cellar/zookeeper

If both formulae are not installed, just install Kafka with the following Homebrew command. Kafka
depending on ZooKeeper, Homebrew will automatically install it:

$ brew install kafka
==> Installing dependencies for kafka: zookeeper
==> Installing kafka dependency: zookeeper

==> Installing kafka

You should now see both formulae in Homebrew:

390

$ brew list kafka
/usr/local/Cellar/kafka/2.6.0/.bottle/etc/ (15 files)

$ brew list zookeeper

/usr/local/Cellar/zookeeper/3.6.1/.bottle/etc/ (4 files)

A.9.3. Checking for Kafka Installation

After installing Kafka and ZooKeeper, you should have several binaries available in your PATH. If
you have completion in your shell, you can type kafka- and then press TAB. You should see all these
Kafka commands:

$ kafka- [PRESS TAB]

kafka-acls kafka-delete-records kafka-replica-
verification

kafka-broker-api-versions kafka-dump-log kafka-run-class
kafka-configs kafka-leader-election kafka-server-start
kafka-console-consumer kafka-log-dirs kafka-server-stop
kafka-console-producer kafka-mirror-maker kafka-streams-
application-reset

kafka-consumer-groups kafka-preferred-replica-election kafka-topics
kafka-consumer-perf-test kafka-producer-perf-test kafka-verifiable-consumer
kafka-delegation-tokens kafka-reassign-partitions kafka-verifiable-producer

$ kafka-broker-api-versions --version
2.6.0

As for ZooKeeper, you can check its version with the following command:

$ zkServer version

ZooKeeper JMX enabled by default

Using config: /usr/local/etc/zookeeper/zoo.cfg

Apache ZooKeeper, version 3.6.1- 08/14/2020 03:24 GMT

A.9.4. Publishing and Receiving Events

Now that you have Kafka and ZooKeeper up and running, let’s publish and receive messages. But
before that, we need to start the Kafka cluster and create the topics.

Starting Kafka

Before starting Kafka we need to start ZooKeeper. You can do so using the zookeeper-server-start
command and passing a property file. Let’s use the default zookeeper.properties file that is
available under the Kafka directory. The following command starts ZooKeeper in a standalone
mode, listening on port 2181 (as configured in the zookeeper.properties file):

391

$ zookeeper-server-start /usr/local/etc/kafka/zookeeper.properties

[INFO] Reading configuration from: /usr/local/etc/kafka/zookeeper.properties
[INFO] clientPortAddress is 0.0.0.0:2181

[INFO] Starting server

[INFO] binding to port 2181

$ zkServer status
Client port found: 2181. Client address: localhost.
Mode: standalone

Now that ZooKeeper is running, start the Kafka broker service with the kafka-server-start and the
default configuration file:

$ kafka-server-start /usr/local/etc/kafka/server.properties

[INFO] starting

[INFO] Connecting to zookeeper on localhost:2181
[INFO] Initializing a new session to localhost:2181
[INFO] Initiating client connection

[INFO] Waiting until connected

[INFO] Socket connection established

[INFO] Starting

[INFO] [KafkaServer id=0] started

If ZooKeeper has not started, Kafka will refuse to start as well, displaying these kind of error
messages:

[INFO] Opening socket connection to server localhost:2181
[INFO] Socket error occurred: localhost:2181: Connection refused
[INFO] Opening socket connection to server localhost:2181
[INFO] Socket error occurred: localhost:2181: Connection refused

Creating Topics

Messages (also called events or records) are durably stored in topics. A topic is a feed to which
messages are published. Topics are always multi-producer and multi-subscriber: a topic can have
zero, one or many producers that write messages to it, as well as zero, one, or many consumers that
subscribe to these messages. Topics have a name and are partitioned, meaning that one topic is
spread over a number of "buckets" located on different Kafka brokers.

The set of commands below list the available topics and creates one topic called vinyl-topic that
has three partitions

392

$ kafka-topics --zookeeper localhost:2181 --list

$ kafka-topics --zookeeper localhost:2181 --create --topic vinyl-topic --partitions 3
--replication-factor 1
Created topic vinyl-topic.

$ kafka-topics --zookeeper localhost:2181 --list
vinyl-topic

The kafka-topics command has a --describe parameter to get all the details and configuration of a
topic:

$ kafka-topics --zookeeper localhost:2181 --describe --topic vinyl-topic

Topic: vinyl-topic PartitionCount: 3 ReplicationFactor: 1 Configs:
Topic: vinyl-topic Partition: 0 Leader: @ Replicas: @ Isr: 0
Topic: vinyl-topic Partition: 1 Leader: @ Replicas: @ Isr: 0
Topic: vinyl-topic Partition: 2 Leader: @ Replicas: @ Isr: 0

Publishing Events

Now, time to send some messages to the topic. For that we use the kafka-console-producer that
allows us to type messages on the console and send them to the topic. Open one terminal, execute
the command and start typing some messages (here I use JSON but you can send any format to a
topic):

$ kafka-console-producer --bootstrap-server localhost:9092 --topic vinyl-topic

> { "id": 1, "artist": "Ella Fitzgerald", "album": "Sings the Cole Porter Song Book" }
> { "id": 2, "artist": "Billie Holiday", "album": "Lady In Satin" }

> { "id": 3, "artist": "Sarah Vaughan", "album": "In the Land of Hi-Fi" }

> { "id": 4, "artist": "Nina Simone", "album": "Pastel Blues" }

Receiving Events

Open a second terminal and use the kafka-console-consumer to consume the messages. The --from
-beginning parameter allows us to start consuming with the earliest message present in the topic
rather than the latest message. You should see the following:

$ kafka-console-consumer --bootstrap-server localhost:9092 --topic vinyl-topic --from
-beginning

{ "id": 1, "artist": "Ella Fitzgerald", "album": "Sings the Cole Porter Song Book" }
{ "id": 2, "artist": "Billie Holiday", "album": "Lady In Satin" }

{ "id": 3, "artist": "Sarah Vaughan", "album": "In the Land of Hi-Fi" }

{ "id": 4, "artist": "Nina Simone", "album": "Pastel Blues" }

393

Keep sending messages on the first terminal and you’ll see the messages arriving in the second
terminal.

