

1. Foreword

2. Preface

1. Who Should Read This Book

2. Why We Wrote This Book

3. Navigating This Book

4. Conventions Used in This Book

5. Using Code Examples

6. O’Reilly Online Learning

7. How to Contact Us

8. Acknowledgments

3. 1. Quarkus Overview

1. Developer-Friendly

2. Integration with Kubernetes

3. Memory and First Response Time

4. A Basic Quarkus Workflow

4. 2. Scaffolding

1. 2.1. Scaffolding a Quarkus Project with Maven

2. 2.2. Scaffolding a Quarkus Project with Gradle

3. 2.3. Scaffolding a Quarkus Project with the Quarkus
Start Coding Website

4. 2.4. Scaffolding a Quarkus Project with Visual Studio
Code

5. 2.5. Live Reloading with Dev Mode

6. 2.6. Serving Static Resources

5. 3. Developing RESTful Services

1. 3.1. Creating a Simple REST API Endpoint

2. 3.2. Extracting Request Parameters

3. 3.3. Using Semantic HTTP Response Status Codes

4. 3.4. Binding HTTP Methods

5. 3.5. Enabling Cross-Origin Resource Sharing (CORS)

6. 3.6. Using Reactive Routes

7. 3.7. Intercepting HTTP Requests

8. 3.8. Secure Connections with SSL

6. 4. Configuration

1. 4.1. Configuring the Application with Custom
Properties

2. 4.2. Accessing Configuration Properties
Programmatically

3. 4.3. Overwriting Configuration Values Externally

4. 4.4. Configuring with Profiles

5. 4.5. Changing Logger Configuration

6. 4.6. Adding Application Logs

7. 4.7. Advanced Logging

8. 4.8. Configuring with Custom Profiles

9. 4.9. Creating Custom Sources

10. 4.10. Creating Custom Converters

11. 4.11. Grouping Configuration Values

12. 4.12. Validating Configuration Values

7. 5. Programming Model

1. 5.1. Marshalling/Unmarshalling JSON

2. 5.2. Marshalling/Unmarshalling XML

3. 5.3. Validating Input and Output Values

4. 5.4. Creating Custom Validations

5. 5.5. Validating Objects Programmatically

6. 5.6. Injecting Dependencies

7. 5.7. Creating Factories

8. 5.8. Executing Object Life Cycle Events

9. 5.9. Executing Application Life Cycle Events

10. 5.10. Using a Named Qualifier

11. 5.11. Using Custom Qualifiers

12. 5.12. Qualifying and Configuring Annotations

13. 5.13. Creating Interceptors

14. 5.14. Writing Behavioral Tests

15. 5.15. Writing Unit Tests

16. 5.16. Creating Mock Objects

17. 5.17. Creating Mock Objects with Mockito

18. 5.18. Grouping Several Annotations into One
with a Meta-Annotation

19. 5.19. Executing Code Before or After a Test

20. 5.20. Testing the Native Executable

8. 6. Packaging Quarkus Applications

1. 6.1. Running in Command Mode

2. 6.2. Creating a Runnable JAR File

3. 6.3. Über-JAR Packaging

4. 6.4. Building a Native Executable

5. 6.5. Building a Docker Container for JAR File

6. 6.6. Building a Docker Container for Native File

7. 6.7. Build and Dockerize a Native SSL Application

9. 7. Persistence

1. 7.1. Defining a Datasource

2. 7.2. Using Multiple Datasources

3. 7.3. Adding Datasource Health Check

4. 7.4. Defining Transaction Boundaries Declaratively

5. 7.5. Setting a Transaction Context

6. 7.6. Programmatic Transaction Control

7. 7.7. Setting and Modifying a Transaction Timeout

8. 7.8. Setup with Persistence.xml

9. 7.9. Setup Without persistence.xml

10. 7.10. Using Entities from a Different JAR

11. 7.11. Persisting Data with Panache

12. 7.12. Finding All Entity Instances with Panache
listAll Method

13. 7.13. Finding Individual Entities with Panache
findById Method

14. 7.14. Finding Entities Using Panache Find and List
Methods

15. 7.15. Obtaining a Count of Entities Using the
Panache count Method

16. 7.16. Paginating Through Entity Lists Using the
Panache page Method

17. 7.17. Streaming Results via the Panache Stream
Method

18. 7.18. Testing Panache Entities

19. 7.19. Using a Data Access Object (DAO) or
Repository Pattern

20. 7.20. Using Amazon DynamoDB

21. 7.21. Working with MongoDB

22. 7.22. Using Panache with MongoDB

23. 7.23. Using Neo4j with Quarkus

24. 7.24. Flyway at Startup

25. 7.25. Using Flyway Programmatically

10. 8. Fault Tolerance

1. 8.1. Implementing Automatic Retries

2. 8.2. Implementing Timeouts

3. 8.3. Avoiding Overloads with the Bulkhead Pattern

4. 8.4. Avoiding Unnecessary Calls with the Circuit
Breaker Pattern

5. 8.5. Disabling Fault Tolerance

11. 9. Observability

1. 9.1. Using Automatic Health Checks

2. 9.2. Creating Custom Health Checks

3. 9.3. Exposing Metrics

4. 9.4. Creating Metrics

5. 9.5. Using Distributed Tracing

6. 9.6. Custom Distributed Tracing

12. 10. Integrating with Kubernetes

1. 10.1. Building and Pushing Container Images

2. 10.2. Generating Kubernetes Resources

3. 10.3. Generating Kubernetes Resources with Health
Checks

4. 10.4. Deploying Services on Kubernetes

5. 10.5. Deploying Services on OpenShift

6. 10.6. Building and Deploying a Container Image
Automatically

7. 10.7. Configuring an Application from Kubernetes

8. 10.8. Configuring an Application from Kubernetes
with Config Extension

9. 10.9. Interacting with a Kubernetes Cluster
Programmatically

10. 10.10. Testing Kubernetes Client Interactions

11. 10.11. Implementing a Kubernetes Operator

12. 10.12. Deploying and Managing Serverless
Workloads with Knative

13. 11. Authentication and Authorization

1. Quarkus Security Basics

file:///C:/Users/MONK/AppData/Local/Temp/calibre_pcb6wnnm/duqwtp2x_pdf_out/OEBPS/Images/ch10.html#building-and-pushing-container-images

2. 11.1. Authentication and Authorization with Elytron
Properties File Config

3. 11.2. Authentication and Authorization with Elytron
Security JDBC Config

4. 11.3. Authorization with MicroProfile JWT

5. 11.4. Authorization and Authentication with OpenId
Connect

6. 11.5. Protecting Web Resources with OpenId Connect

14. 12. Application Secrets Management

1. 12.1. Storing Data Using Kubernetes Secrets

2. 12.2. Store Configuration Secrets Securely with Vault

3. 12.3. Cryptography as a Service

4. 12.4. Generate Database Password as Secret

5. 12.5. Authenticating Services Using Vault Kubernetes
Auth

15. 13. Quarkus REST Clients

1. 13.1. Using the JAX-RS Web Client

2. 13.2. Using the MicroProfile REST Client

3. 13.3. Implementing a CRUD Client

4. 13.4. Manipulating Headers

5. 13.5. Using REST Client for Multipart Messages

6. 13.6. Using REST Client to Configure SSL

16. 14. Developing Quarkus Applications Using Spring APIs

1. 14.1. Using Spring Dependency Injection

2. 14.2. Using Spring Web

3. 14.3. Using Spring Data JPA

4. 14.4. Using Spring Security

5. 14.5. Using Spring Boot Properties

17. 15. Working with a Reactive Programming Model

1. 15.1. Creating Async HTTP Endpoints

2. 15.2. Streaming Data Asynchronously

3. 15.3. Using Messaging to Decouple Components

4. 15.4. Reacting to Apache Kafka Messages

5. 15.5. Sending Messages to Apache Kafka

6. 15.6. Marshalling POJOs into/out of Kafka

7. 15.7. Using Kafka Streams API

8. 15.8. Using AMQP with Quarkus

9. 15.9. Using MQTT

10. 15.10. Query Using Reactive SQL

11. 15.11. Insert Using Reactive SQL Client

12. 15.12. Using the Reactive MongoDB Client

13. 15.13. Using the Reactive Neo4j Client

18. 16. Additional Quarkus Features

1. 16.1. Creating Templates with the Qute Template
Engine

2. 16.2. Rending HTML Using Qute

3. 16.3. Changing the Location of Qute Templates

4. 16.4. Extending Qute Data Classes

5. 16.5. Describing Endpoints with OpenAPI

6. 16.6. Customizing OpenAPI Spec

7. 16.7. Sending Email Synchronously

8. 16.8. Sending Email Reactively

9. 16.9. Creating Scheduled Jobs

10. 16.10. Using Application Data Caching

19. Minikube

20. Keycloak

21. Knative

22. Index

Quarkus Cookbook
Kubernetes-Optimized Java Solutions

Alex Soto Bueno and Jason Porter

Quarkus Cookbook

by Alex Soto Bueno and Jason Porter

Copyright © 2020 Alex Soto Bueno and Jason Porter. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade

Development Editor: Jeff Bleiel

Production Editor: Daniel Elfanbaum

Copyeditor: Piper Editorial

Proofreader: Amanda Kersey

Indexer: Potomac Indexing, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

http://oreilly.com/

Illustrator: Rebecca Demarest

July 2020: First Edition

Revision History for the First Edition

2020-07-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492062653
for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Quarkus Cookbook, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and
do not represent the publisher’s views. While the publisher and
the authors have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples
or other technology this work contains or describes is subject
to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

978-1-492-06265-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492062653

Foreword

Red Hat, and JBoss before it, have been at the forefront of
helping to shape the evolution of enterprise Java since the
early 2000s. With an emphasis on open source and growing
communities, these two companies have collaborated with
other vendors, consultants, individuals, and standards
organizations to ensure Java and some of its most popular
frameworks have been developed to address new
technological waves and to keep Java one of the most popular
programming languages around. As a result, you can find Java
being used in areas as diverse as IoT applications, web
services, health care, and financial services. Yet when the
cloud came along it presented some problems that traditional
Java frameworks and even the Java Virtual Machine struggled
to match.

Red Hat was the first vendor to marry a Java Enterprise Edition
application server with the cloud through OpenShift. It
continued this trend with all of its Java portfolio of projects and
products. However, when the world moved to Linux Containers
and then to Kubernetes, the entire application development
paradigm for all programming languages moved toward
immutability. Java has always been about enabling dynamic
applications, and the frameworks built over many years take
advantage of that aspect. Addressing this problem space and
ensuring that Java remains a viable option for cloud developers
requires a change of mindset, new tools, and new frameworks.

When we started to work on Quarkus in early 2018, the team
had carte blanche to go back to the drawing board and
consider all options. Working with various groups, including the
Red Hat OpenJDK team, and seeing the opportunity that
GraalVM represented for creating immutable native images
from Java, resulted in Quarkus. In the intervening years,
Quarkus has taken the Java community by storm and has
grown faster and become more popular than we could have
imagined back then. We firmly believe that it represents a view
of the future for Enterprise Java in the Kubernetes clouds.
We’ve re-architected many of the most popular Java
frameworks and have written others from scratch, all with an
eye toward ensuring that Quarkus is the preeminent
Kubernetes-native approach for Java developers, including for
new areas such as Serverless and Knative.

The authors of this book have been actively involved with
Quarkus and have been part of the team for quite a while. They
have insights into developing applications with Quarkus that
few others have today. They’ve written this book to take
advantage of their experiences and to help the reader build
Quarkus applications and get Developer Joy! Whether you’re
new to Quarkus or already familiar with it, you will find this
book to be exactly what you need. It covers a lot of ground,
including taking you through the following: basic Quarkus
applications; testing those applications; adding advanced
concepts from Eclipse MicroProfile; reactive programming,
which is a core part of Quarkus and not just an afterthought;

how to build with Spring; and more. This is a great book to add
to your developer library and use to increase your knowledge
and skills. You’ll enjoy working your way through it and will
hopefully find yourself wanting to learn more and join the
growing Quarkus community. Enjoy! Onward!

Dr. Mark Little
VP, Engineering, JBoss CTO

Preface

We’re excited to have you with us on this journey of learning
and using Quarkus! Unlike traditional Java frameworks, which
can be big, cumbersome, heavy-weight, and take months to
learn, Quarkus builds on knowledge you already have! It uses
JPA, JAX-RS, Eclipse Vert.x, Eclipse MicroProfile, and CDI,
just to name a few technologies you’re already familiar with.
Quarkus then takes your knowledge and combines it into a
compact, easy-to-deploy, fully Kubernetes-optimized container
targeting either OpenJDK Hotspot or GraalVM. This allows you
to pack your Kubernetes cluster as tightly as possible, making
use of every resource on the machine as your application
scales to meet demand. Regardless of where you are on your
migration to Kubernetes, you’ll find something useful with
Quarkus, and this book will give you the tools and resources
you need to succeed.

Who Should Read This Book
Obviously, we want everyone to read this book! However, we
have made some assumptions about the reader:

You are already familiar with Java and application
development within that space.

You understand traditional software development practices.

You regularly deploy services into a cluster of machines or
into the cloud.

Why We Wrote This Book
Quarkus is a relatively new framework in a new space (native
Java and GraalVM). We wanted to dive into some more
examples and how-to sections than what you will find on the
internet. Also, we wanted to give you as much substance with
this book as possible. There’s no large application to
understand or remember. All the examples in this book are self-
contained and ready to be used. We hope you keep this as a
reference for all your Quarkus development!

Navigating This Book
The organization of the chapters is fairly loose, but it basically
flows as follows:

Chapters 1 and 2 introduce you to Quarkus and get your
basic project set up.

Chapters 3 through 6 introduce the bread-and-butter portion
of Quarkus: RESTful applications built using concepts from
CDI and Eclipse MicroProfile. These chapters also show
you how to package your application.

Chapters 7 through 14 relate to harder, though just as
important, concepts such as fault tolerance, persistence,
security, and interaction with other services. You will also
learn about additional integrations Quarkus has with
Kubernetes.

Chapters 15 and 16 talk about reactive programming using
Quarkus and some additional functionality of the framework
such as templating, scheduling, and OpenAPI.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

IMPORTANT
This element indicates an important item to remember.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is
available for download at https://oreil.ly/quarkus-cookbook-
code.

If you have a technical question or a problem using the code
examples, please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several

https://oreil.ly/quarkus-cookbook-code
mailto:bookquestions@oreilly.com

chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Quarkus Cookbook by Alex Soto Bueno
and Jason Porter (O’Reilly). Copyright 2020 Alex Soto Bueno
and Jason Porter, 978-1-492-06265-3.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our

mailto:permissions@oreilly.com
http://oreilly.com/

online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/quarkus-cookbook.

Email bookquestions@oreilly.com to comment or ask technical
questions about this book.

For news and information about our books and courses, visit
http://oreilly.com.

http://oreilly.com/
https://oreil.ly/quarkus-cookbook
mailto:bookquestions@oreilly.com
http://oreilly.com/

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Jason Porter: What do you do during quarantine? You write a
book, of course! Thank you to all those brave people on the
front lines of health care. I’d like to thank the team behind both
Quarkus and GraalVM for giving us an amazing tool and fun
development experience. I’ve been developing software for
over 20 years, and Quarkus brings back the enjoyment I had
back when first learning about software development. A great
thanks goes out to Georgios Andrianakis and Daniel Hinojosa
for providing us with a technical review of the book! Your work
has helped us create something that is accessible, useful, and
hopefully enjoyable to those learning Quarkus. I would also like
to thank Red Hat for allowing me the opportunity to write the
book. Alex, thank you for asking me once again to work with
you on a book! Lastly, thank you to my five children (Kaili,
Emily, Zackary, Nicolas, and Rebecca) and wife, Tessie, for
putting up with me writing another book, despite me saying I
wouldn’t do it again. Love you all!

Alex Soto Bueno: This book was finished during the COVID-
19 pandemic, so first of all I’d like to thank all the health care
workers who are taking care of all us. I would also like to thank

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

the Red Hat Developers team, specially Burr Sutter, for
allowing me the opportunity to write the book. Jason, as
always, it was a pleasure to write a book with you. Lastly, thank
you to my parents; my wife, Jessica; and my daughters, Ada
and Alexandra; for their patience while I was writing the book,
because there is no one without two. Thank you very much for
everything.

Chapter 1. Quarkus Overview

Kubernetes is becoming the de facto platform to deploy our
enterprise applications nowadays. The movement to containers
and Kubernetes has led to changes in the way we code,
deploy, and maintain our Java-based applications. You can
easily get yourself in trouble if you containerize and run a Java
application without taking proper measures. Containers in Pods
(a Kubernetes term) are the basic units in Kubernetes, so it is
very important to have a good understanding of how to
containerize a Java-based application correctly to avoid pitfalls,
wasted work, and extra hours of frustration.

Quarkus is a cloud-native framework with built-in Kubernetes
integration. It is an open source stack, released under the
Apache License 2.0, that helps you create Kubernetes-native
applications tailored for GraalVM and OpenJDK HotSpot. It is
built on top of popular libraries and technologies such as
Hibernate, Eclipse MicroProfile, Kubernetes, Apache Camel,
and Eclipse Vert.x.

The benefits of Quarkus include easy integration with Docker
and Kubernetes, quick startup time, low resident set size (RSS)
memory, and increased developer productivity. In this
introductory chapter, we’ll take a quick look Quarkus—what it
is, the problems it solves, how it integrates with Kubernetes,

why developers enjoy working with it, and some of its most
noteworthy features.

Developer-Friendly
Quarkus allows you, the Java developer, to be more
productive, and it helps you stay relevant in the fast-paced
area of microservices and cloud-based applications.

Quarkus will enable your applications to scale better, to more
tightly fill up a Kubernetes cluster utilizing fewer resources
overall, and to make use of decades of community work in
open source Java.

To start developing with Quarkus, you won’t need to learn a
new technology. If you’re already familiar with dependency
injection, JAX-RS, Hibernate, and Eclipse MicroProfile
concepts, there’s nothing new here. All the knowledge you
have built up over the course of your career will map directly
into Quarkus. Whereas it might take weeks to learn other
frameworks, you can get started with Quarkus and be
productive in a matter of days or even hours.

Quarkus is designed to be an optimized choice for the next
generation of application development and deployment. It
supports you through the entire application life cycle from
application scaffolding and live reloading in dev mode (a save-
and-refresh workflow), all the way through to deployment in a
cloud-based Kubernetes cluster. As a developer, Quarkus will

keep you productive and solving problems, instead of shaving
yaks.

Integration with Kubernetes
We said that Quarkus is meant to run within Kubernetes. That
sounds great, but we know lots of things can run within
Kubernetes. Throw your application in a Docker container, and
it will run on Kubernetes. While this is true, there are a number
of things that traditionally have to be done to properly tune,
size, and configure your application to run efficiently within
Kubernetes. You also have to pull out your text editor of choice
and craft multiple YAML files—and let’s be honest, no one
really enjoys doing all that.

Quarkus eliminates that work by having a number of
enhancements for deploying to and using Kubernetes with your
application. When you bootstrap a Quarkus application, it
comes with some Dockerfile files used to generate the Docker
containers for your application. That is a great first step. These
files are optimized for running with the OpenJDK JVM or
running as native executables with GraalVM. They contain
what is necessary to run the application, thereby eliminating as
much duplication and unnecessary bloat from the container
image as possible.

Next, when you use the Kubernetes extensions, Quarkus can
generate the resources (YAML files) for a vanilla Kubernetes or
OpenShift deployment! No more having to wade through YAML

files and make sure you have the right indentation. After all,
you’d prefer to be writing code than looking for that one line of
YAML that isn’t formatted correctly. Quarkus can also push
your image to a registry before deploying to the Kubernetes
cluster. All of these application images can be further enhanced
and customized via the Quarkus application configuration,
which you’ll learn about in Chapter 4. For example, in Quarkus
1.4 and later, ConfigMap and Secrets can be read from the API
server—you don’t need to mount any of the files in the Pod!