Cleaning Up

To clean up, we can delete our topic. For that just use the --delete parameter. Once you issue the
delete command, the topic will be "marked for deletion," and you’ll have to wait till it gets deleted.

$ kafka-topics --zookeeper localhost:2181 --delete --topic vinyl-topic
Topic vinyl-topic is marked for deletion.

$ kafka-topics --zookeeper localhost:2181 --list

Stopping Kafka

To stop Kafka you need to do it with two commands: one to stop Kafka itself, and another one to
stop ZooKeeper.

$ kafka-server-stop
$ zookeeper-server-stop

A.9.5. Some Kafka Commands

Kafka has several commands where you can use several parameters and options. To get some help
you can use the following commands:

» kafka-configs --help: Manipulates and describes the configuration for a topic, client, user or
broker.

» kafka-console-consumer --help: Reads data from Kafka topics and outputs it to standard output.

» kafka-console-producer --help: Reads data from standard input and publish it to Kafka.

» kafka-topics --help: Creates, deletes, describes, or changes a topic.

A.10. Git

Git is a free and open source distributed version control system designed for tracking changes in
computer files and coordinating work on those files among multiple people.”* It is primarily used
for source code management in software development, but it can be used to keep track of changes
in any set of files. Git was created by Linus Torvalds in 2005 for the development of the Linux
kernel, with other kernel developers contributing to its initial development.

Git is not really needed to run the samples in this fascicle. Even if the code is hosted on a public Git
repository (https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0), you can either download
the code as a zip file, or clone the repository. Only if you clone the repository will you need to have
Git installed.

394

https://github.com/agoncal/agoncal-fascicle-quarkus/tree/1.0

A.10.1. A Brief History of Git

Git development began in April 2005, after many developers in the Linux kernel gave up access to
BitKeeper, a proprietary source-control management (SCM). Linus Torvalds wanted a distributed
system that he could use, like BitKeeper, but none of the available free systems met his needs. So,
Linus started the development of Git on 3rd April 2005, announced the project on 6th April and the
first merge of multiple branches took place on 18th April. On 29th April, the nascent Git was

benchmarked, recording patches to the Linux kernel tree at the rate of 6.7 patches per secon

A.10.2. Installing Git on macOS

247
d.[1

On macOS, if you have installed Homebrew, then installing Git is just a matter of a single command.

I Open your terminal and install Git with the following command:

$ brew install git

A.10.3. Checking for Git Installation

Once installed, check for Git by running git --version in the terminal. It should display the git

version:

$ git --version
git version 2.25.0

A.10.4. Cloning Repository

Once Git is installed, you can clone the code of the repository with a git clone
https://github.com/agoncal/agoncal-fascicle-quarkus.git.

[209] Homebrew https://brew.sh

[210] Homebrew History https://en.wikipedia.org/wiki/Homebrew_(package_manager)#History
[211] Homebrew Cask https://github.com/Homebrew/homebrew-cask

[212] Java http://www.oracle.com/technetwork/java/javase

[213] Visual VM https://visualvm.github.io

[214] The Java HotSpot Performance Engine Architecture https://www.oracle.com/technetwork/java/whitepaper-135217.html
[215] Java History https://en.wikipedia.org/wiki/Java_(programming_language)#History

[216] Java Website http://www.oracle.com/technetwork/java/javase/downloads/index.html
[217] GraalVM https://www.graalvm.org

[218] SubstrateVM https://github.com/oracle/graal/tree/master/substratevm

[219] AOT JEP 295 https://openjdk.java.net/jeps/295

[220] GraalVM Download https://www.graalvm.org/downloads

[221] GraalVM GitHub https://github.com/graalvm/graalvm-ce-builds/tags

[222] Native Image https://www.graalvm.org/docs/reference-manual/native-image

[223] Maven https://maven.apache.org

[224] Maven History https://en.wikipedia.org/wiki/Apache_Maven#History

[225] Maven Central https://search.maven.org

[226] cURL https://curl.haxx.se

on

395

https://github.com/agoncal/agoncal-fascicle-quarkus.git
https://brew.sh
https://en.wikipedia.org/wiki/Homebrew_(package_manager)%23History
https://github.com/Homebrew/homebrew-cask
http://www.oracle.com/technetwork/java/javase
https://visualvm.github.io
https://www.oracle.com/technetwork/java/whitepaper-135217.html
https://en.wikipedia.org/wiki/Java_(programming_language)%23History
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.graalvm.org
https://github.com/oracle/graal/tree/master/substratevm
https://openjdk.java.net/jeps/295
https://www.graalvm.org/downloads
https://github.com/graalvm/graalvm-ce-builds/tags
https://www.graalvm.org/docs/reference-manual/native-image
https://maven.apache.org
https://en.wikipedia.org/wiki/Apache_Maven%23History
https://search.maven.org
https://curl.haxx.se

[227] Daniel Stenberg https://en.wikipedia.org/wiki/Daniel _Stenberg

[228] cURL commands https://ec.haxx.se/cmdline.html

[229] jq https://stedolan.github.io/jq

[230] Docker https://www.docker.com

[231] Docker History https://en.wikipedia.org/wiki/Docker_(software)#History
[232] https://hub.docker.com

[233] Docker Hub https://hub.docker.com

[234] Docker commands https://docs.docker.com/engine/reference/commandline/cli
[235] VirtualBox https://www.virtualbox.org

[236] VirtualBox History https://en.wikipedia.org/wiki/VirtualBox#History
[237] Kubernetes https://kubernetes.io

[238] Borg, Omega, and Kubernetes https://research.google/pubs/pub44843
[239] Cloud Native Computing Foundation https://www.cncf.io

[240] kubeadm https://github.com/kubernetes/kubeadm

[241] Minikube https://minikube.sigs.k8s.io

[242] hello-fascicle Docker Image https://hub.docker.com/r/agoncal/hello-fascicle
[243] Kafka https://kafka.apache.org

[244] ZooKeeper https://zookeeper.apache.org

[245] Kafka History https://en.wikipedia.org/wiki/Apache_Kafka#History
[246] Git https://git-scm.com