Memory and First Response Time
Quarkus is known as the “supersonic, subatomic” Java
framework. That may set off marketing alarms with developers,
but when you break it down and understand what Quarkus is
doing, you’ll see that you really are getting a very small, quick,
and productive execution. With Quarkus, you can deploy a
native application optimized to be run on Kubernetes. For
example, let’s say you want to deploy a native application,
optimized to be run on Kubernetes, where the container image
is around 200 MB or smaller. In Quarkus, this application will
start up and be ready to accept requests within a fraction of a
second, and it will use less than 50 MB of memory.

When deploying to a Kubernetes cluster, you want to pack in
as many instances of your application as possible so you are
able to scale to meet unexpected load yet still utilize as many
of the resources as possible. When scaling up you want your
new application instances up and running quickly—this is

where a native executable shines. Quarkus does as much pre-
boot of your application and the frameworks it uses as possible
during the native executable build process. This helps your
application start quickly and be ready to service requests
without having to do additional class loading, runtime scanning,
or other warm-up the the JVM typically does.

Naturally, available memory is a finite resource. Understanding
exactly how much memory is being used by your application,
and not starving the JVM while trying to keep that number low,
is key to deployment density. Quarkus succeeds in helping you
achieve that with the native executable, which is small and
memory efficient.

A Basic Quarkus Workflow
While reading this book and going through the recipes, you’ll
be introduced to the Quarkus ecosystem. You’ll learn about
extensions, integrations, and design decisions. You will also
see the basic workflow used throughout to help you be
productive. In a nutshell, this workflow is as follows:

1. Scaffold

2. Launch dev mode

3. Code

4. Test

5. Package

6. Deploy

Scaffolding your application, or adding an extension to an
existing start, gives you a solid foundation to build upon. You’ll
become familiar with this in Chapter 2. Following scaffolding,
you will be asked to run your application in dev mode, which is
also introduced in Chapter 2. You will then learn about typical
tasks for an application: creating RESTful services, completing
the basic programming model, and performing application
configuration. Dev mode will give you near instant feedback
without the bothersome dance of compile, package, and deploy
that you’ve become familiar with. In Chapter 5 you’ll see how to
test a Quarkus application that targets both the JVM and native
executable, giving you reassurance that your application runs
correctly and meets your standards. Creating the final
deliverable is covered in Chapter 6, as is learning how to
package your application for your particular deployment
strategy. The last piece of that workflow, deployment, is
covered in Chapter 10. Exploring further, you’ll learn how to
make your application more fault resistant, how to interact with
various persistence engines, and how to communicate with
external services. We will also explain additional integrations to
aid you in leveraging existing knowledge from other libraries
and programming paradigms. We’ll walk you through setting up
the Kubernetes optimizations that are necessary for your
application, building Kubernetes resources, and pushing it all
live.

Chapter 2. Scaffolding

In this chapter, you’ll learn about creating the project structure
of Quarkus. Quarkus comes with some different ways to
scaffold a project.

You’ll learn how to do the following:

Scaffold a project in different ways, from Maven to VSCode
IDE

Improve developer experience with the live reloading

Serve static resources with Quarkus

2.1 Scaffolding a Quarkus Project with Maven

Problem
You want to start quickly in Quarkus by generating a simple
project.

Solution
Use the Quarkus Maven plug-in.

Discussion

Using the Quarkus Maven plug-in creates a simple project that
is ready to be deployed and contains the following:

A pom.xml file with minimal Quarkus dependencies

A simple JAX-RS resource

A test for the JAX-RS resource

A native test

Dockerfiles to generate a container

An empty configuration file

We assume you’ve already installed Apache Maven. Open a
terminal and execute the following command:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=getting-started \

 -DclassName="org.acme.quickstart.GreetingResource" \

 -Dpath="/hello"

The project has this structure:

├── mvnw

├── mvnw.cmd

├── pom.xml

└── src

 ├── main

 │ ├── docker

 │ │ ├── Dockerfile.jvm

 │ │ └── Dockerfile.native

 │ ├── java

 │ │ └── org

http://maven.apache.org/

 │ │ └── acme

 │ │ └── quickstart

 │ │ └── GreetingResource.java

 │ └── resources

 │ ├── META-INF

 │ │ └── resources

 │ │ └── index.html

 │ └── application.properties

 └── test

 └── java

 └── org

 └── acme

 └── quickstart

 ├── GreetingResourceTest.java

 └── NativeGreetingResourceIT.java

Dockerfiles

JAX-RS resource

Static resource

Configuration file

Auto-generated tests for JAX-RS resource

2.2 Scaffolding a Quarkus Project with Gradle

Problem
You want to get started quickly in Quarkus by generating a
simple project, and you are a Gradle user.

Solution
Use the Quarkus Maven plug-in (yes, the Maven plug-in).

Discussion
You can scaffold a simple Quarkus project by using the
Quarkus Maven plug-in; you just set the output as a Gradle
project. The resulting project is ready to be deployed and
contains the following:

A build.gradle file with minimal Quarkus dependencies

A simple JAX-RS resource

A test for the JAX-RS resource

A native test

Dockerfiles to generate a container

An empty configuration file

We assume you’ve already installed Apache Maven. Open a
terminal and execute the following command:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \

 -DprojectGroupId=org.acme \

 -DprojectArtifactId=getting-started \

 -DclassName="org.acme.quickstart.GreetingResource" \

 -Dpath="/hello" \

 -DbuildTool=gradle

http://maven.apache.org/

NOTE
Unlike in Apache Maven, this command will create the structure
in the current directory.

The resulting project has the following structure:

.

├── README.md

├── build.gradle

├── gradle

│ └── wrapper

│ ├── gradle-wrapper.jar

│ └── gradle-wrapper.properties

├── gradle.properties

├── gradlew

├── gradlew.bat

├── settings.gradle

└── src

 ├── main

 │ ├── docker

 │ │ ├── Dockerfile.jvm

 │ │ └── Dockerfile.native

 │ ├── java

 │ │ └── org

 │ │ └── acme

 │ │ └── quickstart

 │ │ └── GreetingResource.java

 │ └── resources

 │ ├── META-INF

 │ │ └── resources

 │ │ └── index.html

 │ └── application.properties

 ├── native-test

 │ └── java

 │ └── org

 │ └── acme

 │ └── quickstart

 │ └── NativeGreetingResourceIT.java

 └── test

 └── java

 └── org

 └── acme

 └── quickstart

 └── GreetingResourceTest.java

2.3 Scaffolding a Quarkus Project with the
Quarkus Start Coding Website

Problem
You want to start quickly in Quarkus by generating a simple
project without having to install Maven or Gradle.

Solution
Use the Quarkus Start Coding website by visiting
https://code.quarkus.io to generate a simple Quarkus project.

Discussion
At the time of writing, the home page looks like what’s shown in
Figure 2-1.

https://code.quarkus.io/

Figure 2-1. https://code.quarkus.io homepage

https://code.quarkus.io/

When the page is loaded, push the “Generate your application”
button to download a ZIP file with the generated project inside.

Open a terminal and uncompress the generated project:

unzip code-with-quarkus.zip

cd code-with-quarkus/

The scaffolded project is the same as the one you generated in
Recipe 2.1, with the following elements:

A pom.xml file with minimal Quarkus dependencies

A simple JAX-RS resource

A test for the JAX-RS resource

A native test

Dockerfiles to generate a container

An empty configuration file

See Also
We have not yet discussed Quarkus extensions, but notice that
you can generate a project with any of the Quarkus extensions
registered. You’ll see more about extensions in the next
sections.

Extensions are added either by selecting them in the checkbox
that contains every extension in the page or by using the
search box.

2.4 Scaffolding a Quarkus Project with Visual
Studio Code

Problem
You want to start quickly in Quarkus by generating a simple
project in Visual Studio (VS) Code.

Solution
Use the Quarkus VS Code extension.

Discussion
A Quarkus extension is developed for Visual Studio Code IDE
to integrate some of the features of Quarkus into the IDE. The
following are some of these features:

Commands to scaffold a project

A command to add extensions

Auto-completion for configuration file (properties and YAML
formats) Snippets

To install the plug-in, open VS Code, and push the
“Extensions” button, as seen in Figure 2-2.

Figure 2-2. Clicking on the extension button in VS Code allows you to
install the Quarkus Extension

Then search for quarkus and select the Quarkus Tools for
Visual Studio Code by Red Hat. Your search should populate
similar to Figure 2-3.

Figure 2-3. The Quarkus extension is available for free from the VS Code
marketplace

After the installation process, restart the IDE, and you can start
using the extensions.

To generate a new Quarkus project, open the Command
Palette and select “Generate a Quarkus Project.” The available
options at the time of writing are shown in Figure 2-4.

Figure 2-4. Generate a new Quarkus project from the Command Palette

The next step, shown in Figure 2-5, will ask you about which
build tool you will be using. There are also some questions
about groupId, artifactId, and so on.

Figure 2-5. Selecting your building tool

Extensions can be added by using the Add Extension
command from the console, as shown in Figure 2-6.

Figure 2-6. The Add extension command

And select any Quarkus extension that you might want to add
to the project. A sample of available extensions can been seen
in Figure 2-7.

Figure 2-7. You can see a list of available extensions for your application
that could be installed

In the following figures, you can see some of the features that
are provided by the Quarkus extension.

Figure 2-8 shows the auto-completion of configuration
properties that help you correctly configure the application.

Figure 2-8. Auto-completion and type information of configuration property
keys

Figure 2-9 shows the description of a configuration property
when you mouse over it.

Figure 2-9. Hovering over a configuration property gives you more
information about that property

Figure 2-10 demonstrates how to detect unused properties in
your application.

Figure 2-10. Detect unused configuration properties

Figure 2-11 shows the URL representing the endpoint. If you
click it, a new browser window is opened, pointing to the given
URL.

Figure 2-11. A clickable URL endpoint is generated by the VS Code
extension for each endpoint method

See Also
The Quarkus extension is available for several IDEs:

Visual Studio Code

Eclipse

IntelliJ

2.5 Live Reloading with Dev Mode

https://oreil.ly/rL1Md
https://oreil.ly/3Ais_
https://oreil.ly/Whvdj

Problem
You want to review the result of a change in the project without
having to repackage and redeploy the full application.

Solution
Use development mode, which enables hot deployment with
background compilation, which means that when you modify
your Java files and/or your resource files and refresh your
browser, these changes will automatically take effect.

NOTE
Each of the scaffolding methods default to Java 11. You will need
a Java 11 VM, or you will need to modify the project to use a
different version of the JVM.

Discussion
To start an application in development mode, run the
quarkus:dev command in the root of your project. For this
example, you are using the project created in Recipe 2.1:

./mvnw compile quarkus:dev

[INFO] Scanning for projects...

....

[INFO] --- quarkus-maven-plugin:1.4.1.Final:dev (default-cli) @

 getting-started ---

Listening for transport dt_socket at address: 5005

INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

 completed in 946ms

INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in 1.445s.

 Listening on: http://[::]:8080

INFO [io.quarkus] (main) Installed features: [cdi, resteasy]

When the application is up and running, open a new terminal
window and run the following command:

curl http://localhost:8080/hello

hello

Now without stopping the quarkus:dev mode, do this next
modification in org.acme.quickstart.GreetingResource.java:

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return "hola";

}

Then run this again:

curl http://localhost:8080/hello

hola

It is really important to note that you’ve done a change in your
source code and that without any recompilation, repackaging,
or redeployment, the change has been automatically populated

in your running instance out of the box—without any special
setup.

Now, instead of write code → compile → deploy → refresh →
repeat, you are simplifying your development workflow to write
code → refresh → repeat.

Development mode detects changes for Java files, application
configs, and static resources.

To stop development mode, go to quarkus:dev terminal and
push Ctrl+C.

To run development mode in Gradle projects, you can run a
quarkusDev task:

./gradlew quarkusDev

...

2.6 Serving Static Resources

Problem
You want to serve static resources such as HTML, JavaScript,
CSS, and images.

Solution
In Quarkus, any resource copied into
src/main/resources/META-INF/resources is served from the

root path.

In some situations, you might want to serve static resources to
your callers. These could be static downloadable content or an
HTML page.

By default, Quarkus comes with an index.html file as a static
resource.

Start the application:

./mvnw compile quarkus:dev

Open a browser and enter the following URL:
http://localhost:8080/index.html.

And you’ll see something like what’s shown in Figure 2-12.

http://localhost:8080/index.html

Figure 2-12. Quarkus creates a placeholder index for your application with
basic information and next steps to help you after scaffolding

TIP
Live reloading also works with static resources.

Chapter 3. Developing
RESTful Services

Quarkus integrates with RESTEasy, a JAX-RS implementation
to define REST APIs. In this chapter, you’ll learn how to
develop RESTful web services in Quarkus. We’ll cover the
following topics:

How to use JAX-RS for creating CRUD services

How to enable CORS for requesting resources from other
domains

How to implement reactive routes

How to implement filters to manipulate requests and
responses

3.1 Creating a Simple REST API Endpoint

Problem
You want to create a REST API endpoint with CRUD
operations.

Solution

Use the JAX-RS GreetingResource resource generated
previously and fill it with JAX-RS annotations.

JAX-RS is the default framework used in Quarkus to define
REST endpoints. All of the JAX-RS annotations are already
correctly on your classpath. You will want to use the HTTP verb
annotations (@GET, @POST, @PUT, @DELETE) to declare the HTTP
verb(s) that the endpoint methods will listen to. Of course, you
will need the @Path annotation to define the URI relative to the
rest of the application for your endpoint.

Open org.acme.quickstart.GreetingResource.java:

package org.acme.quickstart;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/hello")

public class GreetingResource {

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello";

 }

}

Identifies the URI path of the current resource

Responds to HTTP GET requests

Defines the media type(s) that are returned

Returns plain text

Let’s create the remaining methods for creating, updating, and
deleting a message:

@POST

@Consumes(MediaType.TEXT_PLAIN)

public void create(String message) {

 System.out.println("Create");

}

@PUT

@Consumes(MediaType.TEXT_PLAIN)

@Produces(MediaType.TEXT_PLAIN)

public String update(String message) {

 System.out.println("Update");

 return message;

}

@DELETE

public void delete() {

 System.out.println("Delete");

}

Responds to HTTP POST requests

Defines the media type(s) that are accepted

Body content of the request

Responds to HTTP PUT requests

Responds to HTTP DELETE requests

The following are valid HTTP methods: @GET, @POST, @PUT,
@DELETE, @PATCH, @HEAD, and @OPTIONS.

3.2 Extracting Request Parameters

Problem
You want to extract request parameters using JAX-RS.

Solution

Use some of the built-in annotations provided by JAX-RS
specification.

Open the org.acme.quickstart.GreetingResource.java class
and change the hello method with the request parameters to
look like the following extract:

public static enum Order {

 desc, asc;

}

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello(

 @Context UriInfo uriInfo,

 @QueryParam("order") Order order,

 @NotBlank @HeaderParam("authorization") String

authorization

) {

 return String.format("URI: %s - Order %s - Authorization:

%s",

 uriInfo.getAbsolutePath(), order,

authorization);

}

Gets UriInfo of the request; UriInfo is part of JAX-RS and
allows you to obtain application and request URI
information

Gets query parameter named order as Enum

Gets header parameter named authorization integrated
with bean validation

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the GET method:

./mvnw clean compile quarkus:dev

curl -X GET "http://localhost:8080/hello?order=asc" \

 -H "accept: text/plain" -H "authorization: XYZ"

URI: http://localhost:8080/hello - Order asc - Authorization:

XYZ

curl -X GET "http://localhost:8080/hello?order=asc" \

 -H "accept: text/plain" -v

HTTP/1.1 400 Bad Request

Other request parameters can be extracted using annotations
such as form parameters (@FormParam), matrix parameters
(@MatrixParam), or cookie values (@CookieParam). Also, using
the @Context annotation, you can inject other elements related
to JAX-RS, such as javax.ws.rs.core.SecurityContext,
javax.ws.rs.sse.SseEventSink, or javax.ws.rs.sse.Sse.

Discussion
In Recipe 3.1, you saw how to create REST API endpoints
using JAX-RS, but you usually need to extract more
information from a request rather than just the body content.

One of the important things that you need to take into
consideration when using Quarkus and JAX-RS is that, under

the covers, Quarkus uses RESTEasy working with Vert.x
directly by default, without using anything related to the
Servlet specification.

Generally speaking, everything you might need for developing
REST API endpoints is well supported, and Quarkus offers
alternatives when you need to implement custom Servlet
filters or get the HTTP request directly into the code.

But, if it is a requirement, you can configure Quarkus to use
RESTEasy while working with the Servlet specification instead
of Vert.x by adding the quarkus-undertow extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-undertow"

./gradlew addExtension --extensions="quarkus-undertow"

See Also
To learn more about JAX-RS, visit the following websites:

Eclipse Foundation: Jakarta RESTful Web Services

RESTEasy

3.3 Using Semantic HTTP Response Status
Codes

Problem

https://oreil.ly/Tgn5d
https://oreil.ly/WpJ3x

You want to use HTTP response status codes to correctly
reflect the result of a request.

Solution
The JAX-RS specification uses the
javax.ws.rs.core.Response interface to return the correct
HTTP response status code as well as to set any other
required information like response content, cookies, or
headers:

package org.acme.quickstart;

import javax.ws.rs.Consumes;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import javax.ws.rs.core.UriBuilder;

@Path("/developer")

public class DeveloperResource {

 @POST

 @Produces(MediaType.APPLICATION_JSON)

 @Consumes(MediaType.APPLICATION_JSON)

 public Response createDeveloper(Developer developer) {

 developer.persist();

 return Response.created(

 UriBuilder

 .fromResource(DeveloperResource.class)

 .path(Long.toString(developer.getId()))

 .build()

)

 .entity(developer)

 .build();

 }

 public static class Developer {

 static long counter = 1;

 private long id;

 private String name;

 public long getId() {

 return id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

 public void persist() {

 this.id = counter++;

 }

 }

}

Sets response status code as 201 created with the
Location header as the URI

Sets path from the resource class

Sets the developer ID in the Location header

Sets the created developer as response content

Builds the Response object

NOTE
You will need the quarkus-resteasy-jsonb or quarkus-resteasy-
jackson extension in your project if you are returning JSON from
your endpoints.

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the GET method:

./mvnw clean compile quarkus:dev

curl -d '{"name":"Ada"}' -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 201 Created

< Content-Length: 21

< Content-Type: application/json

< Location: http://localhost:8080/developer/1

<

{"id":1,"name":"Ada"}

Notice that the Location header contains a valid URI to get
access to the created resource.

Discussion

When defining a RESTful Web API, it is really important to
follow some conventions that are provided by the underlying
technology that is used; for RESTful web services, it is the
HTTP layer.

Another critical part of defining your API is using the correct
response status codes, which are sent back to the client to
indicate whether the request has been completed. There are
five classes of status codes:

Informational responses (100–199)

Successful responses (200–299)

Redirects (300–399)

Client errors (400–499)

Server errors (500–599)

By default, Quarkus tries to offer out-of-the-box responses with
the correct HTTP status codes. For example, it offers a 400
Bad Request in case of constraint violations and a 500 Internal
Server Error in the case of server exceptions. But there is one
use case that it is not covered by default: the creation of a
resource in which an HTTP 201 Created status response code
should be sent back to the client with the new resource in the
body of the message and the URL of the new resource set in
the Location header.

See Also

Full HTTP response status codes are summarized at the
following website:

MDN Web Docs: HTTP response status codes

3.4 Binding HTTP Methods

Problem
You want to bind methods to HTTP verbs that do not have a
dedicated annotation provided by the JAX-RS specification.

Solution
Use javax.ws.rs.HttpMethod annotation to create your HTTP
method annotation.

JAX-RS specification provides seven annotations to specify the
HTTP method that a method should respond to. These
annotations are @GET, @POST, @PUT, @DELETE, @PATCH, @HEAD, and
@OPTIONS. But there are many more HTTP methods, and JAX-
RS provides javax.ws.rs.HttpMethod annotation to support
these other methods.

The first thing to do is create a meta-annotation. We’re going to
use the LOCK verb, defined at RFC-4918. The LOCK verb locks
access or refreshes an existing lock to a resource. Our
annotation will be named LOCK, and it is annotated with
@javax.ws.rs.HttpMethod:

https://oreil.ly/Gq02d
https://tools.ietf.org/html/rfc4918#section-9.10

package org.acme.quickstart;

import java.lang.annotation.Documented;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import javax.ws.rs.HttpMethod;

@Target({ElementType.METHOD})

@Retention(RetentionPolicy.RUNTIME)

@HttpMethod("LOCK")

@Documented

public @interface LOCK {

}

Binds the LOCK HTTP method to the annotation

Finally, use this annotation in a resource method to bind it to
the LOCK HTTP verb.

Open the org.acme.quickstart.GreetingResource.java class
and create a LOCK method:

@LOCK

@Produces(MediaType.TEXT_PLAIN)

@Path("{id}")

public String lockResource(@PathParam("id") long id) {

 return id + " locked";

}

Bind to LOCK HTTP method

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the LOCK method:

./mvnw clean compile quarkus:dev

curl -X LOCK http://localhost:8080/hello/1

1 locked

See Also
A complete list of HTTP methods can be found at the following
GitHub page:

KNOW YOUR HTTP methods WELL

3.5 Enabling Cross-Origin Resource Sharing
(CORS)

Problem
You want to request restricted resources from another domain.

Solution
Use quarkus.http.cors configuration property to enable
CORS.

Discussion
Cross-origin resource sharing (CORS) is a mechanism that
allows restricted resources to be requested from another

https://oreil.ly/DC9Wi

domain outside the domain from which the first resource was
served. Quarkus provides a set of configuration properties to
configure CORS.

To enable CORS in Quarkus you need to set the
quarkus.http.cors configuration property to true in the
application.properties file.

An example of CORS configuration could look like the
following:

quarkus.http.cors=true

quarkus.http.cors.origins=http://example.com

quarkus.http.cors.methods=GET,PUT,POST,DELETE

quarkus.http.cors.headers=accept,authorization,content-type,x-

requested-with

You can view the output and headers using curl:

curl -d '{"name":"Ada"}' -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer \

 -H "Origin: http://example.com" --verbose

The output should show the access-control-allow-origin
header:

upload completely sent off: 14 out of 14 bytes

* Mark bundle as not supporting multiuse

< HTTP/1.1 201 Created

< access-control-allow-origin: http://example.com

< access-control-allow-credentials: true

< Content-Length: 21

< Content-Type: application/json

< Location: http://localhost:8080/developer/5

See Also
You can find more information about CORS at the following
Wikipedia page:

Cross-origin resource sharing

3.6 Using Reactive Routes

Problem
You want to implement HTTP endpoints using reactive routes.

Solution
Use the Vert.x io.vertx.ext.web.Router router instance or the
i o . q u a r k u s . v e r t x . w e b . R o u t e annotation.

There are two ways to use reactive routes within Quarkus. The
first way is to register routes directly using the
io.vertx.ext.web.Router class.

To retrieve the Router instance at startup, you need to observe
the creation of the object using Contexts and Dependency
Injection (CDI).

Create a new class named
org.acme.quickstart.ApplicationRoutes.java:

https://oreil.ly/iSiqh

package org.acme.quickstart;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.event.Observes;

import io.quarkus.vertx.http.runtime.filters.Filters;

import io.quarkus.vertx.web.Route;

import io.vertx.core.http.HttpMethod;

import io.vertx.ext.web.Router;

import io.vertx.ext.web.RoutingContext;

@ApplicationScoped

public class ApplicationRoutes {

 public void routes(@Observes Router router) {

 router

 .get("/ok")

 .handler(rc -> rc.response().end("OK from Route"));

 }

}

Instantiates the object into CDI container with application
scope

Provides the Router object to register the routes

Binds the GET HTTP method to /ok

Handles the logic

Imports used later in the example

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the new method:

./mvnw clean compile quarkus:dev

curl http://localhost:8080/ok

OK from Route

The second way to use reactive routes is a declarative
approach with the i o . q u a r k u s . v e r t x . w e b . R o u t e annotation. To
have access to this annotation, you need to add the quarkus-
vertx-web extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-vertx-web"

Then you can annotate methods with @Route. These methods
must be defined within a CDI bean.

Open the org.acme.quickstart.ApplicationRoutes.java class
and define a route:

@Route(path = "/declarativeok", methods = HttpMethod.GET)

public void greetings(RoutingContext routingContext) {

 String name = routingContext.request().getParam("name");

 if (name == null) {

 name = "world";

 }

 routingContext.response().end("OK " + name + " you are

right");

}

Sets the HTTP path and method

RoutingContext to get request information

Gets query param

Handles the logic

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the new method:

./mvnw clean compile quarkus:dev

curl localhost:8080/declarativeok?name=Alex

OK Alex you are right

Discussion
Quarkus HTTP is based on a nonblocking and reactive engine.
Under the covers it is using Vert.x and Netty. When a request is
received, it is managed by event loops that may either rely on a
worker thread, in case of servlet or JAX-RS, or use the I/O
thread, in case of reactive route, to handle the logic of the
invocation.

It is important to note that reactive routes must be either
nonblocking or explicitly declared as blocking; if not, because
of the nature of reactive event looping, you are going to block
the loop, thus preventing further loops from being processed
until the thread unblocks.

Within the same project, you can mix JAX-RS endpoints with
reactive routes without any problem.

See Also
You can learn more about reactive routes in Vert.x on the
following web page:

Basic Vert.x-Web Concepts

3.7 Intercepting HTTP Requests

Problem
You want to intercept HTTP requests to manipulate requests or
responses.

Solution
Sometimes you need to manipulate the request before
reaching the endpoint logic (i.e., security checks) or before the
response is sent back to the caller (i.e., compressing
response). With Quarkus you can intercept HTTP requests by
using either Vert.x Filters or JAX-RS filter interfaces.

Let’s see how to implement a filter using
io.quarkus.vertx.http.runtime.filters.Filters.

To retrieve the Filters instance at startup, you need to
observe the creation of the object using CDI.

Open the org.acme.quickstart.ApplicationRoutes.java class
and add a method named filters:

public void filters(@Observes Filters filters) {

 filters

 .register(

 rc -> {

 rc.response()

https://oreil.ly/kznp9

 .putHeader("V-Header", "Header added by

VertX Filter");

 rc.next();

 },

 10);

}

Provides Filters object to register the filters

Modifies the response

Adds a new header to the response

Continues the filter chain

Sets the order of execution

It is important to note that these filters are applied for servlets,
JAX-RS resources, and reactive routes.

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the new method:

./mvnw clean compile quarkus:dev

echo Reactive-Route

curl localhost:8080/ok -v

< V-Header: Header added by VertX Filter

< content-length: 13

OK from Route

echo JAX-RS

curl -X GET "http://localhost:8080/hello?order=asc" \

 -H "accept: text/plain" -H "authorization: XYZ" -v

< V-Header: Header added by VertX Filter

< content-length: 65

URI: http://localhost:8080/hello - Order asc - Authorization:

XYZ

Notice that both requests (the reactive route and JAX-RS
endpoints) were modified by the registered filter and by adding
a new header.

That said, you can also use the
javax.ws.rs.container.ContainerRequestFilter/
javax.ws.rs.container.ContainerResponseFilter interfaces
to implement a filter.

Create a new class named
org.acme.quickstart.HeaderAdditionContainerResponseFilte

r.java:

package org.acme.quickstart;

import java.io.IOException;

import javax.ws.rs.container.ContainerRequestContext;

import javax.ws.rs.container.ContainerResponseContext;

import javax.ws.rs.container.ContainerResponseFilter;

import javax.ws.rs.ext.Provider;

@Provider

public class HeaderAdditionContainerResponseFilter

 implements ContainerResponseFilter {

 @Override

 public void filter(ContainerRequestContext requestContext,

 ContainerResponseContext responseContext)

 throws IOException {

 responseContext.getHeaders()

 .add("X-Header", "Header added by JAXRS

Filter");

 }

}

Sets this class as an extension interface

Applies changes in response

Adds a new header to the response

This filter is applied only to JAX-RS resources, and not in
reactive routes.

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the new method:

./mvnw clean compile quarkus:dev

echo Reactive-Route

curl localhost:8080/ok -v

< V-Header: Header added by VertX Filter

< content-length: 13

OK from Route

echo JAX-RS

curl -X GET "http://localhost:8080/hello?order=asc" \

 -H "accept: text/plain" -H "authorization: XYZ" -v

< V-Header: Header added by VertX Filter

< Content-Length: 65

< Content-Type: text/plain;charset=UTF-8

< X-Header: Header added by JAXRS Filter

URI: http://localhost:8080/hello - Order asc - Authorization:

XYZ

Discussion
Notice that in the case of the reactive-route endpoint, only the
V-Header header is added, and not the X-Header header.
Meanwhile, in the JAX-RS endpoint, the request is modified by
both filters by adding both HTTP headers.

See Also
To learn more about JAX-RS and Vert.x, you can visit the
following websites:

Eclipse Foundation: Jakarta RESTful web services

Vert.x Documentation

3.8 Secure Connections with SSL

Problem
You want to secure connections so as to prevent an attacker
from stealing sensitive information.

Solution
Enable Quarkus to use SSL to secure connections.

https://oreil.ly/xioAv
https://vertx.io/docs

Securing communication between a client and the application
is important when the information that is going to be
transmitted is sensitive (password, account numbers, health
information, etc.). For this reason, it is very important to protect
the communication between services using SSL.

To secure the communications, two elements must be
provided: a certificate and an associated key file. Both can be
provided individually or in the form of a keystore.

Let’s configure Quarkus to use a keystore that contains an
entry with a certificate:

quarkus.http.ssl-port=8443

quarkus.http.ssl.certificate.key-store-file=keystore.jks

quarkus.http.ssl.certificate.key-store-file-type=jks

quarkus.http.ssl.certificate.key-store-password=changeit

Sets HTTPS port

Type of keystore and location relative to src/main/resources

The password to open the keystore

Start the application and send a request to the HTTPS
endpoint:

./mvnw clean compile quarkus:dev

curl --insecure https://localhost:8443/hello

hello

As the certificate has been self-signed, the --insecure flag is
provided to skip the certificate validation. In an example in
which the certificate is not self-signed, the insecure flag should
not be provided. The flag was used in this example for
simplicity.

IMPORTANT
Providing the password as plain text in the configuration file is a
bad practice. It can be supplied by using an environment variable
QUARKUS_HTTP_SSL_CERTIFICATE_KEY_STORE_PASSWORD, as you
read at the beginning of the book when the MicroProfile Config
spec was introduced.

Discussion
For the busy developer, this is how to generate your own key
cert for Quarkus:

1. Go to src/main/resources.

2. Execute the following command:

keytool -genkey -keyalg RSA -alias selfsigned \

 -keystore keystore.jks -storepass changeit \

 -validity 360 -keysize 2048

See Also

To learn about how to generate certificates, key stores, and
trust stores, see the following web page:

Oracle: Java Platform, Standard Edition Tools Reference:
keytool

https://oreil.ly/mwOSH

Chapter 4. Configuration

In this chapter, you’ll learn the following about setting
configuration parameters:

How to configure a Quarkus service

How to inject configuration parameters in the service

How to apply values depending on the environment

How to correctly configure the logging system

How to create customizations for the configuration system

4.1 Configuring the Application with Custom
Properties

Problem
You want to configure the Quarkus application with custom
properties.

Solution
Quarkus makes use of a number of the Eclipse MicroProfile
specifications. One of those is the Configuration specification;
however, to simplify configuration, Quarkus uses just one file

for all configurations, application.properties, which must be
placed in the root of the classpath.

This file can be used to configure Quarkus properties such as
logging or default path, Quarkus extensions like data source or
Kafka, or custom properties that you define for the application.
You are going to see all of them in the book, but in this recipe,
you’ll see the latter one.

Open the src/main/resources/application.properties file and
add the following property:

greeting.message=Hello World

You can inject the property value defined in
application.properties by using the
org.eclipse.microprofile.config.inject.ConfigProperty

annotation in a field.

Open org.acme.quickstart.GreetingResource.java and inject
greeting.message property value:

@ConfigProperty(name = "greeting.message")

String message;

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return message;

}

Injects the value of greeting.message property

Places fields in package-protected scope

Returns the configured value

TIP
For performance reasons when using GraalVM and reflection, we
encourage you to use protected-package scope on fields that will
be injected at runtime. You can read more about it in the Quarkus
CDI Reference Guide.

In a new terminal window, make a request to /hello to see that
the output message is the configured value in
application.properties:

curl http://localhost:8080/hello

Hello World

If you want to make a configuration field not mandatory and
provide a default value, you can use the defaultValue attribute
of @ConfigProperty annotation.

Open the org.acme.quickstart.GreetingResource.java file
and inject the greeting.upper-case property value:

@ConfigProperty(name = "greeting.upper-case",

 defaultValue = "true")

boolean upperCase;

https://oreil.ly/8e1Sd

@GET

@Path("/optional")

@Produces(MediaType.TEXT_PLAIN)

public String helloOptional() {

 return upperCase ? message.toUpperCase() : message;

}

Sets the default of greeting.upper-case property to true

And in a terminal window, make a request to /hello/optional
to see that the output message is in upper case:

curl http://localhost:8080/hello/optional

HELLO WORLD

Multivalue properties are supported—you need to define only
the field type as one of Arrays, java.util.List or
java.util.Set, depending on your requirements/preference.
The delimiter for the property value is a comma (,) and the
escape character is the backslash (\).

Open the src/main/resources/application.properties file and
add the following property with three values:

greeting.suffix=!!, How are you???

Open org.acme.quickstart.GreetingResource.java and inject
greeting.suffix property values:

@ConfigProperty(name = "greeting.suffix")

List<String> suffixes;

@GET

@Path("/list")

@Produces(MediaType.TEXT_PLAIN)

public String helloList() {

 return message + suffixes.get(1);

}

And in a terminal window make a request to /hello/list to
see that the output message contains the second suffix:

curl http://localhost:8080/hello/list

Hello World How are you?

The YAML format is also supported for configuring the
application. In this case, the file is named application.yaml or
application.yml.

To start using the YAML configuration file, you need to add the
config-yaml extension:

./mvnw quarkus:add-extension -Dextensions="config-yaml"

Given the following configuration file using the properties
format:

greeting.message=Hello World

%staging.quarkus.http.port=8182

quarkus.http.cors=true

quarkus.http.cors.methods=GET,PUT,POST

The equivalent in YAML format follows:

greeting:

 message: Hello World

"%staging":

 quarkus:

 http:

 port: 8182

quarkus:

 http:

 cors:

 ~: true

 methods: GET,PUT,POST

Simple properties are set as a structure

Profiles are supported wrapped in quotation marks

When there are subkeys the ~ is used to refer to the
unprefixed part

Discussion

Eclipse MicroProfile Configuration comes with the following
built-in converters to map a configuration value into a Java
object:

boolean and java.lang.Boolean; the values for true are
true, 1, YES, Y, and ON, while any other value is considered
false

byte and java.lang.Byte

short and java.lang.Short

int and java.lang.Integer

long and java.lang.Long

float and java.lang.Float

double and java.lang.Double

char and java.lang.Character

java.lang.Class based on the result of the call of
Class.forName

If a built-in converter or custom converter does not exist, then
the following methods are checked in the target object. If a
built-in converter or custom converter does exist, the
discovered/found method is used to instantiate the converter
object and the string argument is passed for conversion:

Target type has public static T of(String) method

Target type has public static T valueOf(String) method

Target type has public constructor with a String parameter

Target type has public static T parse(CharSequence)
method

4.2 Accessing Configuration Properties
Programmatically

Problem
You want to access configuration properties programmatically
instead of injecting them using the
org.eclipse.microprofile.config.inject.ConfigProperty

annotation.

Solution
Inject the org.eclipse.microprofile.config.Config class in
the object for which you want to access properties
programmatically.

The Eclipse MicroProfile Configuration spec allows you to
inject org.eclipse.microprofile.config.Config to get
properties programmatically instead of injecting directly with
ConfigProperty.

Open org.acme.quickstart.GreetingResource.java and inject
Config class:

@Inject

Config config;

@GET

@Path("/config")

@Produces(MediaType.TEXT_PLAIN)

public String helloConfig() {

 config.getPropertyNames().forEach(p ->

System.out.println(p));

 return config.getValue("greeting.message", String.class);

}

Use Inject CDI annotation to inject the instance

You can now access the list of properties

Property needs to be cast to final type

You can access the Config class without using CDI by calling
ConfigProvider.getConfig() method.

4.3 Overwriting Configuration Values
Externally

Problem
You want to overwrite any configuration value at runtime.

Solution
You can overwrite any property at runtime by setting it as a
system property or environment variable.

Quarkus lets you overwrite any configuration property by
setting a configuration as a system property (-

Dproperty.name=value) and/or as an environment variable
(export PROPERTY_NAME=value). System properties have more
priority than environment variables.

Examples of externalizing these properties can be a database
URL, username, or password because they are known only in
the target environment. But you need to know that there is a
trade-off because the more runtime properties are available,
the less build time prework Quarkus can do.

Let’s package the application used in Recipe 4.1 and override
the greeting.message property by setting a system property:

./mvnw clean package -DskipTests

java -Dgreeting.message=Aloha -jar target/getting-started-1.0-

SNAPSHOT-runner.jar

In a new terminal window, validate that the property has been
overridden from Hello World to Aloha by running:

curl localhost:8080/hello

Aloha

In the case of environment variables, three naming
conventions for a given property name are supported. This is
because some operating systems allow only alphabetic
characters and underscores (_) but no other characters, like
dots (.). To support all possible cases, the following rules are
used:

1. Exactly match (greeting.message).

2. Replace nonalphanumeric characters to underscore
(greeting_message).

3. Replace nonalphanumeric characters to underscore and
convert the rest to upper case (GREETING_MESSAGE).

Here is the application.properties file:

greeting.message=Hello World

You can override its value using any of the following
environment variable names because all of them are
equivalent:

export greeting.message=Aloha

export greeting_message=Aloha

export GREETING_MESSAGE=Aloha

There is also a special place where you can put the
application.properties file outside the application itself, inside a
directory named config where the application runs. Any runtime
properties defined in that file will override the default
configuration.

IMPORTANT
config/application.properties works in development mode as well,
but you need to add it on your build tool output directory to make
it work (in case of the Maven, the target directory; in case of
Gradle, build), so you need to be aware of the need to re-create it
when running the clean task.

Apart from environment variables and the
application.properties file, you can also place a .env file in the
current working directory to override configuration values,
following the environment variables format
(GREETING_MESSAGE=Aloha).

4.4 Configuring with Profiles

Problem
You want to overwrite configuration values depending on the
environment in which you are running Quarkus.

Solution
Quarkus supports the notion of configuration profiles. These
allow you to have multiple configuration values for the same
property in the same file and enable different values to suit the
environment in which you are running the service.

The syntax for configuration profiles is %
{profile}.config.key=value.

Discuss
Quarkus comes with three built-in profiles.

dev

Activated when in development mode (i.e., quarkus:dev).

test

Activated when running tests.

prod

The default profile when not running in development or test
mode; you don’t need to set it in application.properties, as it
is implicitly set.

Open src/main/resources/application.properties file and set to
start Quarkus at port 8181 in development mode:

%dev.quarkus.http.port=8181

After this change, start the service to again check that the
listening port is 8181 instead of the default one (8080):

./mvnw compile quarkus:dev

INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

completed

 in 671ms

INFO [io.quarkus] (main) Quarkus 1.4.1 started in 1.385s.

Listening on:

 http://0.0.0.0:8181

INFO [io.quarkus] (main) Profile dev activated. Live Coding

activated.

INFO [io.quarkus] (main) Installed features:

 [cdi, hibernate-validator, resteasy]

Notice that now the listening address is http://0.0.0.0:8181
instead of the default one.

Finally, rollback to 8080 port, remove
%dev.quarkus.http.port=8181 line in application.properties to
align with the port that is used in the rest of the book.