[247] History of Git https://en.wikipedia.org/wiki/Git#History

[248] Homebrew https://brew.sh

396

https://en.wikipedia.org/wiki/Daniel_Stenberg
https://ec.haxx.se/cmdline.html
https://stedolan.github.io/jq
https://www.docker.com
https://en.wikipedia.org/wiki/Docker_(software)%23History
https://hub.docker.com
https://hub.docker.com
https://docs.docker.com/engine/reference/commandline/cli
https://www.virtualbox.org
https://en.wikipedia.org/wiki/VirtualBox%23History
https://kubernetes.io
https://research.google/pubs/pub44843
https://www.cncf.io
https://github.com/kubernetes/kubeadm
https://minikube.sigs.k8s.io
https://hub.docker.com/r/agoncal/hello-fascicle
https://kafka.apache.org
https://zookeeper.apache.org
https://en.wikipedia.org/wiki/Apache_Kafka%23History
https://git-scm.com
https://en.wikipedia.org/wiki/Git%23History
https://brew.sh

Appendix B: Quarkus Versions

Quarkus evolves at a fast pace. Below you will find a short recap of the latest major versions and

their content. If you want to have more details on each release, you can browse the GitHub account.
[249]

B.1. Quarkus 1.9 (October 2020)

Quarkus 1.9 comes with a lot of improvements on top of our existing feature set:

» The Micrometer extension is maturing

« Kafka now has metrics

Multiple Redis clients are supported (as well as Sentinel connections)

Bean Validation is supported by Reactive Routes

SmallRye Reactive Messaging upgraded to 2.4.0 and Mutiny to 0.9.0

« Creation of the Quarkiverse initiative, the extension ecosystem.”*”

B.2. Quarkus 1.8 (September 2020)

Quarkus 1.8 comes with bug fixes, improvements, as well as some notable new features: **"

» Multiple persistence units support for the Hibernate ORM extension
* A new Micrometer extension
* jbang integration for easy Quarkus-based scripting

* An update to GraalVM 20.2

B.3. Quarkus 1.7 (August 2020)

Quarkus 1.7, with more than 300 pull requests merged, was released with Elasticsearch and Redis
clients, Reactive routes and Funqy improvements.”*” The most prominent new features are:

* New extensions for the low-level and high level Elasticsearch REST clients

* An extension for the Vert.x Redis client

e An Hibernate Envers extension

Support for the JDBC Db2 driver

A lot of improvements to the Reactive routes feature

The Funqy serverless framework got some interesting new features

B.4. Quarkus 1.6 (July 2020)

Quarkus 1.6 released with AppCDS, Google Cloud Functions, GraalVM 20.1.0 and more.”*

397

* Integrated generation of AppCDS archives to improve startup time in JVM mode

» Support for Google Cloud Functions - joining the existing Amazon Lambda and Azure Functions
support

» Reactive IBM Db2 client (the Db2 JDBC driver is coming in 1.7)
* An Apache Cassandra client

* Web]Jars locator extension and Spring @Scheduled support
 Better tools to troubleshoot your applications

» Upgrade to GraalVM 20.1.0

B.5. Quarkus 1.5 (June 2020)

Quarkus 1.5 introduces the fast-jar packaging as an option.”**!

* New fast-jar packaging format to bring faster startup times

* Quarkus 1.4 introduced command mode and 1.5 added a Picocli extension >

Adds gRPC extension
* Implements Eclipse MicroProfile GraphQL extension
» Supports more Amazon Services (DynamoDB, KMS, S3, SES, SNS, SQS)

e Hibernate ORM REST Data with Panache extension

Spring Cache compatibility layer

B.6. Quarkus 1.4 (April 2020)

Quarkus 1.4 brings some major updates.”””

» Deprecates support for Java 8 as Java 11 is recommended
* Introduces Command mode (how to build command line applications with Quarkus)

 Introduces Funqy, the new FaaS framework, to improve function front (AWS Lambdas and
Azure Functions)

* Adds support for HTTP/2

* Quarkus Security 1.1.0.Final

* Moves the Security API to Mutiny

* Improved mocking (add support for @InjectMock and Mockito)
* Adds support for SmallRye Reactive Messaging 2.0

» Update to SmallRye Health 2.2.0

B.7. Quarkus 1.3 (March 2020)

Quarkus 1.3 passed the TCKs of all Eclipse MicroProfile 3.3 specifications.””” MicroProfile 3.3
includes the following specification updates:

398

Config 1.4

Fault Tolerance 2.1

Health 2.2

Metrics 2.3

REST Client 1.4

In addition to the specifications within the MicroProfile platform, Quarkus also includes
implementations of Reactive Streams Operators, Reactive Messaging, and Context Propagation. This

version also brings GraalVM 20.0 support and a new class loader infrastructure.

B.8. Quarkus 1.2 (January 2020)

Qslgljarkus 1.2 was released with GraalVM 19.3.1 support, Metrics, Cache extension, and much more.

Supports three flavors of GraalVM:
o GraalVM 19.2.1 - JDK 8
o GraalVM 19.3.1 - JDK 8
o GraalVM 19.3.1 -JDK 11

Adds a brand new Cache extension

Adds metrics for Agroal (the database connection pool) and Hibernate ORM

* New SmallRye Fault Tolerance v4.0.0 that replaces Hystrix

B.9. Quarkus 1.1 (December 2019)

Quarkus 1.1 released with a template engine and YAML configuration.”*”

Adds Qute template engine

YAML support for configuration file

Adds health checks for Kafka, Kafka Streams, MongoDB, Neo4j and Artemis

* Adds Quartz extension

B.10. Quarkus 1.0 (November 2019)

First final version of Quarkus."”""