4.5 Changing Logger Configuration

Problem
You want to change the default logging configuration.

Solution
Quarkus uses a unified configuration model in which all
configuration properties are placed in the same file. In the case
of Quarkus, this file is application.properties, and you can
configure many aspects of logging there.

For example, if you want to change the logging level, you just
set quarkus.log.level to the minimum log level.

http://0.0.0.0:8181/

Open src/main/resources/application.properties and add the
following content:

quarkus.log.level=DEBUG

Now start the application to see that a lot of new logging
messages are printed in the console:

./mvnw compile quarkus:dev

...

[INFO] --- quarkus-maven-plugin:0.22.0:dev (default-cli) @

getting-started ---

Listening for transport dt_socket at address: 5005

DEBUG [org.jbo.logging] (main) Logging Provider: \

 org.jboss.logging.JBossLogManagerProvider

INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

DEBUG [io.qua.run.con.ConverterSupport] (main) Populate SmallRye

config builder

 with converter for class java.net.InetSocketAddress of

priority 200

DEBUG [io.qua.run.con.ConverterSupport] (main) Populate SmallRye

config builder

 with converter for class org.wildfly.common.net.CidrAddress

of priority 200

NOTE
We had to span multiple lines for formatting in the book; we have
used the backslash to indicate this.

You can also enable storing logs in a file by using
quarkus.log.file.enable property. The output is written by
default to a file named quarkus.log:

quarkus.log.file.enable=true

NOTE
While you are in development and working out of the source
directory, your logging file will be in target directory.

4.6 Adding Application Logs

Problem
You want to add log lines to your application.

Solution
Most of the time, your applications need to write their own
logging messages and not rely solely on the default logs
provided by Quarkus. Applications may use any of the
supported APIs for logging, and the logs will be merged.

Quarkus supports these logging libraries:

JDK java.util.logging

JBoss logging

SLF4J

Apache Commons Logging

Let’s see how to use JBoss Logging to log content. Open
org.acme.quickstart.GreetingResource.java and log a
message when an special endpoint is called:

private static org.jboss.logging.Logger logger =

org.jboss.logging.Logger.getLogger(GreetingResource.class);

@GET

@Path("/log")

@Produces(MediaType.TEXT_PLAIN)

public String helloLog() {

 logger.info("I said Hello");

 return "hello";

}

Creates the logger instance

Endpoint subpath is /log

Logs at info level

Now start the application:

./mvnw compile quarkus:dev

In a new terminal, window make a request to /hello/log:

curl http://localhost:8080/hello/log

If you inspect the terminal where you started Quarkus, you’ll
see the next logline:

INFO [org.acm.qui.GreetingResource] (executor-thread-1) I said

Hello

Discussion
Logging is done on a per-category basis. A configuration that
applies to a category also applies to all subcategories of that
category, unless there is a more specific matching subcategory
configuration.

Categories are represented by class location (i.e., the package,
or subpackages, where they are defined). For example, if you
want to set Undertow security logging to trace level, you need
to set the
quarkus.log.category."io.undertow.request.security".leve

l=TRACE property in application.properties.

Following the previous example, let’s restrict log lines from
classes residing in org.acme.quickstart (and subclasses) so
the minimum log level is WARNING:

quarkus.log.category."org.acme.quickstart".level=WARNING

Double quotes are mandatory to set the category

If you repeat the request to http://localhost:8080/hello/log,
logline is no longer written down.

4.7 Advanced Logging

Problem
You want to centrally log all your services.

Solution
When working with microservice architectures and Kubernetes,
logging is an important thing to take into consideration because
each service is logging individually; but as a developer or
operator, you might want to have all the logs centralized in one
place so they can be consumed as a whole.

Quarkus logging also supports JSON and GELF output.

These logs can be written in JSON format instead of plain text
for machine processing by registering the logging-json
extension:

./mvnw quarkus:add-extension -Dextensions="logging-json"

Use the GELF extension to produce logs in GELF format and
send them using either TCP or UDP.

http://localhost:8080/hello/log

Graylog extended log format (GELF) is understood by three of
the most centralized logs systems that are used nowadays:

Graylog (MongoDB, Elasticsearch, Graylog)

ELK (Elasticsearch, Logstash, Kibana)

EFK (Elasticsearch, Fluentd, Kibana)

To start logging in GELF format, all you need to do is add the
logging-gelf extension:

./mvnw quarkus:add-extension -Dextensions="logging-gelf"

Logging code is not changing, so the same interfaces are
used:

private static org.jboss.logging.Logger logger =

org.jboss.logging.Logger.getLogger(GreetingResource.class);

@GET

@Path("/log")

@Produces(MediaType.TEXT_PLAIN)

public String helloLog() {

 logger.info("I said Hello");

 return "hello";

}

Creates the logger instance

Endpoint subpath is /log

Logs at info level

The GELF handler must be configured in
application.properties:

quarkus.log.handler.gelf.enabled=true

quarkus.log.handler.gelf.host=localhost

quarkus.log.handler.gelf.port=12201

Enables extension

Sets host where log messages are sent

Sets the endpoint port

IMPORTANT
If you are using Logstash (ELK), you need to enable the Input
plug-in that understands the GELF format:

input {

 gelf {

 port => 12201

 }

}

output {

 stdout {}

 elasticsearch {

 hosts => ["http://elasticsearch:9200"]

 }

}

IMPORTANT
If you are using Fluentd (EFK), you need to enable the Input
plug-in that understands the GELF format:

<source>

 type gelf

 tag example.gelf

 bind 0.0.0.0

 port 12201

</source>

<match example.gelf>

 @type elasticsearch

 host elasticsearch

 port 9200

 logstash_format true

</match>

Discussion
Quarkus logging also supports syslog format by default without
the requirement of adding any extension. Syslog format can be
used in Fluentd as an alternative to GELF format in Quarkus:

quarkus.log.syslog.enable=true

quarkus.log.syslog.endpoint=localhost:5140

quarkus.log.syslog.protocol=udp

quarkus.log.syslog.app-name=quarkus

quarkus.log.syslog.hostname=quarkus-test

IMPORTANT
You need to enable the Input plug-in that understands the syslog
format in Fluentd:

<source>

 @type syslog

 port 5140

 bind 0.0.0.0

 message_format rfc5424

 tag system

</source>

<match **>

 @type elasticsearch

 host elasticsearch

 port 9200

 logstash_format true

</match>

If you are using Kubernetes, the simplest way to log is to log to
the console and install into the cluster a central log manager
that collects all log lines.

See Also
To learn more about advanced logging topics, visit the following
website:

Logstash/Gelf Loggers

4.8 Configuring with Custom Profiles

https://oreil.ly/Mj9Ha

Problem
You want to set different configuration values for the custom
profiles you’ve created.

Solution
So far, you’ve seen that Quarkus comes with built-in profiles so
that you can set different configuration values for the same
property and enable them to suit the environment. But with
Quarkus, you can also set your own profiles.

The only thing you need to do is specify which profile you want
to enable by either using the quarkus.profile system property
or the QUARKUS_PROFILE environment variable. If both are set,
the system property takes precedence over the environment
variable.

Then the only thing you need to do is create the property with
the profile name and set the current profile to that name. Let’s
create a new staging profile that overwrites the listening port of
Quarkus.

Open src/main/resources/application.properties file and set to
start Quarkus at port 8182 when the staging profile is enabled:

%staging.quarkus.http.port=8182

Then start the application with staging profile enabled:

./mvnw -Dquarkus.profile=staging compile quarkus:dev

INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

completed

 in 640ms

INFO [io.quarkus] (main) Quarkus 0.23.2 started in 1.300s.

Listening on:

 http://0.0.0.0:8182

INFO [io.quarkus] (main) Profile staging activated. Live Coding

activated.

INFO [io.quarkus] (main) Installed features: [cdi, hibernate-

validator,

 resteasy]

In this case, the system property approach is used, but you
could also set it using the QUARKUS_PROFILE environment
variable.

Discussion
If you want to set the running profile in tests, you only need to
set the quarkus.test.profile system property to the given
profile in your build script—for example, in Maven:

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-surefire-plugin</artifactId>

<version>${surefire-plugin.version}</version>

<configuration>

 <systemPropertyVariables>

 <quarkus.test.profile>foo</quarkus.test.profile>

 <buildDirectory>${project.build.directory}

</buildDirectory>

 </systemPropertyVariables>

</configuration>

or, in Gradle:

test {

 useJUnitPlatform()

 systemProperty "quarkus.test.profile", "foo"

}

Also, you can change the default production profile. The built-in
profile in Quarkus is prod, so when you are running your
application without any profile, this is the default one where the
values are taken. But you can change that at build time so that,
without specifying any profile, your profile is the default one
when the application is running.

The only thing you need to do is build the application using the
quarkus.profile system property with the profile value you
want set as the default:

./mvnw package -Pnative -Dquarkus.profile=prod-kubernetes`

./target/getting-started-1.0-runner

The command will run with the prod-kubernetes profile
enabled by default

4.9 Creating Custom Sources

Problem

You want to load configuration parameters from any other
source instead of/apart from application.properties file.

Solution
Quarkus uses the Eclipse MicroProfile Configuration spec to
implement all the logic regarding configuration. The
specification offers o r g . e c l i p s e . m i c r o p r o f i l e
. c o n f i g . s p i . C o n f i g S o u r c e Java SPI interface to implement a
custom way to load configuration properties instead of/apart
from the default one provided by Quarkus.

For example, you could load configuration properties from a
database, an XML file, or a REST API.

Let’s create a simple in-memory config source that gets
configuration properties from Map populated at instantiation
time. Create a new class called
org.acme.quickstart.InMemoryConfigSource.java:

package org.acme.quickstart;

import java.util.HashMap;

import java.util.Map;

import org.eclipse.microprofile.config.spi.ConfigSource;

public class InMemoryConfigSource implements ConfigSource {

 private Map<String, String> prop = new HashMap<>();

 public InMemoryConfigSource() {

https://oreil.ly/o0A51

 prop.put("greeting.color", "red");

 }

 @Override

 public int getOrdinal() {

 return 500;

 }

 @Override

 public Map<String, String> getProperties() {

 return prop;

 }

 @Override

 public String getValue(String propertyName) {

 return prop.get(propertyName);

 }

 @Override

 public String getName() {

 return "MemoryConfigSource";

 }

}

Populates map with a property

Used to determine the importance of the values; the highest
ordinal takes precedence over the lower-priority ordinal

Gets all properties as Map; in this case it is direct

Gets the value for a single property

Returns the name of this config source

Then you need to register this as a Java SPI. Create the
services folder at src/main/resources/META-INF. Next, create a
file inside services named
org.eclipse.microprofile.config.spi.ConfigSource with the
following content:

org.acme.quickstart.InMemoryConfigSource

Finally, you can modify the
org.acme.quickstart.GreetingResource.java class to inject
this property:

@ConfigProperty(name = "greeting.color")

String color;

@GET

@Path("/color")

@Produces(MediaType.TEXT_PLAIN)

public String color() {

 return color;

}

Inject the value of the property defined in the
InMemoryConfigSource

And in a terminal window make a request to /hello/color to
see that the output message is the configured value in the
custom source:

curl http://localhost:8080/hello/color

red

Discussion
Each ConfigSource has a specified ordinal, which is used to
set the importance of the values taken from the ConfigSource
in the case of multiple config sources defined for the same
application. A higher ordinal ConfigSource is used over a
ConfigSource with a lower value. Using the defaults in the
following list as a reference, a system property will be used
over everything, and the application.properties file in the
src/main/resources directory will be used if no other
ConfigSources are found:

System properties to 400

Environment variables to 300

application.properties at config directory to 260

application.properties at project to 250

4.10 Creating Custom Converters

Problem
You want to implement a custom converter.

Solution
You can convert a property from String to any kind of object by
implementing the
org.eclipse.microprofile.config.spi.Converter Java SPI.

Quarkus uses the Eclipse MicroProfile Configuration spec to
implement all the logic regarding configuration. The
specification offers the
org.eclipse.microprofile.config.spi.Converter Java SPI
interface to implement the conversion of configuration values to
a custom type.

For example, you could transform a percentage value (i.e.,
15%) to a Percentage type, wrapping the percentage as double
type.

Create a new POJO class
org.acme.quickstart.Percentage.java:

https://oreil.ly/kcqQw

package org.acme.quickstart;

public class Percentage {

 private double percentage;

 public Percentage(double percentage) {

 this.percentage = percentage;

 }

 public double getPercentage() {

 return percentage;

 }

}

And then create a class
org.acme.quickstart.PercentageConverter.java that converts
from String representation to Percentage:

package org.acme.quickstart;

import javax.annotation.Priority;

import org.eclipse.microprofile.config.spi.Converter;

@Priority(300)

public class PercentageConverter implements

Converter<Percentage> {

 @Override

 public Percentage convert(String value) {

 String numeric = value.substring(0, value.length() - 1);

 return new Percentage (Double.parseDouble(numeric) /

100);

 }

}

Sets the priority; in this specific case it might be optional

Generic type that sets the type to convert to

Then you need to register this as a Java SPI. Create the
services folder at src/main/resources/META-INF. Next, create a
file inside the services folder named
org.eclipse.microprofile.config.spi.Converter with the following
content:

org.acme.quickstart.PercentageConverter

Then, you can modify the
org.acme.quickstart.GreetingResource.java class to inject
this property:

@ConfigProperty(name = "greeting.vat")

Percentage vat;

@GET

@Path("/vat")

@Produces(MediaType.TEXT_PLAIN)

public String vat() {

 return Double.toString(vat.getPercentage());

}

Lastly, you will need to add a new property into the
application.properties file in your src/main/resources directory:

greeting.vat = 21%

And in a terminal window, make a request to /hello/vat to see
that the output message is the transformed vat as double:

curl http://localhost:8080/hello/vat

0.21

Discussion
By default, if no @Priority annotation can be found on a
converter, it is registered with a priority of 100. Quarkus
converters are registered with a priority of 200, so if you want
to replace a Quarkus converter, you should use a higher value;
if you don’t need to replace a Quarkus converter, then the
default one is perfectly fine.

A list of Quarkus core converters has been shown in Recipe
4.1.

4.11 Grouping Configuration Values

Problem
You want to avoid setting the common prefix of a configuration
property over and over again.

Solution
You can group common properties (those with the same prefix)
using the @ i o . q u a r k u s . a r c . c o n f i g . C o n f i g P r o p e r t i e s
annotation.

When you are creating ad hoc configuration properties in your
application, typically these properties will have the same prefix
(i.e., greetings). To inject all these properties, you can use the
@ConfigProperty annotation (as shown in Recipe 4.1), or you
can use the io.quarkus.arc.config.ConfigProperties
annotation to group properties together.

Using the application.properties file:

greeting.message=Hello World

greeting.suffix=!!, How are you???

let’s implement a class that maps the configuration properties
into Java objects using the
io.quarkus.arc.config.ConfigProperties annotation. Create
a new class
org.acme.quickstart.GreetingConfiguration.java:

package org.acme.quickstart;

import java.util.List;

import java.util.Optional;

import javax.validation.constraints.Max;

import javax.validation.constraints.Min;

import io.quarkus.arc.config.ConfigProperties;

@ConfigProperties(prefix = "greeting")

public class GreetingConfiguration {

 public String message;

 public String suffix = "!";

}

Sets this as a configuration POJO with a common prefix

Maps the greeting.message property

The default value for greeting.suffix in case the property
is not set

One of the important things to notice in the preceding code is
that the prefix attribute is not mandatory. If it is not set, then
the prefix to be used will be determined by the class name
(removing the suffix part Configuration). In this case, the
prefix attribute could be auto-resolved to greeting.

Then you can inject this configuration POJO to start consuming
the configuration values.

You can modify the
org.acme.quickstart.GreetingResource.java class to inject
this class:

@Inject

GreetingConfiguration greetingConfiguration;

@GET

@Path("/configurations")

@Produces(MediaType.TEXT_PLAIN)

public String helloConfigurations() {

 return greetingConfiguration.message +

greetingConfiguration.suffix;

}

The configuration is injected with the CDI @Inject
annotation

And in a terminal window make a request to
/hello/configurations to see that the configuration values are
populated inside Java, for instance:

curl http://localhost:8080/hello/configurations

Hello World!!, How are you???

As you can now see, you don’t need to annotate every field by
using @ConfigProperty—you just leverage the class definition
to get the property name or the default value.

Discussion
Furthermore, Quarkus supports nested object configuration so
that you can also map subcategories by using inner classes.

Suppose we add a new property named
greeting.output.recipients in application.properties:

greeting.output.recipients=Ada,Alexandra

You could use an inner class to map it into the configuration
object. Modify the class
org.acme.quickstart.GreetingConfiguration.java. Then add
a new inner class representing the subcategory output and
register it as a field:

public OutputConfiguration output;

public static class OutputConfiguration {

 public List<String> recipients;

}

Name of the subcategory is the field name (output)

Then you can access the
greetingConfiguration.output.recipients field to get the
value. You can also annotate the fields with Bean Validation
annotations to validate at start-up time that all configuration
values are valid. If they are not valid, the application will fail to
start and will indicate the validation errors in the log.

4.12 Validating Configuration Values

Problem
You want to validate that configuration values are correct.

Solution

Use the Bean Validation specification to validate that a property
value is valid when it is injected using the @ConfigProperty
annotation on a class.

The Bean Validation spec allows you to set constraints on
objects using annotations. Quarkus integrates the Eclipse
MicroProfile Configuration spec with the Bean Validation spec
so you can use them together to validate that a configuration
value meets certain criteria. This verification is executed at
boot time, and if there is any violation, an error message is
shown in the console and the boot process is aborted.

The first thing you need to do is to register the Quarkus Bean
Validation dependency. You can do it manually by editing your
pom.xml or by running the next Maven command from the root
directory of the project:

./mvnw quarkus:add-extension -Dextensions="quarkus-hibernate-

validator"

After that, you will need to create a configuration object, which
you learned about in the previous recipe. In the next example,
a constraint on the greeting.repeat configuration property is
set so that repetitions outside of the range 1–3 inclusive cannot
be set.

To validate integer range, the following Bean Validation
annotations are used: j a v a x . v a l i d a t i o n . c o n s t r a i n t s . M a x and
javax.validation.constraints.Min. Open

org.acme.quickstart.GreetingConfiguration.java and add
Bean Validation annotations:

@Min(1)

@Max(3)

public Integer repeat;

Min value accepted

Max value accepted

Open src/main/resources/application.properties file and set the
greeting.repeat configuration property to 7:

greeting.repeat=7

Start the application, and you’ll see an error message notifying
that a configuration value is violating one of the defined
constraints:

./mvnw compile quarkus:dev

Discussion
In this example, you’ve seen a brief introduction to Bean
Validation specification, as well as some annotations you can
use to validate fields. However, more constraints are supported
by Hibernate Validation and the Bean Validation
implementation used, such as @Digits, @Email, @NotNull, and
@NotBlank.

Chapter 5. Programming
Model

In this chapter, you’ll learn about topics related to the
programming model of Quarkus. Quarkus is unique in the
programming model it follows. Unlike some other frameworks,
Quarkus allows you to mix and match both an imperative
model, using CDI, and a reactive model, using SmallRye
Mutiny. Chapter 15 is dedicated to using the reactive approach.
At times, you may find yourself needing both approaches, so it
is good to know how to utilize each.

In this chapter, we’re focusing on the imperative model, so
you’ll learn the following:

How to marshal/unmarshal JSON and XML documents

How to validate request parameters

How to use the CDI spec as a context and dependency
injection solution

How to write tests for a Quarkus service

5.1 Marshalling/Unmarshalling JSON

Problem

You want to marshall/unmarshall JSON documents to/from
Java objects.

Solution
Use the JSON-B specification or Jackson project to marshall and
unmarshall JSON documents from/to Java objects.

When you are creating a REST API, you usually use JSON as
a data format to exchange information. So far, you’ve seen
examples of returning only simple plain-text responses; but in
this recipe, you’ll learn how to start using JSON as the data
format for the body of the request and as a response.