* Creation of a Platform BOM

» Upgrades SmallRye OpenAPI and Swagger Ul

» Updates to GraalVM SDK 19.2.1

» Replace usage of java.util.logging by JBoss logging
» Upgrade to Hibernate ORM 5.4.9.Final

399

* Quarkus HTTP 3.0.0.Final

* Quarkus Security 1.0.0.Final

B.11. Quarkus 0.0.1 (November 2018)

Very first commit of the Quarkus code.”* Tag 0.0.1 was created."”*”

[249] Quarkus Releases https://github.com/quarkusio/quarkus/releases

[250] Quarkiverse https://github.com/quarkiverse

[251] Quarkus 1.8 https://quarkus.io/blog/quarkus-1-8-0-final-released

[252] Quarkus 1.7 https://quarkus.io/blog/quarkus-1-7-0-final-released

[253] Quarkus 1.6 https://quarkus.io/blog/quarkus-1-6-0-final-released

[254] Quarkus 1.5 https://quarkus.io/blog/quarkus-1-5-final-released

[255] Picocli https://picocli.info

[256] Quarkus 1.4 https://quarkus.io/blog/quarkus-1-4-final-released

[257] Quarkus 1.3 https://quarkus.io/blog/quarkus-eclipse-microprofile-3-3
[258] Quarkus Class Loader https://quarkus.io/guides/class-loading-reference
[259] Quarkus 1.2 https://quarkus.io/blog/quarkus-1-2-0-final-released

[260] Quarkus 1.1 https://quarkus.io/blog/quarkus-1-1-0-final-released

[261] Quarkus 1.0 https://quarkus.io/blog/quarkus-1-0-0-Final-bits-are-here
[262] Quarkus 1st commit https://github.com/quarkusio/quarkus/commit/161cfa303b4ea366dbd07e54bfdfe5a67ddecd97

[263] Quarkus Tag 0.0.1 https://github.com/quarkusio/quarkus/commits/0.0.1?
after=1200367b8ddbe5605d8219c4994205f6c1d7af50+1084

400

https://github.com/quarkusio/quarkus/releases
https://github.com/quarkiverse
https://quarkus.io/blog/quarkus-1-8-0-final-released
https://quarkus.io/blog/quarkus-1-7-0-final-released
https://quarkus.io/blog/quarkus-1-6-0-final-released
https://quarkus.io/blog/quarkus-1-5-final-released
https://picocli.info
https://quarkus.io/blog/quarkus-1-4-final-released
https://quarkus.io/blog/quarkus-eclipse-microprofile-3-3
https://quarkus.io/guides/class-loading-reference
https://quarkus.io/blog/quarkus-1-2-0-final-released
https://quarkus.io/blog/quarkus-1-1-0-final-released
https://quarkus.io/blog/quarkus-1-0-0-Final-bits-are-here
https://github.com/quarkusio/quarkus/commit/161cfa303b4ea366dbd07e54bf4fe5a67ddec497
https://github.com/quarkusio/quarkus/commits/0.0.1?after=1200367b8ddbe5605d8219c4994205f6c1d7af50+1084
https://github.com/quarkusio/quarkus/commits/0.0.1?after=1200367b8ddbe5605d8219c4994205f6c1d7af50+1084

Appendix C: Eclipse MicroProfile
Specification Versions

The MicroProfile specification evolves at a fast pace. Below you will find a short recap of the latest
versions and which sub-specification has been updated for a specific version. If you want to have
more details on each specification, you can browse the GitHub account.”*"

C.1. MicroProfile 3.3 (February 2020)

MicroProfile 3.3 is an incremental release.”*” It includes an update to:

* Configuration 1.4

Fault Tolerance 2.1

Health 2.2

e Metrics 2.3

REST Client 1.4

C.2. MicroProfile 3.2 (November 2019)

MicroProfile 3.2 is an incremental release.”*” It includes an update to:

e Metrics 2.2
e Health 2.1

C.3. MicroProfile 3.1 (October 2019)

MicroProfile 3.1 is an incremental release.”*” It includes an update to:

e Health 2.1

e Metrics 2.1

C.4. MicroProfile 3.0 (June 2019)

MicroProfile 3.0 is a major release.”™ It consists of:

* Eclipse MicroProfile Configuration 1.3
 Eclipse MicroProfile Fault Tolerance 2.0
* Eclipse MicroProfile Health 2.0

* Eclipse MicroProfile JWT Auth 1.1

Eclipse MicroProfile Metrics 2.0

Eclipse MicroProfile OpenAPI 1.1

401

Eclipse MicroProfile OpenTracing 1.3
» Eclipse MicroProfile REST Client 1.3
* Context and Dependency Injection 2.0

¢« Common Annotations 1.3

Java API for RESTful Web Services 2.1
* JSON Binding 1.0
* JSON Processing 1.1

C.5. MicroProfile 2.2 (February 2019)

MicroProfile 2.2 is an incremental release.”*” It includes an update to:

 Fault Tolerance 2.0
* OpenAPI 1.1

* OpenTracing 1.3

* REST Client 1.2

C.6. MicroProfile 2.1 (October 2018)

MicroProfile 2.1 is an incremental release.”’” It includes an update to:

* OpenTracing 1.2

C.7. MicroProfile 2.0.1 (July 2018)

MicroProfile 2.0.1 is a patch release to correct an issue with the JSON-B maven dependency in the
pom.xml.””" The defined content for MicroProfile 2.0 did not change.

C.8. MicroProfile 2.0 (June 2018)

MicroProfile 2.0 is a major release since the subset of Java EE dependencies are now based on Java
EE 8.”7" It consists of:

* Eclipse MicroProfile Configuration 1.3

* Eclipse MicroProfile Fault Tolerance 1.1

* Eclipse MicroProfile Health 1.0

* Eclipse MicroProfile JWT Auth 1.1

* Eclipse MicroProfile Metrics 1.1

* Eclipse MicroProfile OpenAPI 1.0

» Eclipse MicroProfile OpenTracing 1.1

* Eclipse MicroProfile REST Client 1.1

402

* Context and Dependency Injection 2.0
* Common Annotations 1.3

 Java API for RESTful Web Services 2.1
* JSON Binding 1.0

* JSON Processing 1.1

C.9. MicroProfile 1.4 (June 2018)

MicroProfile 1.4 is an incremental release.””” It includes an update to:

* Configuration 1.3
e Fault Tolerance 1.1
« JWT 1.1

* OpenTracing 1.1

REST Client 1.1

C.10. MicroProfile 1.3 (January 2018)

MicroProfile 1.3 is an incremental release.”’* It includes an update to:

* Configuration 1.2

e Metrics 1.1
It adds:

e OpenAPI 1.0
* OpenTracing 1.0
* REST Client 1.0

C.11. MicroProfile 1.2 (September 2017)

MicroProfile 1.2 is an incremental release.””” It includes an update to:

¢« Common Annotations 1.2

* Configuration 1.1
It adds:

 Fault Tolerance 1.0
* Health 1.0

* Metrics 1.0

« JWT 1.0

403

C.12. MicroProfile 1.1 (August 2017)