The first thing you need to do is register the JSON-B extension
in the pom.xml. Open a terminal window, and from the root
directory of the project run the following:

./mvnw quarkus:add-extension -Dextensions="quarkus-resteasy-

jsonb"

[INFO] --- quarkus-maven-plugin:1.4.1.Final:add-extension

(default-cli)

 @ custom-config ---

✅ Adding extension io.quarkus:quarkus-resteasy-jsonb

This effectively adds io.quarkus:quarkus-resteasy-jsonb into
the build tool.

NOTE
In Gradle, you can use ./gradlew addExtension --
extensions="quarkus-resteasy-jsonb" to add the extension.

The next step is to create a developer class that will be
marshalled and unmarshalled in the endpoint. Create a new
class named org.acme.quickstart.Developer.java:

package org.acme.quickstart;

public class Developer {

 private String name;

 private String favoriteLanguage;

 private int age;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String getFavoriteLanguage() {

 return favoriteLanguage;

 }

 public void setFavoriteLanguage(String favoriteLanguage) {

 this.favoriteLanguage = favoriteLanguage;

 }

 public int getAge() {

 return age;

 }

 public void setAge(int age) {

 this.age = age;

 }

}

Finally, you can create a Rest API endpoint for implementing
developer operations. Create a new class named
org.acme.quickstart.DeveloperResource.java:

package org.acme.quickstart;

import java.util.ArrayList;

import java.util.List;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path("/developer")

public class DeveloperResource {

 private static final List<Developer> developers = new

ArrayList<>();

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response addDeveloper(Developer developer) {

 developers.add(developer);

 return Response.ok().build();

 }

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public List<Developer> getDevelopers() {

 return developers;

 }

}

Try it by opening a new terminal window, starting the Quarkus
application, and sending requests for POST and GET methods:

./mvnw clean compile quarkus:dev

curl -d '{"name":"Alex","age":39, "favoriteLanguage":"java"}' \

 -H "Content-Type: application/json" -X POST

http://localhost:8080/developer

curl localhost:8080/developer

[{"age":39,"favoriteLanguage":"java","name":"Alex"}]

Notice that each Java field is mapped directly to a JSON field.
If you want to change that, you can use the
javax.json.bind.annotation.JsonbProperty annotation to set
a different mapping name:

@JsonbProperty("favorite-language")

String favoriteLanguage;

Discussion

You can use the Jackson project to marshall/unmarshall JSON
documents to/from Java objects instead of JSON-B as well.
You need to register the Jackson-Extension to use it as a
JSON solution:

./mvnw quarkus:add-extension -Dextensions="quarkus-resteasy-

jackson"

By default, a com.fasterxml.jackson.databind.ObjectMapper
is provided, but you can provide a custom ObjectMapper using
CDI:

package org.acme.quickstart;

import com.fasterxml.jackson.databind.ObjectMapper;

import io.quarkus.jackson.ObjectMapperCustomizer;

import javax.inject.Singleton;

@Singleton

public class RegisterCustomModuleCustomizer

 implements ObjectMapperCustomizer {

 public void customize(ObjectMapper mapper) {

 objectMapper.configure(

 DeserializationFeature.FAIL_ON_NULL_FOR_PRIMITIVES,

false);

 }

}

See Also
You can learn more about JSON-B and Jackson at the
following web pages:

Jakarta JSON Binding (JSON-B)

Jackson Project Home @GitHub

5.2 Marshalling/Unmarshalling XML

Problem
You want to marshall/unmarshall XML documents to/from Java
objects.

Solution
Use the JAX-B specification to marshall and unmarshall XML
documents from/to Java objects.

When you are creating a REST API, you might want to use
XML as a data format to exchange information. So far, you’ve
seen how to do it in JSON format, but in this section, you’ll
learn how to start using XML as the data format for the body of
the request and as a response.

The first thing you need to do is register the JAX-B extension in
the pom.xml. Open a terminal window, and from the root
directory of the project run the following:

./mvnw quarkus:add-extension -Dextensions="quarkus-resteasy-

jaxb"

[INFO] --- quarkus-maven-plugin:1.4.1.Final:add-extension

(default-cli)

http://json-b.net/
https://oreil.ly/U3hwH

 @ custom-config ---

✅ Adding extension io.quarkus:quarkus-resteasy-jaxb

This effectively adds io.quarkus:quarkus-resteasy-jaxb into
the build tool.

NOTE
In Gradle, you can use ./gradlew addExtension --
extensions="quarkus-resteasy-jaxb" to add the extension.

The next step is to create a computer class that will be
marshalled and unmarshalled in the endpoint. Create a new
class named org.acme.quickstart.Computer.java:

package org.acme.quickstart;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement

public class Computer {

 private String brand;

 private String serialNumber;

 public String getBrand() {

 return brand;

 }

 public void setBrand(String brand) {

 this.brand = brand;

 }

 public String getSerialNumber() {

 return serialNumber;

 }

 public void setSerialNumber(String serialNumber) {

 this.serialNumber = serialNumber;

 }

}

XmlRootElement sets this as XML document

Finally, you can create a REST API endpoint for implementing
computer operations. Create a new class named
org.acme.quickstart.ComputerResource.java:

package org.acme.quickstart;

import java.util.ArrayList;

import java.util.List;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path("/computer")

public class ComputerResource {

 private static final List<Computer> computers = new

ArrayList<>();

 @POST

 @Consumes(MediaType.APPLICATION_XML)

 public Response addComputer(Computer computer) {

 computers.add(computer);

 return Response.ok().build();

 }

 @GET

 @Produces(MediaType.APPLICATION_XML)

 public List<Computer> getComputers() {

 return computers;

 }

}

Try it by opening a new terminal window, starting the Quarkus
application, and sending requests for POST and GET methods:

./mvnw clean compile quarkus:dev

curl \

 -d '<computer><brand>iMac</brand>

 <serialNumber>111-111-111</serialNumber></computer>'

 -H "Content-Type: application/xml" -X POST

http://localhost:8080/computer

curl localhost:8080/computer

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<collection><computer>

<brand>iMac</brand><serialNumber>111-111-111</serialNumber>

</computer></collection>

Discussion
Apart from @XmlRootElement, there are other important
annotations in the JAX-B spec:

@XmlRootElement

Sets the root XML document. You can also use it to set the
name of the element or the namespace.

@XmlType

Defines the order in which the fields are written.

@XmlElement

Defines the actual XML element name among other
attributes like namespace, nillable, or required.

@XmlAttribute

Defines the field to be mapped as an attribute instead of as
an element.

@XmlTransient

Indicates fields not to be included in XML.

See Also
You can learn more about JAX-B at the following web page:

Oracle: Lesson: Introduction to JAXB (The Java Tutorials)

5.3 Validating Input and Output Values

https://oreil.ly/r9FKb

Problem
You want to validate the input and output values of your REST
and business services.

Solution
Use the Bean Validation specification to add validations to your
model.

Usually, your model might contain some constraints, whether
or not the model is semantically valid—for example, that a name
is not null, or an email is a valid email. Quarkus integrates with
Bean Validation to express constraints on object models via
annotations.

The first thing you need to do is register the Bean Validation
extension in the pom.xml. Open a terminal window, and from
the root directory of the project run the following:

./mvnw quarkus:add-extension -Dextensions="quarkus-hibernate-

validator"

[INFO] --- quarkus-maven-plugin:1.4.1.Final:add-extension

(default-cli)

 @ custom-config ---

✅ Adding extension io.quarkus:quarkus-resteasy-jsonb

This effectively adds io.quarkus:quarkus-hibernate-
validator into the build tool.

NOTE
In Gradle, you can use ./gradlew addExtension --
extensions="quarkus-hibernate-validator" to add the
extension.

The next step is to update the developer class and annotate it
with some constraints. Open the
org.acme.quickstart.Developer.java class and annotate
some of the fields:

@Size(min = 4)

private String name;

@NotBlank

private String favoriteLanguage;

The minimum size of the string is 4

The field is mandatory

NOTE
Either of the available packages is sufficient, but if you want to
use only the spec APIs, use the javax packages.

Finally, you need to annotate with javax.validation.Valid
that a parameter must be verified. Open the

org.acme.quickstart.DeveloperResource.java class and
annotate the developer parameter:

@POST

@Consumes(MediaType.APPLICATION_JSON)

public Response addDeveloper(@Valid Developer developer) {

 developers.add(developer);

 return Response.ok().build();

}

@Valid is mandatory to validate the object

Try it by opening a new terminal window, starting the Quarkus
application, and executing requests for the POST method:

./mvnw clean compile quarkus:dev

curl -d '{"name":"Ada","age":7, "favoriteLanguage":"java"}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 400 Bad Request

< Content-Length: 89

< validation-exception: true

< Content-Type: text/plain;charset=UTF-8

curl -d '{"name":"Alexandra","age":5,

"favoriteLanguage":"java"}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 200 OK

< Content-Length: 0

It is important to note that in the first request, the name has an
incorrect size, hence a 400 Bad Request HTTP code is
returned. In the second request, because the request body is
correct, the method works as expected.

But notice that if there is an error, the response does not
contain any information about what has failed. That’s fine
because it is important to show the internals not directly, but in
a controlled way.

Discussion
If you want to provide a better response message, you can
provide an implementation of ExceptionMapper.

Create a new class named
org.acme.quickstart.BeanValidationExceptionMapper.java:

package org.acme.quickstart;

import javax.json.Json;

import javax.json.JsonArray;

import javax.json.JsonArrayBuilder;

import javax.validation.ConstraintViolation;

import javax.validation.ConstraintViolationException;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import javax.ws.rs.ext.ExceptionMapper;

import javax.ws.rs.ext.Provider;

@Provider

public class BeanValidationExceptionMapper

 implements ExceptionMapper<ConstraintViolationException> {

 @Override

 public Response toResponse(ConstraintViolationException

exception) {

 return Response.status(Response.Status.BAD_REQUEST)

 .entity(createErrorMessage(exception))

 .type(MediaType.APPLICATION_JSON)

 .build();

 }

 private JsonArray

createErrorMessage(ConstraintViolationException exc) {

 JsonArrayBuilder errors = Json.createArrayBuilder();

 for (ConstraintViolation<?> violation :

exc.getConstraintViolations()) {

 errors.add(

 Json.createObjectBuilder()

 .add("path", violation.getPropertyPath().toString())

 .add("message", violation.getMessage())

);

 }

 return errors.build();

 }

}

@Provider set an implementation of an extension interface
discoverable by the JAX-RS runtime

javax.ws.rs.ext.ExceptionMapper is used to transform an
exception into a javax.ws.rs.core.Response

Creates an array of constraint violations

Iterates over each of the constraint violations

Creates a JSON object

Now you can send a request for the POST method again:

curl -d '{"name":"Ada","age":7, "favoriteLanguage":"java"}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 400 Bad Request

< Content-Length: 90

< Content-Type: application/json

[{"path":"addDeveloper.developer.name",

 "message":"size must be between 4 and 2147483647"}]%

The output is now slightly different. The error code is still the
same, a 400 Bad Request, but now the body content of the
response contains the JSON document that we created in the
exception mapper.

You can also validate the output parameters (the parameters
you send back to the caller) by adding @Valid annotation in the
return type:

@GET

@Produces(MediaType.APPLICATION_JSON)

public @Valid List<Developer> getDevelopers() {

 return developers;

}

Moreover, sometimes you don’t want to add validation rules at
the endpoint but at the business service layer. Bean Validation

can be used in your business service if you’re using CDI. See
the following example:

@ApplicationScoped

public class DeveloperService {

 public void promoteDeveloper(@Valid Developer developer) {

 }

}

See Also
If you want to learn more about Bean Validations and what
constraints are implemented by default (i.e., @Min, @Max,
@AssertTrue, @Email, and so on), you can find the information
at the following website:

Jakarta Bean Validation

5.4 Creating Custom Validations

Problem
You want to create custom validations.

Solution
Use the Bean Validation extension model by implementing the
javax.validation.ConstraintValidator interface.

Sometimes the default constraints provided by the Bean
Validation specification are not enough, and you will want to

https://oreil.ly/YHR_X

implement constraints that more closely align with your
business model. Bean Validation allows you to do that by
creating a class that implements the
javax.validation.ConstraintValidator interface and the
annotation for annotating the field to be validated.

Let’s validate that your favorite language can only be a JVM-
based language. First of all, you need to create the annotation.
Create a new class named
org.acme.quickstart.JvmLanguage.java:

package org.acme.quickstart;

import java.lang.annotation.Documented;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import javax.validation.Constraint;

import javax.validation.Payload;

@Target({ ElementType.METHOD, ElementType.FIELD,

ElementType.ANNOTATION_TYPE,

 ElementType.CONSTRUCTOR, ElementType.PARAMETER,

ElementType.TYPE_USE })

@Retention(RetentionPolicy.RUNTIME)

@Documented

@Constraint(validatedBy = { JvmLanguageValidator.class})

public @interface JvmLanguage {

 String message() default "You need to provide a Jvm based-

language";

 Class<?>[] groups() default { };

 Class<? extends Payload>[] payload() default { };

}

Raises the constraint as a normal compilation error

Then you need to create the logic to detect any constraint
violation. This new class must implement the
javax.validation.ConstraintValidator interface.

Next, create a class named
org.acme.quickstart.JvmLanguageValidator.java:

package org.acme.quickstart;

import java.util.Arrays;

import java.util.List;

import javax.validation.ConstraintValidator;

import javax.validation.ConstraintValidatorContext;

public class JvmLanguageValidator

 implements ConstraintValidator<JvmLanguage, String> {

 private List<String> favoriteLanguages =

Arrays.asList("java",

"groovy", "kotlin", "scala");

 @Override

 public boolean isValid(String value,

ConstraintValidatorContext context) {

 return favoriteLanguages.stream()

 .anyMatch(l -> l.equalsIgnoreCase(value));

 }

}

The annotation defined in previous step

The type of object that the validation applies

Checks if the provided favorite language (value) is a JVM-
based language

Finally, you need to annotate the favoriteLanguage field from
org.acme.quickstart.Developer class:

@JvmLanguage

@NotBlank

private String favoriteLanguage;

Try it by opening a new terminal window, starting the Quarkus
application, and sending some requests to the POST method:

./mvnw clean compile quarkus:dev

curl -d '{"name":"Alexadra","age":7,

"favoriteLanguage":"python"}' \

 -H "Content-Type: application/json"

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 400 Bad Request

< Content-Length: 89

< validation-exception: true

< Content-Type: text/plain;charset=UTF-8

curl -d '{"name":"Alexandra","age":5,

"favoriteLanguage":"java"}' \

 -H "Content-Type: application/json"

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 200 OK

< Content-Length: 106

< Content-Type: application/json

<

[{"path":"addDeveloper.developer.favoriteLanguage",

 "message":"You need to provide a Jvm based-language"}]

Discussion
Any validations following the Bean Validation specification on
your REST endpoints, services methods, and ultimately any
CDI-scoped object will be automatically executed during the
run of your application. If you need something with more
control, see the next recipe, Recipe 5.5, for additional means of
validating objects.

It is also good to know that, by default, constraint violation
messages will be returned using the system locale. If you
would like to change this, you can do so in the
application.properties file by setting the quarkus.default-
locale setting:

quarkus.default-locale=es-ES

For REST endpoints, the locale will be based on the Accept-
Language HTTP header. You can specify a list of supported
locales in the application.properties file:

quarkus.locales=en-US, es-ES

See Also
For more information, visit the following websites:

Jakarta Bean Validation

Hibernate Validator

5.5 Validating Objects Programmatically

Problem
You want to validate objects programmatically.

Solution
Use the Bean Validation javax.validation.Validator class.

In some circumstances (for example, in non-CDI beans) you
want to control when the validation process is executed. For
this reason, javax.validation.Validator class is provided.

Let’s create an endpoint that validates the input using
javax.validation.Validator instead of using a declarative
way with @Valid annotations. Open the
org.acme.quickstart.DeveloperResource.java class and
inject Validator instance:

@Inject

Validator validator;

@POST

https://oreil.ly/R6L4d
https://oreil.ly/O7BNR

@Path("/programmaticvalidation")

@Consumes(MediaType.APPLICATION_JSON)

@Produces(MediaType.APPLICATION_JSON)

public Response addProgrammaticValidation(Developer developer) {

 Set<ConstraintViolation<Developer>> violations =

 validator.validate(developer);

 if (violations.isEmpty()) {

 developers.add(developer);

 return Response.ok().build();

 } else {

 JsonArrayBuilder errors = Json.createArrayBuilder();

 for (ConstraintViolation<Developer> violation :

violations) {

 errors.add(

 Json.createObjectBuilder()

 .add("path",

violation.getPropertyPath().toString())

 .add("message", violation.getMessage())

);

 }

 return Response.status(Response.Status.BAD_REQUEST)

 .entity(errors.build())

 .build();

 }

}

Inject Validator class from Bean Validation spec

@Valid is not required

Validate the object programmatically

If there are no errors, proceed

If there are errors, then build the output

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request for the new POST method:

./mvnw clean compile quarkus:dev

curl -d '{"name":"Ada","age":7, "favoriteLanguage":"java"}' \

 -H "Content-Type: application/json" \

 -X POST

http://localhost:8080/developer/programmaticvalidation -v

< HTTP/1.1 400 Bad Request

< Content-Length: 89

< validation-exception: true

< Content-Type: text/plain;charset=UTF-8

Discussion
Quarkus will automatically create an instance of the
javax.validation.ValidatorFactory. You can tweak this a
little by creating your own replacement beans. An instance of
the following types in your application will automatically be
injected into the ValidatorFactory:

javax.validation.ClockProvider

javax.validation.ConstraintValidator

javax.validation.ConstraintValidatorFactory

javax.validation.MessageInterpolator

javax.validation.ParameterNameProvider

javax.validation.TraversableResolver

org.hibernate.validator.spi.properties.GetterProperty

SelectionStrategy

org.hibernate.validator.spi.scripting.ScriptEvaluator

Factory

NOTE
You may have only one instance of a particular type in the
preceding list, and classes should be declared as
@ApplicationScoped.

5.6 Injecting Dependencies

Problem
You want to inject dependencies into your classes.

Solution
Use Contexts and Dependency Injection (CDI).

Discussion
Dependency injection (DI) in Quarkus, which is based on the
Contexts and Dependency Injection 2.0 specification, is pretty

https://oreil.ly/VcDnN

standard, with only a few modifications needed for the basic
use case.

NOTE
Quarkus implements most of the specification, except for some
corner cases that should not affect your code. The Quarkus
website maintains a list of supported features and limitations,
including more advanced features that are not covered here in
the book. You can find those lists in the Quarkus CDI Reference
Guide.

Injection happens just as you would expect in any other
application using CDI:

package org.acme.quickstart;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/hello")

public class GreetingResource {

 @Inject

 GreetingService service;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return service.getGreeting();

 }

https://oreil.ly/-LPAd

Use of the @Inject annotation is required

Due to restrictions on reflection, package-private injection
fields are preferred

The injected service is pretty standard and without any
surprises:

package org.acme.quickstart;

import java.util.Locale;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import javax.inject.Named;

@ApplicationScoped

public class GreetingService {

 public String getGreeting() {

 return "Hello";

 }

}

As mentioned in the following, you should include a bean-
defining annotation that allows classes to be found

Bean discovery in Quarkus follows a simplified process from
standard CDI. In short, if your application classes do not have
a bean-defining annotation, they will not be picked up by
Quarkus.

See Also

https://oreil.ly/jm4QF

To learn more, see the following web pages:

JBoss: JSR 365: Contexts and Dependency Injection for
Java 2.0

GitHub: GraalVM Native Image Compatibility and
Optimization Guide

5.7 Creating Factories

Problem
You want to create a factory for an object.

Solution
Use the javax.enterise.inject.Produces concept from CDI.