MicroProfile 1.1 is an incremental release.”’" It adds:

* Configuration 1.0

C.13. MicroProfile 1.0

MicroProfile 1.0 is the first major release and is based on Java EE 7 specifications. It consists of:

* Context and Dependency Injection 1.2
 Java API for RESTful Web Services 2.0
* JSON Processing 1.0

[264] MicroProfile Releases https://github.com/eclipse/microprofile/releases

[265] MicroProfile 3.3 https://github.com/eclipse/microprofile/releases/tag/3.3
[266] MicroProfile 3.2 https://github.com/eclipse/microprofile/releases/tag/3.2
[267] MicroProfile 3.1 https://github.com/eclipse/microprofile/releases/tag/3.1
[268] MicroProfile 3.0 https://github.com/eclipse/microprofile/releases/tag/3.0
[269] MicroProfile 2.2 https://github.com/eclipse/microprofile/releases/tag/2.2
[270] MicroProfile 2.1 https://github.com/eclipse/microprofile/releases/tag/2.1
[271] MicroProfile 2.0.1 https://github.com/eclipse/microprofile/releases/tag/2.0.1
[272] MicroProfile 2.0 https://github.com/eclipse/microprofile/releases/tag/2.0
[273] MicroProfile 1.4 https://github.com/eclipse/microprofile/releases/tag/1.4
[274] MicroProfile 1.3 https://github.com/eclipse/microprofile-bom/releases/tag/1.3
[275] MicroProfile 1.2 https://github.com/eclipse/microprofile-bom/releases/tag/1.2
[276] MicroProfile 1.1 https://github.com/eclipse/microprofile-bom/releases/tag/1.1

404

https://github.com/eclipse/microprofile/releases
https://github.com/eclipse/microprofile/releases/tag/3.3
https://github.com/eclipse/microprofile/releases/tag/3.2
https://github.com/eclipse/microprofile/releases/tag/3.1
https://github.com/eclipse/microprofile/releases/tag/3.0
https://github.com/eclipse/microprofile/releases/tag/2.2
https://github.com/eclipse/microprofile/releases/tag/2.1
https://github.com/eclipse/microprofile/releases/tag/2.0.1
https://github.com/eclipse/microprofile/releases/tag/2.0
https://github.com/eclipse/microprofile/releases/tag/1.4
https://github.com/eclipse/microprofile-bom/releases/tag/1.3
https://github.com/eclipse/microprofile-bom/releases/tag/1.2
https://github.com/eclipse/microprofile-bom/releases/tag/1.1

Appendix D: References

* Quarkus https://quarkus.io

* Quarkus developers' guides https://quarkus.io/guides

* Quarkus Super Hero Workshop https://quarkus.io/quarkus-workshops/super-heroes

» SmallRye https://github.com/smallrye

* MicroProfile https://microprofile.io

o

o

o

Config https://github.com/eclipse/microprofile-config
Fault Tolerance https://github.com/eclipse/microprofile-fault-tolerance

Health https://github.com/eclipse/microprofile-health

o JWT https://github.com/eclipse/microprofile-jwt-auth

Metrics https://github.com/eclipse/microprofile-metrics
OpenApi https://github.com/eclipse/microprofile-open-api

OpenTracing https://github.com/eclipse/microprofile-opentracing

o Reactive Messaging https://github.com/eclipse/microprofile-reactive-messaging

Reactive Streams Operators https:/github.com/eclipse/microprofile-reactive-streams-
operators

REST-Client https://github.com/eclipse/microprofile-rest-client

405

https://quarkus.io
https://quarkus.io/guides
https://quarkus.io/quarkus-workshops/super-heroes
https://github.com/smallrye
https://microprofile.io
https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-fault-tolerance
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-metrics
https://github.com/eclipse/microprofile-open-api
https://github.com/eclipse/microprofile-opentracing
https://github.com/eclipse/microprofile-reactive-messaging
https://github.com/eclipse/microprofile-reactive-streams-operators
https://github.com/eclipse/microprofile-reactive-streams-operators
https://github.com/eclipse/microprofile-rest-client

Appendix E: Fascicles by the Same Author

The agoncal fascicle series contains two types of fascicles. The Understanding collection is about
fascicles that dive into a specific technology, explain it, and show different aspects of it as well as
integrating it with other external technologies. On the other hand, the Practising collection is all
about coding. So you are supposed to already know a little bit of this technology and be ready to
code in order to build a specific application.

E.1. Understanding Bean Validation 2.0

Validating data is a common task that Java developers have to do and it is spread throughout all
layers (from client to database) of an application. This common practice is time-consuming, error
prone, and hard to maintain in the long run. Besides, some of these constraints are so frequently
used that they could be considered standard (checking for a null value, size, range, etc.). It would be
good to be able to centralise these constraints in one place and share them across layers.

That’s when Quarkus comes into play.

In this fascicle, you will learn Quarkus and use its different APIs to apply constraints on a bean,
validate all sorts of constraints, write your own constraints and a few advanced topics such as
integrating Bean Validation with other frameworks (JPA, JAX-RS, CDI, Spring).

ISBN: 9781980399025 | ASIN B07B2KJ41R

E.2. Understanding JPA 2.2

Applications are made up of business logic, interaction with other systems, user interfaces etc. and
data. Most of the data that our applications manipulate have to be stored in datastores, retrieved,
processed and analysed. If this datastore is a relational database and you use an object-oriented
programming language such as Java, then you might want to use an Object-Relational Mapping tool.

That’s when Quarkus comes into play.

In this fascicle, you will learn Quarkus, the standard ORM that maps Java objects to relational
databases. You will discover its annotations for mapping entities, as well as the Java Persistence
Query Language, entity life cycle and a few advanced topics such as integrating JPA with other
frameworks (Bean Validation, JTA, CDI, Spring).

ISBN: 9781093918977 | ASIN BO7TRWPXPS6

E.3. Understanding Quarkus

Microservices is an architectural style that structures an application as a collection of distributed
services. Microservices are certainly appealing but there are many questions that should be asked
prior to diving into this architectural style: How do I deal with an unreliable network in a
distributed architecture? How do I test my services? How do I monitor them? How do I package and
execute them?

406

That’s when Quarkus comes into play.