CDI has a concept called producers that allows you to do any
sort of object creation necessary to add a new bean or class to
the list of resolvable instances, like this:

package org.acme.quickstart;

import java.util.Locale;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

import javax.inject.Named;

@ApplicationScoped

public class LocaleProducer {

 @Produces

https://oreil.ly/clOD4
https://oreil.ly/7sgPm

 public Locale getDefaultLocale() {

 return Locale.getDefault();

 }

}

Discussion
Quarkus takes the producers concept a little further. Quarkus
does so by adding the @io.quarkus.arc.DefaultBean
annotation. In terms of CDI, this is like an enabled default
alternative. Because Quarkus does not allow for alternatives, a
class annotated with DefaultBean gives you a way to create a
default instance of a bean. The following code is an example
pulled from the Quarkus website:

@Dependent

public class TracerConfiguration {

 @Produces

 public Tracer tracer(Reporter reporter, Configuration

configuration) {

 return new Tracer(reporter, configuration);

 }

 @Produces

 @DefaultBean

 public Configuration configuration() {

 // create a Configuration

 }

 @Produces

 @DefaultBean

 public Reporter reporter(){

 // create a Reporter

 }

}

The following excerpt allows your application or library to inject
a tracer wherever necessary. It also allows for customization by
creating a new producer:

@Dependent

public class CustomTracerConfiguration {

 @Produces

 public Reporter reporter(){

 // create a custom Reporter

 }

}

With this code in your application, the Reporter created from
the CustomTracerConfiguration class will be used instead of
the default.

See Also
To learn more, visit the following web page:

JBoss: JSR 365: Contexts and Dependency Injection for
Java 2.0

5.8 Executing Object Life Cycle Events

Problem

https://oreil.ly/4-OrV

You want to execute logic before and/or after objection
creation/destruction.

Solution
CDI makes use of the @javax.annotation.PostConstruct and
@javax.annotation.PreDestroy annotations for life cycle
management. The methods annotated with those annotations
will be called after object creation for PostConstruct and before
the object is destroyed for PreDestroy:

package org.acme.quickstart;

import java.util.Arrays;

import java.util.List;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped

public class RecommendationService {

 List<String> products;

 @PostConstruct

 public void init() {

 products = Arrays.asList("Orange", "Apple", "Mango");

 System.out.println("Products initialized");

 }

 @PreDestroy

 public void cleanup() {

 products = null;

 System.out.println("Products cleaned up");

 }

 public List<String> getProducts() {

 return products;

 }

}

Discussion
If there is logic that needs to happen after the constructor is
called and after all the injections happen, it should go into a
method annotated with the @PostConstruct annotation. This is
guaranteed to be called only once in the lifetime of an object
instance.

Similarly, if logic needs to be executed before the object is
destroyed, place it in a method annotated with the @PreDestroy
annotation. Ideas for this would include closing connections,
cleaning up resources, and finalizing logging.

See Also
To learn more, see the following pages on GitHub:

Common Annotations API: PostConstruct.java

Common Annotations API: PreDestroy.java

5.9 Executing Application Life Cycle Events

Problem

https://oreil.ly/UxdG2
https://oreil.ly/qsZUC

You want to execute logic at application startup and/or after
application shutdown.

Solution
Observe the io.quarkus.runtime.StartupEvent and the
io.quarkus.runtime.ShutdownEvent. During application
startup, Quarkus will fire the StartupEvent; and during
shutdown, the ShutdownEvent, like this:

package org.acme.quickstart;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.event.Observes;

import io.quarkus.runtime.ShutdownEvent;

import io.quarkus.runtime.StartupEvent;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

@ApplicationScoped

public class ApplicationEventListener {

 private static final Logger LOGGER =

LoggerFactory.getLogger(ApplicationEventListener.class);

 void onStart(@Observes StartupEvent event) {

 LOGGER.info("Application starting...");

 }

 void onStop(@Observes ShutdownEvent event) {

 LOGGER.info("Application shutting down...");

 }

}

You must add a bean-defining annotation

The startup event that is fired

The shutdown event that Quarkus fires

Neither of these event objects carry any additional information,
so there is not anything else to cover.

Discussion
Event observation is a very powerful way in Quarkus (and in
other CDI frameworks) to decouple concerns with minimal
overhead.

See Also
For more, see Recipe 5.8.

5.10 Using a Named Qualifier

Problem
You want to qualify an injection with a name.

Solution
Use the @javax.inject.Named annotation.

In CDI, a qualifier is any annotation defined as
@Retention(RUNTIME) and annotated with

@javax.inject.Qualifier. Qualifiers are typically defined so
that they can be used everywhere you need them as
@Target({METHOD, FIELD, PARAMETER, TYPE}).

CDI comes with a useful qualifier: @javax.inject.Named. The
value isn’t required, but it doesn’t make sense to use @Named
without an actual name. When resolving an injection point, CDI
will look for any beans of the correct type that also contain the
same qualifier. In the case of @Named, the value part of the
annotation must match as well.

This is very useful if you have multiple instances of a type, but
they are not the same object. CDI doesn’t take into
consideration the actual instance of the object because that
isn’t known until it is created and will be different each time
anyway. To get around this problem, CDI uses qualifiers:

 @Inject

 @Named("en_US")

 Locale en_US;

 @Inject

 @Named("es_ES")

 Locale es_ES;

 public String getGreeting(String locale) {

 if (locale.startsWith("en"))

 return "Hello from " + en_US.getDisplayCountry();

 if (locale.startsWith("es"))

 return "Hola desde " + es_ES.getDisplayCountry();

 return "Unknown locale";

 }

Discussion
For completeness, this is a way to produce named beans:

package org.acme.quickstart;

import java.util.Locale;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

import javax.inject.Named;

@ApplicationScoped

public class LocaleProducer {

 @Produces

 public Locale getDefaultLocale() {

 return Locale.getDefault();

 }

 @Produces

 @Named("en_US")

 public Locale getEnUSLocale() {

 return Locale.US;

 }

 @Produces

 @Named("es_ES")

 public Locale getEsESLocale() {

 return new Locale("es", "ES");

 }

}

@Named qualification, though weak—which is one of the things
CDI tries to avoid—can be a useful trick during integrations.
We recommend using strongly typed annotations where
possible.

See Also
For more information, visit the following web page:

JBoss: qualifier @Named at injection points

5.11 Using Custom Qualifiers

Problem
You want to qualify an injection with some other qualifier
annotation.

Solution
Develop and use qualifier annotations.

In Recipe 5.10, you were introduced to the idea of a qualifier:

package org.acme.quickstart;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import javax.inject.Qualifier;

https://oreil.ly/5NydQ

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.ElementType.TYPE;

@Qualifier

@Retention(RetentionPolicy.RUNTIME)

@Target({METHOD, FIELD, PARAMETER, TYPE})

public @interface SpainLocale {

}

Producing the bean is exactly as you would expect:

 @Produces

 @SpainLocale

 public Locale getSpainLocale() {

 return new Locale("es", "ES");

 }

Then, of course, injecting the newly qualified instance is just as
easy:

 @Inject

 @SpainLocale

 Locale spain;

Discussion
Using qualifier annotations is the preferred way to use qualified
CDI injections both in a normal CDI application and in Quarkus.

See Also
For more information, visit the following web page:

JBoss: Qualifiers

5.12 Qualifying and Configuring Annotations

Problem
You want to qualify and configure a dependency using
annotations.

Solution
Using a combination of InjectionPoint in a producer and
nonbinding attributes on the qualifier annotation, it is possible
to both qualify and configure a bean.

This is an interesting, albeit atypical, use case for qualifiers and
producers. Take a look at the following code to see it in action:

package org.acme.quickstart;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.enterprise.util.Nonbinding;

import javax.inject.Qualifier;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.ElementType.FIELD;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.PARAMETER;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

https://oreil.ly/MOfwa

@Qualifier

@Retention(RUNTIME)

@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Quote {

 @Nonbinding String msg() default "";

 @Nonbinding String source() default "";

}

The attributes are listed as nonbinding, so injections
actually work.

Normally, the attributes of a qualifier are considered for
injections, so if the attributes don’t match, the qualified object
will not be injected:

 @Produces

 @Quote

 Message getQuote(InjectionPoint msg) {

 Quote q = msg.getAnnotated().getAnnotation(Quote.class);

 return new Message(q.msg(), q.source());

 }

Only the default attributes on the producer

Get the instance of the qualifier to pull configuration from
the attributes

Return the newly configured object

Usage is exactly the same as any other qualifier:

 @Quote(msg = "Good-bye and hello, as always.", source =

"Roger Zelazny")

 Message myQuote;

See Also
For more information, visit the following web page:

JBoss: Injection point metadata

5.13 Creating Interceptors

Problem
You want to implement cross-cutting concerns.

Solution
A cross-cutting concern is an aspect that affects other
concerns of a program. The textbook example of this is
transaction control. It is an action that affects the use of data in
your program and must always be addressed, often in the
same or similar manner.

Create @javax.inject.AroundInvoke and
@javax.inject.AroundConstruct interceptors with the
corresponding interceptor bindings. You are also able to create
CDI stereotypes to better compose concerns into a single
annotation.

https://oreil.ly/BVmV2

To start, create an annotation with the
@javax.interceptor.InterceptorBinding annotation. This will
be used to link up the actual interceptor code and to annotate
any of the methods or classes you wish to be intercepted:

package org.acme.quickstart;

import java.lang.annotation.Inherited;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import javax.interceptor.InterceptorBinding;

import static java.lang.annotation.ElementType.METHOD;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Inherited

@InterceptorBinding

@Retention(RUNTIME)

@Target({METHOD, TYPE})

public @interface LogEvent {

}

Nothing special going on there. Next, you need to create the
interceptor:

package org.acme.quickstart;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import javax.interceptor.AroundInvoke;

import javax.interceptor.Interceptor;

import javax.interceptor.InvocationContext;

@LogEvent

@Interceptor

public class LogEventInterceptor {

 static List<Event> events = new ArrayList<>();

 @AroundInvoke

 public Object logEvent(InvocationContext ctx) throws

Exception {

 events.add(new Event(ctx.getMethod().getName(),

Arrays.deepToString(ctx.getParameters())));

 return ctx.proceed();

 }

}

This is a pretty contrived example, but it is easy to understand
what is happening. Lastly, you simply need to annotate a
method or class with the binding annotation:

@LogEvent

public void executeOrder(Order order) {

 // ...

}

Every time the executeOrder method is called, the method in
the interceptor that is annotated with
@javax.interceptor.AroundInvoke, logEvent in this case, will
be called before the actual executeOrder method is called.

Discussion

Interceptors are very easy to implement in Quarkus using the
standard CDI mechanism. This provides a simple way to define
and utilize cross-cutting actions in your application.

Aspect-oriented programming (AOP) has been around for quite
some time, since 1997 to be exact. A team at Xerox PARC lead
by Gregor Kiczales created and termed cross-cutting and
aspect-oriented programming. Some claim the Microsoft
Transaction Server was the first widely adopted instance of
AOP. Eventually, Enterprise JavaBeans developed AOP
aspects. There’s also Spring and AspectJ in the Java
ecosystem.

However, we are talking about CDI and Quarkus. Quarkus ArC
(the dependency injection flavor in Quarkus), the name of
which is a play on arc welding, makes use of the same
concepts.

See Also
For more information, check out the following:

Essential.NET, Volume 1: The Common Language Runtime
by Don Box and Chris Sells (Addison-Wesley Professional)

JBoss: Interceptor bindings

Stack Overflow: What does ArC mean?

5.14 Writing Behavioral Tests

https://oreil.ly/QlAGP
https://oreil.ly/0BpNz

Problem
You want to write behavioral tests to verify the correctness of
service without verifying its internals.

Solution
Quarkus’s testing solution is based on JUnit 5, the de facto
testing tool in the Java ecosystem, and provides tight
integration with REST-Assured testing framework for validating
RESTful Web APIs.

IMPORTANT
Using REST-Assured is not mandatory; it is just a
recommendation or best practice, so you can use any other
framework that you prefer for testing endpoints.

The most important part of the Quarkus testing framework is an
annotation called QuarkusTest. When you annotate a test class
with this annotation, you are effectively marking that test to be
executed within the Quarkus test framework, which instructs
the test to follow the following life cycle:

1. The Quarkus application is automatically started once.
When the application has been booted up and is ready to
start serving requests, the test execution is started.

2. Each test is executed against this running instance.

3. The Quarkus application is stopped.

https://oreil.ly/bh494
http://rest-assured.io/

WARNING
To minimize the impact of running tests in terms of performance,
the Quarkus application is started only once, and then all test
classes defined in the testing plan are executed against this
running instance, so the application is not restarted for each test
class execution.

Open the org.acme.quickstart.GreetingResourceTest.java
class located at src/test/java directory:

package org.acme.quickstart;

import io.quarkus.test.junit.QuarkusTest;

import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;

import static org.hamcrest.CoreMatchers.is;

@QuarkusTest

public class GreetingResourceTest {

 @Test

 public void testHelloEndpoint() {

 given()

 .when()

 .get("/hello")

 .then()

 .statusCode(200)

 .body(is("hello"));

 }

}

Sets this test as a Quarkus test

REST-Assured static method to start the validation

Sends a request using GET HTTP method to /hello path

Starts the assertion section

You can run the test from your IDE as well, as shown in
Figure 5-1.

Figure 5-1. Visual Studio Code with Java integration

Or if you want to run the test in a terminal window, run the
following:

./mvnw clean compile test

[INFO] ---

[INFO] T E S T S

[INFO] ---

[INFO] Running org.acme.quickstart.GreetingResourceTest

 INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

 INFO [io.qua.resteasy] (build-13) Resteasy running without

servlet container.

 INFO [io.qua.resteasy] (build-13) - Add quarkus-undertow to

run Resteasy

 within a servlet

container

 INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus

augmentation completed

 in 803ms

 INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in

0.427s.

 Listening on: http://0.0.0.0:8081

 INFO [io.quarkus] (main) Profile test activated.

 INFO [io.quarkus] (main) Installed features: [cdi, resteasy]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 3.586 s

 - in org.acme.quickstart.GreetingResourceTest

2019-11-06 13:02:43,431 INFO [io.quarkus] (main) Quarkus

stopped in 0.053s

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Quarkus listens on port 8081 when running tests

The test profile is activated

As you’ve seen in the previous example, port 8081 is the
default port used when tests are executed.

Discussion
You can change the port used by tests by setting the
quarkus.http.test-port property to a different value:

quarkus.http.test-port=8083

Because Quarkus offers nice integration with REST-Assured, it
automatically updates the port used, so no additional
configuration is required in that part.

TIP
In some scenarios, you might want to run tests in a random port
instead of a specific one. This is also supported by Quarkus; the
only thing you need to set is the quarkus.http.test-port
property to zero (0):

quarkus.http.test-port=0

./mvnw clean compile test

INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in

0.442s.

 Listening on: http://0.0.0.0:49661

INFO [io.quarkus] (main) Profile test activated.

INFO [io.quarkus] (main) Installed features: [cdi, resteasy]

Quarkus supports writing behavioral tests, which are tests that
validate the functionality of a service without knowing or
verifying the internals of the service. Figure 5-2 shows the
nature of behavioral testing.

In the case of REST APIs and microservices in general, you
can understand a behavioral test as a form of test that follows
the schema of sending a request to a running instance of the
service and validating that the response is the expected one.

Figure 5-2. Behavioral testing

If you have scaffolded the project using any of the methods
explained in Chapter 1, you should already have a completed
behavioral test, including the required dependencies registered
at your build tool script.

See Also
If you want to learn more about the underlying technologies
used by the Quarkus testing framework, you can visit the
following websites:

JBoss: JUnit 5 User Guide

REST-Assured

5.15 Writing Unit Tests

Problem
You want to write unit tests to verify the correctness of the
internals of the service.

Solution
Use the Quarkus testing solution based on JUnit 5 and its
integration with CDI.

Quarkus allows you to inject CDI beans into your tests via the
@Inject annotation. In fact, under the covers, a test in Quarkus
is just a CDI bean, so everything that it is valid in a bean is also
valid in a test.

Let’s create a Greeting Service bean that uses Bean Validation
to verify its input parameters. Remember to add the quarkus-
hibernate-validator extension. Create a new class
org.acme.quickstart.GreetingService.java:

package org.acme.quickstart;

import javax.enterprise.context.ApplicationScoped;

import javax.validation.constraints.Min;

https://oreil.ly/oahZK
http://rest-assured.io/
https://oreil.ly/oahZK

@ApplicationScoped

public class GreetingService {

 public String greetingMessage(@Min(value = 16) int age) {

 if (age < 19) {

 return "Hey boys and girls";

 } else {

 return "Hey ladies and gentlemen";

 }

 }

}

Sets service as CDI bean

Adds validation in the method

Now, you want to test that Greeting Service works as expected
in the next three cases:

When the user age is less than 16, an exception is thrown.

When the user age is between 16 and 18, the teenager’s
message is returned.

When the user age is greater than 18, return the message
for adults.

We recommend that you use the AssertJ project to write
readable assertions. To use it, you need to register the AssertJ
dependency in the build script:

<dependency>

 <groupId>org.assertj</groupId>

 <artifactId>assertj-core</artifactId>

https://oreil.ly/d5tI2

 <version>3.14.0</version>

 <scope>test</scope>

</dependency>

Create a new class
org.acme.quickstart.GreetingService.java at src/test/java
directory:

package org.acme.quickstart;

import javax.inject.Inject;

import javax.validation.ConstraintViolationException;

import org.assertj.core.api.Assertions;

import org.junit.jupiter.api.Test;

import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest

public class GreetingServiceTest {

 @Inject

 GreetingService greetingService;

 @Test

 public void testGreetingServiceForYoungers() {

Assertions.assertThatExceptionOfType(ConstraintViolationExceptio

n.class)

 .isThrownBy(() -> greetingService.greetingMessage(15));

 }

 @Test

 public void testGreetingServiceForTeenagers() {

 String message = greetingService.greetingMessage(18);

 Assertions.assertThat(message).isEqualTo("Hey boys and

girls");

 }

 @Test

 public void testGreetingServiceForAdult() {

 String message = greetingService.greetingMessage(21);

 Assertions.assertThat(message).isEqualTo("Hey female and

male");

 }

}

Sets this test as a Quarkus test

Injects GreetingService instance

Executes tests using the Greeting Service instance created
by CDI container

Uses AssertJ assertions

Try it by opening a new terminal window and running tests:

./mvnw clean compile test

[INFO] Running org.acme.quickstart.GreetingResourceTest

 INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

 INFO [io.qua.resteasy] (build-3) Resteasy running without

servlet container.

 INFO [io.qua.resteasy] (build-3) - Add quarkus-undertow to run

Resteasy

 within a servlet

container

 INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

completed

 in 813ms

 INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in

0.715s.

 Listening on: http://0.0.0.0:51581

 INFO [io.quarkus] (main) Profile test activated.

 INFO [io.quarkus] (main) Installed features:

 [cdi, hibernate-validator, resteasy]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 3.614 s

 - in org.acme.quickstart.GreetingResourceTest

[INFO] Running org.acme.quickstart.GreetingServiceTest

[INFO] Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 0.086 s

 - in org.acme.quickstart.GreetingServiceTest

2019-11-06 16:16:11,503 INFO [io.quarkus] (main) Quarkus

stopped in 0.029s

Notice that the Quarkus application is started once but both
test classes are executed.

Discussion
In the Recipe 5.14 recipe, you learned how to write tests using
a behavioral approach in which you care only about requests
and responses of the service. However, more often than not,
you want to validate what’s happening inside the service, or
you want to validate how some pieces are behaving inside a
running instance without having to mock the environment. This
is typically required when you want to validate that a business

object works as expected, which includes its integration with
the features provided by Quarkus (Bean Validation, CDI, etc.).

See Also
To learn more about AssertJ, visit the following web page:

AssertJ: fluent assertions java library

5.16 Creating Mock Objects

Problem
You want to test classes that require extra processing time or
need to communicate with external systems.

Solution
Use mock support in Quarkus to provide CDI objects that
mimic the behavior of real objects by replacing the default
ones.

Mock objects are simulated objects that simulate the behavior
of real objects by providing some canned answer to a method
call.

Let’s mock the Greeting Service that was created in the Recipe
5.15 recipe.

https://oreil.ly/d5tI2

Create a new class
org.acme.quickstart.MockedGreetingService.java at
src/test/java directory:

package org.acme.quickstart;

import io.quarkus.test.Mock;

@Mock

public class MockedGreetingService

 extends GreetingService {

 @Override

 public String greetingMessage(int age) {

 return "Hello World";

 }

}

Mark POJO as a mocked class (alternative class) in CDI

The class must extend or implement the base service

Canned answer

Discussion
Creating mocks is not only a great way to bypass external
services and longer running processes, but also a simple way
of testing particular scenarios. In the previous solution, there
could be two tests: one using the mock and the other using the
actual object. One would demonstrate the expected behavior
by the service, and the other could demonstrate an expected

failure. This technique is especially useful for testing external
service failures.

5.17 Creating Mock Objects with Mockito

Problem
Using Mockito, you want to test classes that require extra
processing time or need to communicate with external
systems.

Solution
Use the Mockito library to provide CDI objects that mimic the
behavior of real objects by replacing the default ones.

Using Mockito, let’s mock the Greeting Service that was
created in the Recipe 5.15 recipe.

The first thing to do is add the Quarkus Mockito extension:

<dependency>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-junit5-mockito</artifactId>

 <scope>test</scope>

</dependency>

Create a new class
org.acme.quickstart.GreetingResourceTest.java at
src/main/java directory:

import io.quarkus.test.junit.mockito.InjectMock;

import org.junit.jupiter.api.BeforeEach;

import static org.mockito.Mockito.when;

@QuarkusTest

public class GreetingResourceTest {

 @InjectMock

 GreetingService greetingService;

 @BeforeEach

 public void prepareMocks() {

 when(greetingService.message())

 .thenReturn("Aloha from Mockito");

 }

 @Test

 public void testHelloEndpoint() {

 given()

 .when().get("/greeting")

 .then()

 .statusCode(200)

 .body(is("Aloha from Mockito"));

 }

}

InjectMock makes this field a Mockito mock

Before each test execution, the mock expectations are
recorded

The message that is returned is the mocked one

5.18 Grouping Several Annotations into One
with a Meta-Annotation

Problem
You want to avoid the population of annotations in your
application.

Solution
Use meta-annotations to group several annotations into one.

You can develop a meta-annotation that contains all the
annotations required by the tests or other portions of your
application. For example, you could create a
TransactionalQuarkusTest annotation that contains both
@QuarkusTest and @Transactional annotations, making a
Quarkus test transactional by default if this newly created
annotation is used.

Create a new class called
org.acme.quickstart.TransactionalQuarkusTest.java in the
src/test/java directory:

package org.acme.quickstart;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

import javax.enterprise.inject.Stereotype;

import javax.transaction.Transactional;

import io.quarkus.test.junit.QuarkusTest;

@QuarkusTest

@Transactional

@Stereotype

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface TransactionalQuarkusTest {

}

Adds the annotations that this meta-annotation might
“inherit”

Sets the annotation as a stereotype (meta-annotation)

If you then apply this annotation to a class, it will be like you
had applied both the @QuarkusTest and the @Transactional
annotations:

@TransactionalQuarkusTest

public class DeveloperDAO {

}

Notice that now the test is more readable and the annotations
are reusable.

Discussion
Quarkus tests are CDI beans, and for this reason, you can
apply CDI interceptors. For example, you could make your test

become transactional by using the transactional interceptor.
This interceptor is enabled by annotating the test class with
@javax.transaction.Transactional. So, a transactional test
might look like the following:

@QuarkusTest

@Transactional

public class DeveloperDAO {

}

Of course, this is perfectly valid, but there are two scenarios in
which multiple annotations on the class might impact the
readability of your test:

1. Your test requires more annotations—for example, JUnit 5
annotations like @TestMethodOrder to define the order
execution of tests, or you need to enable other
interceptors for the test. In these cases, you can end up
setting more annotations than code.

2. You have a lot of tests that require the same annotations,
so you continuously annotate, in most of the cases, all
tests with the same annotations.

5.19 Executing Code Before or After a Test

Problem
You want to execute some logic before/after the test suite to
start/stop/configure a resource for the test.

Solution

Use the Quarkus Test Resource extension mechanism to
define the required resources to execute the tests.

Quarkus provides an extension mechanism that allows you to
execute Java code before the test suite is started and after the
test suite has finished. Furthermore, it allows you to
create/override configuration properties programmatically so
that any parameter required by the resource can be set in the
test resource class instead of having to modify the
application.properties file.

Let’s write a simple Quarkus Test Resource that just prints
some messages.

Create a new class named
org.acme.quickstart.HelloWorldQuarkusTestResourceLifecyc

leManager implementing
io.quarkus.test.common.QuarkusTestResourceLifecycleManag

er interface at src/test/java directory:

package org.acme.quickstart;

import java.util.Collections;

import java.util.Map;

import

io.quarkus.test.common.QuarkusTestResourceLifecycleManager;

public class HelloWorldQuarkusTestResourceLifecycleManager

 implements QuarkusTestResourceLifecycleManager {

 @Override

 public Map<String, String> start() {

 System.out.println("Start Test Suite execution");

 return Collections.emptyMap();

 }

 @Override

 public void stop() {

 System.out.println("Stop Test Suite execution");

 }

 @Override

 public void inject(Object testInstance) {

 System.out.println("Executing " +

testInstance.getClass().getName());

 }

 @Override

 public int order() {

 return 0;

 }

}

Must implement QuarkusTestResourceLifecycleManager

The method that is executed before the test suite

Map object with system properties to be used

The method that is executed after the test suite

For each test class execution, this method is invoked,
passing the test instance so that you can inject specific
fields

Sets the order of execution in case multiple resources are
defined

Finally, you need to register this extension to be executed
during the test suite execution. To do that, you need to use the
QuarkusTestResource annotation in any class placed within the
src/test/java directory and set the test resource to be started.
Although it could be any test class responsible for registering
the resource, we recommend you create a specific empty class
that registers the test resource.

Create a new class
org.acme.quickstart.HelloWorldTestResource in src/test/java
with the following content:

package org.acme.quickstart;

import io.quarkus.test.common.QuarkusTestResource;

@QuarkusTestResource(HelloWorldQuarkusTestResourceLifecycleManag

er.class)

public class HelloWorldTestResource {

}

Registers the test resource

Then run the tests in a terminal, and you’ll see something
similar as terminal output:

./mvnw clean compile test

INFO] ---

[INFO] T E S T S

[INFO] ---

[INFO] Running org.acme.quickstart.GreetingResourceTest

Start Test Suite execution

 INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

 INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

completed

 in 756ms

 INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in

0.381s.

 Listening on: http://0.0.0.0:8081

 INFO [io.quarkus] (main) Profile test activated.

 INFO [io.quarkus] (main) Installed features: [cdi, resteasy]

Executing org.acme.quickstart.GreetingResourceTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 3.058 s

 - in org.acme.quickstart.GreetingResourceTest

Stop Test Suite execution

2019-11-08 16:57:01,020 INFO [io.quarkus] (main) Quarkus

stopped in 0.027s

start method is invoked before Quarkus is started

inject method is invoked before GreetingResourceTest is
run

stop method is invoked after all tests have been executed

This example is not very usable; however, it is simple to
understand the test life cycle, but nothing more.

Discussion

As you move forward, the complexity of your tests (integration
tests, end-to-end tests, etc.) and the required dependencies to
run them increases. For example, the tests might require a
database instance, a Kafka broker, a JMS queue, or an identity
provider like Keycloak.

With this background, let’s write a more interesting test
resource that uses Docker to boot up a MariaDB Docker
container.

For this example, you are going to use the Testcontainers test
framework; at the time of writing, the latest version is 1.14.3.

ABOUT TEST CONTAINERS

Testcontainers is a Java library that supports JUnit tests, providing
lightweight, throwaway instances of Docker containers. Testcontainers
manages the life cycle of each of these containers, so you can start
and stop them programmatically.

You might use Docker containers in tests in the following
circumstances:

Data access layer integration tests in which you containerize the
database servers (i.e., PostgreSQL, MySQL, or Oracle)

Application integration tests requiring some external dependencies
such as web-servers or messaging systems like Kafka

UI/Acceptance tests where you containerize the web browsers so
every test runs in a fresh instance of the browser

Before running tests, you need to have Docker installed in your
machine so Testcontainers can boot up the MariaDB container

https://oreil.ly/aEeAV

locally.

The first step in developing the Testcontainers Quarkus Test
Resource is registering the Testcontainers dependency in your
build tool for using the MariaDB Docker container in your test:

<dependency>

 <groupId>org.testcontainers</groupId>

 <artifactId>mariadb</artifactId>

 <version>${testcontainers.version}</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-jdbc-mariadb</artifactId>

</dependency>

The implementation of QuarkusTestResourceLifecycleManager
is as follows:

package org.acme.quickstart;

import java.util.HashMap;

import java.util.Map;

import org.acme.quickstart.MariaDbTestResource.Initializer;

import org.testcontainers.containers.MariaDBContainer;

import io.quarkus.test.common.QuarkusTestResource;

import

io.quarkus.test.common.QuarkusTestResourceLifecycleManager;

@QuarkusTestResource(Initializer.class)

public class MariaDbTestResource {

 public static class Initializer

 implements QuarkusTestResourceLifecycleManager {

 private MariaDBContainer mariaDBContainer;

 @Override

 public Map<String, String> start() {

 this.mariaDBContainer = new MariaDBContainer<>

("mariadb:10.4.4");

 this.mariaDBContainer.start();

 return getConfigurationParameters();

 }

 private Map<String, String> getConfigurationParameters() {

 final Map<String, String> conf = new HashMap<>();

 conf.put("quarkus.datasource.url",

this.mariaDBContainer.getJdbcUrl());

 conf.put("quarkus.datsource.username",

this.mariaDBContainer

.getUsername());

 conf.put("quarkus.datasource.password",

this.mariaDBContainer

.getPassword());

 conf.put("quarkus.datasource.driver",

this.mariaDBContainer

.getDriverClassName());

 return conf;

 }

 @Override

 public void stop() {

 if (this.mariaDBContainer != null) {

 this.mariaDBContainer.close();

 }

 }

 }

}

Registers the test resource

Defines the test resource interface

Sets MariaDB container object

Instantiate MariaDB container with required Docker image

Starts the container and waits until the container is
accepting connections

Overrides Quarkus’s configuration to point database
connection to the container one

Stops the container

Finally, run the tests in a terminal. You’ll see something like this
in the terminal output:

./mvnw clean test

[INFO] ---

[INFO] T E S T S

[INFO] ---

[INFO] Running org.acme.quickstart.GreetingResourceTest

 ℹ Checking the system...
 ✔ Docker version should be at least 1.6.0
 ✔ Docker environment should have more than 2GB free disk
space

Start Test Suite execution

 INFO [org.tes.doc.DockerClientProviderStrategy] (main)

 Loaded org.testcontainers.dockerclient

 .UnixSocketClientProviderStrategy

 from ~/.testcontainers.properties, will try it first

...

 INFO [�㠮4.4]] (main) Creating container for image:

mariadb:10.4.4

 INFO [�㠮4.4]] (main) Starting container with ID:

0d07d45111b1103fd7e64ac2050320ee329ca14eb46a72d525f61bc5e433dc69

 INFO [�㠮4.4]] (main) Container mariadb:10.4.4 is starting:

0d07d45111b1103fd7e64ac2050320ee329ca14eb46a72d525f61bc5e433dc69

 INFO [�㠮4.4]] (main) Waiting for database connection to

become available at

 jdbc:mariadb://localhost:32773/test using query 'SELECT

1'

 INFO [�㠮4.4]] (main) Container is started

 (JDBC URL: jdbc:mariadb://localhost:32773/test)

 INFO [�㠮4.4]] (main) Container mariadb:10.4.4 started

 INFO [io.qua.dep.QuarkusAugmentor] (main) Beginning quarkus

augmentation

 INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation

completed

 in 1461ms

 INFO [io.quarkus] (main) Quarkus 1.4.1.Final started in

0.909s.

 Listening on: http://0.0.0.0:8081

 INFO [io.quarkus] (main) Profile test activated.

 INFO [io.quarkus] (main) Installed features: [cdi, jdbc-

mariadb, resteasy]

Executing org.acme.quickstart.GreetingResourceTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time

elapsed: 32.666 s

 - in org.acme.quickstart.GreetingResourceTest

Stop Test Suite execution

2019-11-12 11:57:27,758 INFO [io.quarkus] (main) Quarkus

stopped in 0.043s

MariaDB Docker container is created

Container is up and running and ready to receive incoming
requests

TIP
You can develop Quarkus Test Resources in a separate project
and package them as an external JAR library. You can then
reuse them in as many projects as required.

Quarkus provides the following default Quarkus Test Resource
implementations:

H2DatabaseTestResource

For starting/stopping H2 database in server mode

DerbyDatabaseTestResource

For starting/stopping Derby database in server mode

InfinispanEmbeddedTestResource

For starting/stopping Infinispan in embedded mode

InfinispanServerTestResource

For starting/stopping Infinispan in server mode

KeycloakTestResource

For starting/stopping Keycloak identity provider

ArtemisTestResource

For starting/stopping Embedded ActiveMQ

KafkaTestResource

For starting/stopping a Kafka cluster using Debezium
classes

KubernetesMockServerTestResource

For starting/stopping Kubernetes Mock server

See Also
You can learn more about how to install Docker in your local
machine and find more examples about Testcontainers test
framework at the following:

Docker: Get Docker

Testcontainers

5.20 Testing the Native Executable

Problem
You want to test that the native executable is correct.

https://oreil.ly/WrfY8
https://oreil.ly/aEeAV

Solution
Use NativeImageTest annotation to start the application from
the native file instead of using the JVM.

If you plan to produce a native executable of your application, it
is always a good idea to write some behavioral tests against
the application running in the native executable.

Quarkus provides the NativeImageTest annotation to start the
application from the native file instead of using the JVM. It is
important to note that you must generate the native executable
before running the tests or using the quarkus.package.type
system property to generate the native executable before
running the tests. You can learn more about how to generate a
native executable in the Recipe 6.4 recipe.

If the project is scaffolded using any of the methods explained
before, a native executable test is already provided.

WARNING
It is not possible to mix JVM and native image tests in the same
test suite. The JVM tests must be run in a different cycle than the
native tests (e.g., in Maven, this would be surefire for JVM tests
and failsafe for native tests).

This configuration is provided by default when a project is
scaffolded by any of the methods explained earlier:

<profile>

 <id>native</id>

 <activation>

 <property>

 <name>native</name>

 </property>

 </activation>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-failsafe-plugin</artifactId>

 <version>${surefire-plugin.version}</version>

 <executions>

 <execution>

 <goals>

 <goal>integration-test</goal>

 <goal>verify</goal>

 </goals>

 <configuration>

 <systemProperties>

 <native.image.path>

 ${project.build.directory}/

 ${project.build.finalName}-runner

 </native.image.path>

 </systemProperties>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 <properties>

 <quarkus.package.type>

 native

 </quarkus.package.type>

 </properties>

</profile>

Native tests are run in verify goal (./mvnw verify)

The location of the produced native executable (the line
should not be split in the pom)

Produces a native executable before running tests

Open the
org.acme.quickstart.NativeGreetingResourceIT.java class
located at src/test/java directory:

package org.acme.quickstart;

import io.quarkus.test.junit.NativeImageTest;

@NativeImageTest

public class NativeGreetingResourceIT

 extends GreetingResourceTest {

 // Execute the same tests but in native mode.

}

Starts the native executable located at native.image.path.

Extends JVM tests to make them run against native
executable. This is not mandatory; you can write your tests,
but remember to annotate them with @QuarkusTest. This will
run the same test but against the native executable.

WARNING
All testing features showed in this section are valid except
injecting into tests.

Discussion
There are some things that you need to take into consideration
when writing native tests:

1. Quarkus waits for 60 seconds for the native image to start
before automatically failing the native tests. This duration
can be changed using the quarkus.test.native-image-
wait-time property (i.e., ./mvnw verify -Pnative -
Dquarkus.test.native-image-wait-time=200).

2. Native tests run on prod profile; if you want to change
that, you can use the quarkus.test.native-image-
profile property to set an alternative profile.

3. You can disable certain test methods (or classes) to be
able to run them in native tests by annotating them with
the io.quarkus.test.junit.DisabledOnNativeImage
annotation (i.e., @DisabledOnNativeImage @Test public
void n o n N a t i v e T e s t () { }).

Chapter 6. Packaging
Quarkus Applications

In this chapter, you will learn about packaging a Quarkus
service into a JVM or a native format so that it can be
distributed and deployed. Today, when containers are
becoming the standard way to distribute applications, you need
to know how to containerize them.

We’ll cover the following topics:

How to package a Quarkus application for running in the
JVM

How to package a Quarkus application in a native
executable

How to containerize a Quarkus application

6.1 Running in Command Mode

Problem
You want to create a CLI application.

Solution

With Quarkus, you can also write applications that run and then
optionally exit.

To enable command mode in Quarkus, you need to create a
class that implements the
io.quarkus.runtime.QuarkusApplication interface:

package org.acme.quickstart;

import io.quarkus.runtime.Quarkus;

import io.quarkus.runtime.QuarkusApplication;

public class GreetingMain implements QuarkusApplication {

 @Override

 public int run(String... args) throws Exception {

 System.out.println("Hello World");

 Quarkus.waitForExit();

 return 0;

 }

}

Interface to set Quarkus in command mode

The method executed when the main is called

Do not exit but wait until Quarkus process is stopped

Then you can implement the well-known Java main method.
One of the requirements is that the class with the main method
must be annotated with the
@io.quarkus.runtime.annotations.QuarkusMain:

package org.acme.quickstart;

import io.quarkus.runtime.Quarkus;

import io.quarkus.runtime.annotations.QuarkusMain;

@QuarkusMain

public class JavaMain {

 public static void main(String... args) {

 Quarkus.run(GreetingMain.class, args);

 }

}

Sets the class as main

Starts the process

If you want to access the command arguments, you can inject
them using the
@io.quarkus.runtime.annotations.CommandLineArguments

annotation:

package org.acme.quickstart;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import io.quarkus.runtime.annotations.CommandLineArguments;

@Path("/hello")

public class GreetingResource {

 @CommandLineArguments

 String[] args;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return args[0];

 }

}

Injects the command-line arguments

Finally, you can build the project and run it:

./mvnw clean package -DskipTests

java -jar target/greeting-started-cli-1.0-SNAPSHOT-runner.jar

Aloha

curl localhost:8080/hello

Aloha

Discussion
Two different methods can be used to implement applications
that exit. We explained the first method in the previous section;
the second method is by annotating the class that is
implementing the io.quarkus.runtime.QuarkusApplication
interface with @io.quarkus.runtime.annotations.QuarkusMain
annotation.

The drawback of the second solution is that you cannot run it
from the IDE, and this is the reason we suggest you use the
former approach.

As you’ve seen in the example, if you want to run some logic
on startup and then run it like a normal application (i.e., not
exit), then you should call Quarkus.waitForExit from the main
thread. If you don’t call this method, then the Quarkus
application is started and then terminated, so your application
effectively behaves like any other CLI program.

6.2 Creating a Runnable JAR File

Problem
You want to create a runnable JAR file to be
distributed/containerized into a machine with a JVM installed.

Solution
Use the Quarkus Maven plug-in to create a runnable JAR.

The Quarkus Maven plug-in is installed by default if you have
scaffolded the project using any of the starters mentioned in
previous recipes:

<plugin>

 <groupId>io.quarkus</groupId>

 <artifactId>quarkus-maven-plugin</artifactId>

 <version>${quarkus.version}</version>

 <executions>

 <execution>

 <goals>

 <goal>build</goal>

 </goals>

 </execution>

 </executions>

</plugin>

Then run package goal to build the JAR file:

./mvnw clean package

The target directory contains the following contents:

target

├── classes

├── generated-sources

├── generated-test-sources

├── getting-started-1.0-SNAPSHOT-runner.jar

├── getting-started-1.0-SNAPSHOT.jar

├── lib

├── maven-archiver

├── maven-status

├── test-classes

├── transformed-classes

└── wiring-classes

An executable JAR (not über-JAR)

Location of dependencies

Lib folder with application dependencies

If you want to deploy the application, it is important to copy
together the executable JAR with the lib directory.