In this fascicle, you will learn Quarkus but also its ecosystem. You will discover Quarkus internals
and how you can use it to build REST and reactive microservices, bind and process JSON or access
datastores in a transactional way. With Cloud Native and GraalVM in mind, Quarkus makes
packaging and orchestrating your microservices with Docker and Kubernetes easy.

This fascicle has a good mix of theory and practical examples. It is the companion book of
Practising Quarkus where you learn how to develop an entire microservice architecture.

E.4. Practising Quarkus

Microservices is an architectural style that structures an application as a collection of distributed
services. Microservices are certainly appealing but there are many questions that should be asked
prior to diving into this architectural style: How do I deal with an unreliable network in a
distributed architecture? How do I test my services? How do I monitor them? How do I package and
execute them?

That’s when Quarkus comes into play.

In this fascicle you will develop an entire microservice application using Quarkus as well as
MicroProfile. You will expose REST endpoints using JAX-RS and OpenAPI, customise the JSON
output thanks to JSON-B and deal with persistence and transaction with Hibernate ORM with
Panache and JTA. Having distributed microservices, you will implement health checks and add
some metrics so you can monitor your microservice architecture. Finally, thanks to GraalVM you
will build native executables, and package and execute them with Docker.

This fascicle is very practical. It is the companion book of the more theoretical Understanding
Quarkus where you’ll learn more about Quarkus, MicroProfile, REST and reactive microservices, as
well as Cloud Native and GraalVM.

407

Appendix F: Printed Back Cover

This fascicle Understanding Quarkus also has a printed version (with ISBN number 9798689410418).
This is what’s written on the back cover:

Antonio Goncalves is a senior software architect and Java Champion. Having been focused on Java
development since the late 1990s, his career has taken him to many different countries and
companies. For the last few years, Antonio has given talks at international conferences, mainly on
Java, distributed systems and microservices. This fascicle stems from his extensive experience in
writing books, blogs and articles.

Microservices is an architectural style that structures an application as a collection of distributed
services. Microservices are certainly appealing but there are many questions that should be asked
prior to diving into this architectural style: How do I deal with an unreliable network in a
distributed architecture? How do I test my services? How do I monitor them? How do I package and
execute them?

That’s when Quarkus comes into play.

In this fascicle, you will learn Quarkus but also its ecosystem. You will discover Quarkus internals
and how you can use it to build REST and reactive microservices, bind and process JSON or access
datastores in a transactional way. With Cloud Native and GraalVM in mind, Quarkus makes
packaging and orchestrating your microservices with Docker and Kubernetes easy.

This fascicle has a good mix of theory and practical examples. It is the companion book of
Practising Quarkus where you learn how to develop an entire microservice architecture.

408

	Understanding Quarkus : Quarkus
	Table of Contents
	Foreword
	About the Author
	Acknowledgments
	Introduction
	Where Does This Fascicle Come From?
	Who Is This Fascicle For?
	How Is This Fascicle Structured?
	Conventions
	The Sample Application
	Downloading and Running the Code
	Getting Help
	Contacting the Author

	Chapter 1. First Step with Quarkus
	Chapter 2. Understanding Quarkus
	2.1. Understanding Microservices
	2.1.1. Monolith
	2.1.2. Microservices
	2.1.3. Pros and Cons

	2.2. Understanding Reactive
	2.2.1. Reactive Manifesto
	2.2.2. Reactive Systems
	2.2.3. Reactive Streams

	2.3. Understanding MicroProfile
	2.3.1. Eclipse Foundation
	2.3.2. SmallRye
	2.3.3. MicroProfile Specifications
	CDI
	JAX-RS
	JSON-B
	JSON-P
	Common Annotations
	Configuration
	Fault Tolerance
	Health
	Metrics
	OpenAPI
	REST Client
	JWT
	OpenTracing

	2.3.4. Standalone Releases
	Context Propagation
	Reactive Messaging
	Mutiny

	2.4. Understanding Cloud Native Computing
	2.4.1. Docker
	2.4.2. Kubernetes

	2.5. Understanding GraalVM
	2.5.1. Architecture
	2.5.2. A Brief History of GraalVM
	2.5.3. Mandrel

	2.6. Quarkus Overview
	2.6.1. A Brief History of Quarkus
	2.6.2. Architecture
	2.6.3. Imperative and Reactive Programming
	2.6.4. Augmentation
	2.6.5. Extensions

	2.7. Summary

	Chapter 3. Getting Started
	3.1. Developing Your First Quarkus Application
	3.2. Bootstrapping the Application
	3.2.1. Web Interface
	3.2.2. IntelliJ IDEA Plugin
	3.2.3. Maven Plugin
	3.2.4. Generating Some Code
	Generated Classes and Directory Structure
	Generated Maven POM

	3.3. Developing the Application
	3.3.1. The Artist Resource
	3.3.2. The Artist Class
	3.3.3. Running the Application
	3.3.4. Live Reload
	3.3.5. Configuring the Application
	3.3.6. Testing the Application
	3.3.7. Debugging the Application

	3.4. Running the Application
	3.4.1. Building an Executable JAR
	3.4.2. Executing the Executable JAR

	3.5. Going Native
	3.5.1. Building a Native Executable
	3.5.2. Executing the Native Executable
	3.5.3. Testing the Native Executable

	3.6. Containerising the Application
	3.6.1. Building the Native Executable Image
	3.6.2. Executing the Container Image

	3.7. Summary

	Chapter 4. Core Quarkus
	4.1. Context and Dependency Injection
	4.1.1. Understanding Beans
	4.1.2. Injecting Beans
	Injection Points
	Default Injection
	Injecting Qualified Beans
	Injecting Alternative Beans

	4.1.3. Scopes
	4.1.4. Events
	4.1.5. Configuring ArC

	4.2. Eclipse MicroProfile Configuration
	4.2.1. Understanding Configuration
	4.2.2. Configuring Data
	Injecting Configuration
	Programmatic Configuration
	Multiple Configuration Properties

	4.2.3. YAML Support
	4.2.4. Configuration Sources
	4.2.5. Configuring Quarkus

	4.3. Profiles
	4.3.1. Configuring Profiles

	4.4. Logging
	4.4.1. Log Levels
	4.4.2. Configuring Logging
	4.4.3. Logging Categories
	4.4.4. Logging Format
	4.4.5. JSON Format

	4.5. Application Initialisation and Termination
	4.5.1. Entry Point
	4.5.2. Application Life Cycle

	4.6. Summary

	Chapter 5. Data, Transactions and ORM
	5.1. Bean Validation
	5.1.1. Understanding Constraints
	5.1.2. Constraining Data
	Built-in Constraints
	Applying Built-in Constraints
	Constraining Attributes
	Constraining Methods

	5.1.3. Validating Data
	Validating Beans
	Cascading Validation

	5.1.4. Configuring Hibernate Validator

	5.2. Java Persistence API
	5.2.1. Understanding Object-Relational Mapping
	Relational Databases
	Entities

	5.2.2. Mapping Entities
	Customising Mappings
	Advanced Mapping

	5.2.3. Managing Entities
	Persisting an Entity
	Finding by Id
	Removing an Entity

	5.2.4. Querying Entities
	Java Persistence Query Language
	Dynamic Queries

	5.2.5. Configuring Hibernate ORM

	5.3. Java Transaction API
	5.3.1. Understanding Transactions
	5.3.2. Declarative Transaction Management
	Exceptions and Transactions

	5.3.3. Programmatic Transaction Management
	5.3.4. Configuring Transactions

	5.4. DataSource
	5.4.1. Configuring DataSources

	5.5. Hibernate ORM with Panache
	5.5.1. Panache Entities
	Mapping Panache Entities
	Managing Panache Entities
	Querying Panache Entities
	State and Behaviour on Panache Entities

	5.5.2. Panache Repositories
	5.5.3. Transactions
	Using Panache Entities
	Using Panache Repositories

	5.6. Summary

	Chapter 6. HTTP Microservices
	6.1. Java API for RESTful Web Services
	6.1.1. Understanding RESTful Web Services
	6.1.2. Exposing RESTful Web Services
	HTTP Method Matching
	URI Definition and Binding URIs
	Extracting Parameters
	Consuming and Producing Content Types
	Returned Types

	6.1.3. Invoking RESTful Web Services
	Bootstrapping the Client
	Targets and Invocations

	6.1.4. Configuring RESTEasy

	6.2. Eclipse MicroProfile OpenAPI
	6.2.1. Understanding OpenAPI v3 Specification
	6.2.2. Exposing OpenAPI Contracts
	Customising OpenAPI Contracts
	Advanced Customisation

	6.2.3. Swagger UI
	6.2.4. Configuring SmallRye OpenAPI

	6.3. JSON Binding
	6.3.1. Understanding Binding
	6.3.2. Binding POJOs
	Default Binding
	Customising Binding
	Advanced Customisation

	6.3.3. Serialising and Deserialising
	Programmatic Serialisation and Deserialisation
	Automatic Serialisation and Deserialisation

	6.4. JSON Processing
	6.4.1. Understanding Processing
	6.4.2. Building JSON
	6.4.3. Reading and Writing JSON
	6.4.4. Streaming JSON

	6.5. Summary

	Chapter 7. Communication and Fault Tolerance
	7.1. CORS
	7.1.1. Understanding CORS
	7.1.2. Configuring CORS

	7.2. Eclipse MicroProfile REST Client
	7.2.1. Understanding RESTful Web Services Invocation
	7.2.2. Invoking RESTful Web Services
	Client Proxies
	Programmatic Invocation
	Declarative Invocation

	7.2.3. Configuring RestEasy Client Microprofile

	7.3. Eclipse MicroProfile Fault Tolerance
	7.3.1. Understanding Fault Tolerance
	7.3.2. Falling Back
	7.3.3. Timing Out
	7.3.4. Circuit Breaker

	7.4. Summary

	Chapter 8. Event-Driven Microservices
	8.1. Reactive Programming
	8.1.1. Uni and Multi
	8.1.2. Events

	8.2. Reactive Messaging
	8.2.1. Understanding Messaging
	Synchronous Programming
	Asynchronous Messages
	Broker Architecture

	8.2.2. Sending Messages
	8.2.3. Receiving Messages
	8.2.4. Connectors
	8.2.5. Configuring Reactive Messages

	8.3. Summary

	Chapter 9. Observability
	9.1. Eclipse MicroProfile Health
	9.1.1. Understanding Health Checks
	9.1.2. Checks
	Liveness Checks
	Readiness Checks
	Built-In Quarkus Checks

	9.1.3. Constructing a Response
	9.1.4. Visualising Health Checks with Health-UI
	9.1.5. Configuring SmallRye Health

	9.2. Eclipse MicroProfile Metrics
	9.2.1. Understanding Measures
	9.2.2. Metrics
	Base Metrics
	Vendor Metrics
	Application Metrics

	9.2.3. Metrics Format
	9.2.4. Visualising Metrics with Prometheus
	9.2.5. Configuring SmallRye Metrics

	9.3. Summary

	Chapter 10. Cloud Native
	10.1. Packaging Quarkus Applications
	10.1.1. JVM Mode
	JAR
	Fast-JAR
	Uber-JAR

	10.1.2. Native Mode
	Native Executable
	Linux Native Executable

	10.1.3. Performances
	Build and Execute
	Executable Size
	Time to First Request
	Pros and Cons

	10.1.4. Configuring Packaging

	10.2. Docker
	10.2.1. Dockerfiles
	JVM Mode
	Linux Native Executable

	10.2.2. Building Docker Images
	Building Manually with Docker
	Building with the Docker Extension
	Building with the Jib Extension

	10.2.3. Running Docker Images
	10.2.4. Pushing Docker Images
	10.2.5. Configuring Containers

	10.3. Kubernetes
	10.3.1. Kubernetes Manifest Files
	10.3.2. Building Kubernetes Manifest Files
	Building with the Kubernetes Extension
	Building with the Minikube Extension

	10.3.3. Deploying to a Minikube Cluster
	Recap

	10.3.4. Configuring Kubernetes

	10.4. Summary

	Chapter 11. Tests
	11.1. Quarkus Tests
	11.1.1. JUnit 5
	Test Class
	Fixtures
	Test Methods
	JUnit Assertions

	11.1.2. JVM Mode Tests
	11.1.3. Native Mode Tests
	11.1.4. Transactional Tests
	11.1.5. Configuring Quarkus Tests

	11.2. Testing Frameworks
	11.2.1. REST Assured
	11.2.2. Hamcrest
	11.2.3. Testing Resources
	TestContainers
	Quarkus Test Resource

	11.3. Mocking
	11.4. Quarkus Test Profiles
	11.5. Summary

	Chapter 12. Putting It All Together
	12.1. Developing the REST ISBN Number Microservice
	12.1.1. Bootstrapping the ISBN Number Microservice
	12.1.2. Maven Dependencies
	12.1.3. Directories and Files
	12.1.4. ISBN Number REST Endpoint
	12.1.5. Injecting Configuration Value
	12.1.6. Customising the JSON Output
	12.1.7. OpenAPI
	Customising the OpenAPI Contract of the Number REST Endpoint
	Customising the IsbnNumbers POJO
	Customising the OpenAPI Contract of the Application
	The Customised OpenAPI Contract
	Swagger UI

	12.1.8. Adding Liveness Health Check
	12.1.9. Running the ISBN Number Microservice
	Live Reload
	Configuring Quarkus Listening Port

	12.1.10. Testing the ISBN Number Microservice

	12.2. Developing the REST Book Microservice
	12.2.1. Bootstrapping the Book Microservice
	12.2.2. Maven Dependencies
	12.2.3. Directories and Files
	12.2.4. Book REST Endpoint
	12.2.5. Book Microservice Invoking the Number Microservice
	12.2.6. Falling Back
	12.2.7. Adding Metrics
	12.2.8. Running the Book Microservice
	12.2.9. Testing the Book Microservice

	12.3. Summary

	Chapter 13. Summary
	Appendix A: Setting up the Development Environment on macOS
	A.1. Homebrew
	A.1.1. A Brief History of Homebrew
	A.1.2. Installing Homebrew on macOS
	A.1.3. Checking for Homebrew Installation
	A.1.4. Some Homebrew Commands

	A.2. Java 11
	A.2.1. Architecture
	A.2.2. A Brief History of Java
	A.2.3. Installing the JDK on macOS
	A.2.4. Checking for Java Installation

	A.3. GraalVM 20.2.0
	A.3.1. Installing GraalVM on macOS
	A.3.2. Installing the Native Image Generator
	A.3.3. Checking for GraalVM Installation

	A.4. Maven 3.6.x
	A.4.1. A Brief History of Maven
	A.4.2. Project Descriptor
	A.4.3. Managing Artifacts
	A.4.4. Installing Maven on macOS
	A.4.5. Checking for Maven Installation
	A.4.6. Some Maven Commands

	A.5. cURL 7.x
	A.5.1. A Brief History of cURL
	A.5.2. Installing cURL on macOS
	A.5.3. Checking for cURL Installation
	A.5.4. Some cURL Commands
	A.5.5. Formatting the cURL JSON Output with JQ

	A.6. Docker
	A.6.1. A Brief History of Docker
	A.6.2. Installing Docker on macOS
	A.6.3. Checking for Docker Installation
	A.6.4. Building, Running, Pushing and Pulling Images
	Remote Docker Repository
	Dockerfile
	Building the Docker Image
	Running the Docker Image
	Pushing to a Docker Registry
	Pulling from a Docker Registry

	A.6.5. Some Docker Commands

	A.7. VirtualBox
	A.7.1. A Brief History of VirtualBox
	A.7.2. Installing VirtualBox on macOS
	A.7.3. Checking for VirtualBox Installation

	A.8. Kubernetes
	A.8.1. A Brief History of Kubernetes
	A.8.2. Different Kubernetes Flavours
	A.8.3. Installing Minikube on macOS
	Installing Kubectl
	Installing Minikube

	A.8.4. Checking for Kubernetes Installation
	A.8.5. Deploying a Docker Image to a Kubernetes Cluster
	Starting the Kubernetes Cluster
	Creating a Deployment
	Creating a Service
	Running the Docker Image
	Cleaning Up

	A.8.6. Kubernetes Manifest Files
	A.8.7. Some Kubernetes Commands

	A.9. Kafka
	A.9.1. A Brief History of Kafka
	A.9.2. Installing Kafka on macOS
	A.9.3. Checking for Kafka Installation
	A.9.4. Publishing and Receiving Events
	Starting Kafka
	Creating Topics
	Publishing Events
	Receiving Events
	Cleaning Up
	Stopping Kafka

	A.9.5. Some Kafka Commands

	A.10. Git
	A.10.1. A Brief History of Git
	A.10.2. Installing Git on macOS
	A.10.3. Checking for Git Installation
	A.10.4. Cloning Repository

	Appendix B: Quarkus Versions
	B.1. Quarkus 1.9 (October 2020)
	B.2. Quarkus 1.8 (September 2020)
	B.3. Quarkus 1.7 (August 2020)
	B.4. Quarkus 1.6 (July 2020)
	B.5. Quarkus 1.5 (June 2020)
	B.6. Quarkus 1.4 (April 2020)
	B.7. Quarkus 1.3 (March 2020)
	B.8. Quarkus 1.2 (January 2020)
	B.9. Quarkus 1.1 (December 2019)
	B.10. Quarkus 1.0 (November 2019)
	B.11. Quarkus 0.0.1 (November 2018)

	Appendix C: Eclipse MicroProfile Specification Versions
	C.1. MicroProfile 3.3 (February 2020)
	C.2. MicroProfile 3.2 (November 2019)
	C.3. MicroProfile 3.1 (October 2019)
	C.4. MicroProfile 3.0 (June 2019)
	C.5. MicroProfile 2.2 (February 2019)
	C.6. MicroProfile 2.1 (October 2018)
	C.7. MicroProfile 2.0.1 (July 2018)
	C.8. MicroProfile 2.0 (June 2018)
	C.9. MicroProfile 1.4 (June 2018)
	C.10. MicroProfile 1.3 (January 2018)
	C.11. MicroProfile 1.2 (September 2017)
	C.12. MicroProfile 1.1 (August 2017)
	C.13. MicroProfile 1.0

	Appendix D: References
	Appendix E: Fascicles by the Same Author
	E.1. Understanding Bean Validation 2.0
	E.2. Understanding JPA 2.2
	E.3. Understanding Quarkus
	E.4. Practising Quarkus

	Appendix F: Printed Back Cover