You can run the application by running the next command:

java -jar target/getting-started-1.0-SNAPSHOT-runner.jar

Running Quarkus in this way is known as running Quarkus in
the JVM mode. This means that you are not producing a native
compilation but are running your application inside the JVM.

TIP
If you want to package a Quarkus application in JVM mode into a
container, we recommend using this approach because the
layers created during the container build stage are cached to be
reused later. Libraries are something that do not usually change,
so this dependency layer might be reused several times in future
executions, speeding up the container build time.

Discussion
To create a runnable JAR file with Gradle, you can run the
quarkusBuild task:

./gradlew quarkusBuild

See Also

If you are interested in how to create an über-JAR or how to
containerize a Quarkus application, see Recipe 6.3.

6.3 Über-JAR Packaging

Problem
You want to create an über-JAR of your Quarkus application.

Solution
Quarkus Maven plug-in supports the generation of über-JARs
by specifying an uberJar configuration option in your pom.xml.

To create an über-JAR, a JAR that contains your code
runnable classes and all required dependencies, you need to
configure Quarkus accordingly in the application.properties file
by setting quarkus.package.uber-jar to true:

quarkus.package.uber-jar=true

6.4 Building a Native Executable

Problem
You want to build your Quarkus application as a native
executable file.

Solution

Use Quarkus and GraalVM to build a native runnable file that is
ideal for containers and serverless loads.

Native executables make Quarkus applications ideal for
containers and serverless workloads. Quarkus relies on
GraalVM to build a Java application as a native executable.

Before building a native executable, make sure to have the
GRAALVM_HOME environment variable set to the GraalVM 19.3.1
or 20.0.0 installation directory.

IMPORTANT
If you are using macOS, the variable should point to the Home
sub-directory: export GRAALVM_HOME=
<installation_dir>/Development/graalvm/Contents/Home/.

When a Quarkus project is generated using any of the methods
explained before, it registers a default Maven profile with the
name native that can be used to build a Quarkus native
executable application:

<profile>

 <id>native</id>

 <activation>

 <property>

 <name>native</name>

 </property>

 </activation>

 <build>

https://www.graalvm.org/

 <plugins>

 <plugin>

 <artifactId>maven-failsafe-plugin</artifactId>

 <version>${surefire-plugin.version}</version>

 <executions>

 <execution>

 <goals>

 <goal>integration-test</goal>

 <goal>verify</goal>

 </goals>

 <configuration>

 <systemProperties>

 <native.image.path>

${project.build.directory}/${project.build.finalName}-runner

 </native.image.path>

 </systemProperties>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

 <properties>

 <quarkus.package.type>native</quarkus.package.type>

 </properties>

</profile>

Then you need to build the project with the native profile
enabled:

./mvnw package -Pnative

After a few minutes, a native executable will be present in
target directory:

[INFO] --- quarkus-maven-plugin:1.4.1.Final:native-image

(default) @

 getting-started ---

[INFO] [io.quarkus.creator.phase.nativeimage.NativeImagePhase]

Running Quarkus

 native-image plugin on Java HotSpot(TM) 64-Bit Server VM

...

[getting-started-1.0-SNAPSHOT-runner:19] classlist:

13,614.07 ms

[getting-started-1.0-SNAPSHOT-runner:19] (cap):

2,306.78 ms

[getting-started-1.0-SNAPSHOT-runner:19] setup:

4,793.43 ms

...

Printing list of used packages to

 /project/reports/used_packages_getting-started-1.0-SNAPSHOT-

 runner_20190927_134032.txt

[getting-started-1.0-SNAPSHOT-runner:19] (compile):

42,452.12 ms

[getting-started-1.0-SNAPSHOT-runner:19] compile:

62,356.07 ms

[getting-started-1.0-SNAPSHOT-runner:19] image:

2,939.16 ms

[getting-started-1.0-SNAPSHOT-runner:19] write:

696.65 ms

[getting-started-1.0-SNAPSHOT-runner:19] [total]:

151,743.29 ms

target/getting-started-1.0-SNAPSHOT-runner

Discussion

To build a native executable in Gradle, you can use the
buildNative task:

./gradlew buildNative

6.5 Building a Docker Container for JAR File

Problem
You want to build a container with the JAR built in the Recipe
6.2 recipe.

Solution
Use the Dockerfile.jvm file provided to build the container.

When a Quarkus project is generated using any of the methods
explained before, two Dockerfiles are created in
src/main/docker: one for generating a Docker container using
Quarkus in the JVM mode and another one for the native
executable.

To generate a container for running Quarkus inside the JVM
(no native), you can use the Dockerfile.jvm file to build the
container. This Dockerfile adds the lib directory and the
runnable JAR and exposes JMX.

To build the Docker image, you need to package the project as
shown in Recipe 6.2 and then build the container:

./mvnw clean package

docker build -f src/main/docker/Dockerfile.jvm -t

example/greetings-app .

The container can be started by running the following:

docker run -it --rm -p 8080:8080 example/greetings-app

6.6 Building a Docker Container for Native
File

Problem
You want to build a native executable container image.

Solution
To generate a container for running a Quarkus native
executable, you can use the Dockerfile.native file to build the
container.

To build the Docker image, you need to create a native file that
can be run in a Docker container. For this reason, don’t use
local GraalVM to build the native executable because the result
file will be specific to your operating system and will not be able
to run inside a container.

To create an executable that will run in a container, use the
following command in your terminal:

./mvnw clean package -Pnative -Dquarkus.native.container-

build=true

This command creates a Docker image that contains GraalVM
installed to produce a 64-bit Linux executable from your code.

IMPORTANT
You need to have native profile defined in your pom.xml, as
explained in the Recipe 6.4 recipe.

The last step is to build the Docker image with the native
executable that was generated in the previous step:

docker build -f src/main/docker/Dockerfile.native -t

example/greetings-app .

Then the container can be started by running the following:

docker run -it --rm -p 8080:8080 example/greetings-app

Discussion
By default, Quarkus uses docker to build the container. The
container runtime can be changed by using the
quarkus.native.container-runtime property. At the time of
writing the book, docker and podman are the supported options:

./mvnw package -Pnative -Dquarkus.native.container-build=true \

 -Dquarkus.native.container-runtime=podman

6.7 Build and Dockerize a Native SSL
Application

Problem
When building a native executable, you want to secure
connections to prevent an attacker from stealing sensitive
information.

Solution
Enable Quarkus to use SSL to secure connections in a native
executable.

If you are running the Quarkus application in JVM mode, SSL
is supported without any problem, just as any other JVM
application. But SSL is not supported out of the box in the case
of native executables, and some extra steps (especially when
Dockerizing the application) must be executed to enable SSL
support.

Let’s enable SSL support for native executables in Quarkus by
adding the quarkus.ssl.native configuration property at
application.properties:

quarkus.ssl.native=true

Enabling this property allows the Graal VM native-image
process to enable SSL. Create a native executable using the
next command:

./mvnw clean package -Pnative -DskipTests -

Dquarkus.native.container-build=true

...

docker run -v \

 gretting-started/target/gretting-started-1.0-SNAPSHOT-native-

image-source-jar: \

 /project:z

The following are the important flags that are added
automatically by the process to enable SSL:

-H:EnableURLProtocols=http,https --enable-all-security-services

-H:+JNI

To Dockerize this native executable, the Docker-related scripts
need to be modified slightly to support SSL.

Open .dockeringnore and add the keystore.jks file as a
nonignorable file to be added into the resulted container. This
is necessary because the keystore file needs to be copied
together with the executable:

*

!target/classes/keystore.jks

!target/*-runner

!target/*-runner.jar

!target/lib/*

The src/main/docker/Dockerfile.native file must also be
adapted to package the following elements:

The SunEC library

The collection of trusted certificate authority files needed to
verify certificates used in the application.

FROM quay.io/quarkus/ubi-quarkus-native-image:19.2.1 as

nativebuilder

FROM quay.io/quarkus/ubi-quarkus-native-image:19.3.1-java11 as

nativebuilder

RUN mkdir -p /tmp/ssl \

 && cp /opt/graalvm/lib/security/cacerts /tmp/ssl/

FROM registry.access.redhat.com/ubi8/ubi-minimal

WORKDIR /work/

COPY --from=nativebuilder /tmp/ssl/ /work/

COPY target/*-runner /work/application

RUN chmod 775 /work /work/application \

 && chown -R 1001 /work \

 && chmod -R "g+rwX" /work \

 && chown -R 1001:root /work

EXPOSE 8080 8443

USER 1001

CMD ["./application",

"-Dquarkus.http.host=0.0.0.0",

"-Djavax.net.ssl.trustStore=/work/cacerts"]

Gets SunEC library and cacerts from GraalVM Docker
image

Copies custom keystore.jks at root working directory

Sets up permissions

Exposes HTTPS port

Loads SunEC and cacerts when running the application

The container image can be built by running the next
command:

docker build -f src/main/docker/Dockerfile.native -t greeting-

ssl .

Discussion
Security and SSL are common now, and it is good practice to
always have all your services communicate using SSL. For this
reason, Quarkus enables SSL support automatically when any
of the following extensions are registered:

Agroal connection pooling

Amazon DynamoDB

Hibernate Search Elasticsearch

Infinispan Client

Jaeger

JGit

Keycloak

Kubernetes client

Mailer

MongoDB

Neo4j

OAuth2

REST client

As long as you have one of those extensions in your project,
the quarkus.native.ssl property is set to true by default.

Chapter 7. Persistence

The underlying persistence strategies used by Quarkus should
already be familiar to you. Transactions, datasources, Java
Persistence API (JPA), and so on are all standards that have
existed for many years. Quarkus uses these and, in some
cases, builds on top of them to make working with persistent
stores easier. In this chapter, you will learn about working with
persistent stores in Quarkus. We cover both traditional
relational database management systems (RDBMS) and
NoSQL databases.

Quarkus has some additional gems if you’re using a traditional
RDBMS or MongoDB in the form a Panache, an opinionated,
entity or active record type API. Panache simplifies much of the
standard JPA syntax, making your application easier to read
and maintain—again, helping you to be more productive!

In this chapter, you’ll learn how to accomplish the following
tasks:

Configure datasources

Deal with transactions

Manage database schema migrations

Make use of the Panache API

Interact with NoSQL data stores

7.1 Defining a Datasource

Problem
You want to define and use a datasource.

Solution
Use the Agroal extension and application.properties.

Discussion
Agroal is the preferred datasource and connection pooling
implementation in Quarkus. The Agroal extension has
integrations with security, transaction management, and health
metrics. While it does have its own extension, if you are using
Hibernate ORM or Panache, the Agroal extension is pulled in
transitively. You will also need a database driver extension.
Currently, H2, PostgreSQL, MariaDB, MySQL, Microsoft SQL
Server, and Derby all have supported extensions. You can add
the correct database driver with the Maven add-extension:

./mvnw quarkus:add-extension -Dextensions="jdbc-mariadb"

Configuration for the datasource, just like all the other
configurations for Quarkus, is done in the
src/main/resources/application.properties file:

quarkus.datasource.url=jdbc::mariadb://localhost:3306/test

quarkus.datasource.driver=org.mariadb.jdbc.Driver

quarkus.datasource.username=username-default

quarkus.datasource.min-size=3

quarkus.datasource.max-size=13

TIP
Sensitive data can be passed via system properties, environment
properties, Kubernetes Secrets, or Vault, as you will see in later
chapters.

Should you need access to the datasource, you can inject it as
follows:

@Inject

DataSource defaultDataSource;

NOTE
You can also use the AgroalDataSource type, which is a subtype
of DataSource.

7.2 Using Multiple Datasources

Problem
You want to use multiple datasources when more than one
datasource is necessary for your application.

Solution
Use named datasources.

Agroal allows for multiple datasources. They are configured
exactly the same as the default, with one noteable exception—
a name:

quarkus.datasource.driver=org.h2.Driver

quarkus.datasource.url=jdbc:h2:tcp://localhost/mem:default

quarkus.datasource.username=username-default

quarkus.datasource.min-size=3

quarkus.datasource.max-size=13

quarkus.datasource.users.driver=org.h2.Driver

quarkus.datasource.users.url=jdbc:h2:tcp://localhost/mem:users

quarkus.datasource.users.username=username1

quarkus.datasource.users.min-size=1

quarkus.datasource.users.max-size=11

quarkus.datasource.inventory.driver=org.h2.Driver

quarkus.datasource.inventory.url=jdbc:h2:tcp://localhost/mem:inv

entory

quarkus.datasource.inventory.username=username2

quarkus.datasource.inventory.min-size=2

quarkus.datasource.inventory.max-size=12

The format is as follows: quarkus.datasource.[optional
name.][datasource property].

Discussion

Injection works identically; however, you will need a qualifier
(please see Recipe 5.10 for more information about qualifiers):

@Inject

AgroalDataSource defaultDataSource;

@Inject

@DataSource("users")

AgroalDataSource dataSource1;

@Inject

@DataSource("inventory")

AgroalDataSource dataSource2;

7.3 Adding Datasource Health Check

Problem
You want to add a health check entry for the datasource(s).

Solution
Use both the quarkus-agroal and quarkus-smallrye-health
extensions.

Discussion
The health check for datasources is automatically added when
the quarkus-smallrye-health extension is in use. It can be
disabled, if desired, with the
quarkus.datasource.health.enabled (default to true) property
in application.properties. To view the status, access the

/health/ready endpoint of your application. That endpoint is
created from the quarkus-smallrye-health extension.

See Also
For more information, visit the following page on GitHub:

MicroProfile Health

7.4 Defining Transaction Boundaries
Declaratively

Problem
You want to define a transaction boundary using annotations.

Solution
Use the @javax.transaction.Transactional annotation from
the quarkus-narayana-jta extension.

Discussion
The quarkus-narayana-jta extension adds in the
@javax.transaction.Transactional annotations, as well as
the TransactionManager and UserTransaction classes. This
extension is automatically added by any persistence
extensions. Of course, this can be added manually if needed.

https://oreil.ly/CDLOd

The @Transactional annotation can be added to any CDI bean
at the method or class level to make those methods
transactional—this also includes REST endpoints:

package org.acme.transaction;

import javax.inject.Inject;

import javax.transaction.Transactional;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/tx")

@Transactional

public class Transact {

}

7.5 Setting a Transaction Context

Problem
You want a different transaction context.

Solution
The value attribute on @Transactional allows the scope to be
set for the transaction.

Discussion

The transaction context specified is propagated to all nested
calls within the method that has been annotated. Unless a
runtime exception is thrown in the stack, the transaction will
commit at the end of the method call:

package org.acme.transaction;

import javax.inject.Inject;

import javax.transaction.Transactional;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

@Path("/tx")

@Transactional

public class Transact {

 @Inject

 NoTransact noTx;

 @GET

 @Path("/no")

 @Produces(MediaType.TEXT_PLAIN)

 public String hi() {

 return noTx.word();

 }

}

package org.acme.transaction;

import javax.enterprise.context.ApplicationScoped;

import javax.transaction.Transactional;

import static javax.transaction.Transactional.TxType.NEVER;

@ApplicationScoped

public class NoTransact {

 @Transactional(NEVER)

 public String word() {

 return "Hi";

 }

}

This is overridable with the dontRollbackOn or rollbackOn
attributes of @ T r a n s a c t i o n a l. You can also inject the
TransactionManager if you need to manually roll back a
transaction.

Here is a list of available transactional contexts:

@Transactional(REQUIRED) (default)

Starts a transaction if none was started; otherwise, stays
with the existing one

@Transactional(REQUIRES_NEW)

Starts a transaction if none was started; if an existing one
was started, suspends it and starts a new one for the
boundary of that method

@Transactional(MANDATORY)

Fails if no transaction was started; otherwise, works within
the existing transaction

@Transactional(SUPPORTS)

If a transaction was started, joins it; otherwise, works with
no transaction

@Transactional(NOT_SUPPORTED)

If a transaction was started, suspends it and works with no
transaction for the boundary of the method; otherwise,
works with no transaction

@Transactional(NEVER)

If a transaction was started, raises an exception; otherwise,
works with no transaction

7.6 Programmatic Transaction Control

Problem
You want more fine-grained control over transactions.

Solution
Inject the UserTransaction and use the methods of that class.

The UserTransaction class has a very simple API:

begin()

commit()

rollback()

setRollbackOnly()

getStatus()

setTransactionTimeout(int)

The first three methods will be the main methods used.
getStatus() is useful in determining where the transaction is in
its life cycle. Lastly, you are able to set the timeout for a
transaction.

NOTE
If needed, you can also use the
javax.transaction.TransactionManager by injecting it.

See Also
For more information, visit the following web page:

Jakarta EE 8 Specification APIs: Interface UserTransaction

7.7 Setting and Modifying a Transaction
Timeout

Problem
You want a transaction to time out and roll back after a certain
amount of time.

Solution
Use the
@io.quarkus.narayana.jta.runtime.TransactionConfiguratio

n annotation if using declarative transactions; otherwise, the

https://oreil.ly/lmjR_

transaction API can be used for programmatic transaction
control. You can also change the global timeout for
transactions with the quarkus.transaction-manager.default-
transaction-timeout property, specified as a
java.time.Duration.

Modifying the timeout of a transaction for a one-off is very easy
with the @TransactionConfiguration annotation. Use the
timeout attribute to set the number of seconds for the timeout.

Discussion
Should every transaction in the application need a longer or
shorter time, use the quarkus.transaction-manager.default-
transaction-timeout property in application.properties. That
property takes a java.time.Duration, which can be specified
as a string parsable via Duration#parse(). You may also start
the duration with an integer. Quarkus will then automatically
prepend PT to the value to create the correct formatting.

See Also
For more information, visit the following website:

Oracle: Java Platform, Standard Edition 8 API Specification:
parse

7.8 Setup with Persistence.xml

https://oreil.ly/8gvMZ

Problem
You want to use JPA with a persistence.xml file.

Solution
Use JPA like you normally would; just set up the datasource in
application.properties.

Discussion
JPA in Quarkus works exactly as it does in other settings, so
there no changes are necessary.

NOTE
You cannot use the quarkus.hibernate-orm.* properties if you
are using persistence.xml. If you are, only the persistence units
defined in the persistence.xml file will be available.

7.9 Setup Without persistence.xml

Problem
You want to use JPA, but without a persistence.xml file.

Solution
Add the quarkus-hibernate-orm extension, the JDBC driver for
your RDBMS, configuration via application.properties, and

finally annotate your entities with @Entity.

Discussion
There isn’t anything special to set up using Quarkus and JPA
beyond database connectivity. Quarkus will make some
opinionated choices, but don’t worry—they’re probably the
choices you would have made anyway—and continue on with
your entities. You will be able to inject and utilize an
EntityManager just as your normally would.

In a nutshell, you continue as you usually would with standard
JPA, but without all the additional configuration of a
persistence.xml. This is the preferred way to use JPA in
Quarkus.

7.10 Using Entities from a Different JAR

Problem
You want to include entities from a different jar.

Solution
Include an empty META-INF/beans.xml file in the jar containing
the entities.

Discussion

Quarkus relies on compile-type bytecode enhancements to
entities. If these entities are defined in the same project (jar) as
the rest of the application, everything works as it should.

However, if other classes such as entities or other CDI beans
are defined in an external library, that library must contain an
empty META-INF/beans.xml file to be properly indexed and
enhanced.

7.11 Persisting Data with Panache

Problem
You want to persist data with Hibernate and Panache.

Solution
Call the persist method on a PanacheEntity.

Naturally, you’ll need to add the quarkus-hibernate-orm-
panache extension, and the corresponding JDBC extension for
your data store. Next, you’ll need to define an entity. All that
entails is creating a class, annotating it with
@javax.persistence.Entity, and extending from
PanacheEntity.

Discussion
Panache is an opinionated API built on top of a traditional JPA.
It follows more of an active record approach to data entities;

however, under the hood, it is done using traditional JPA.

As you will find throughout the exploration of Panache, much of
the functionality is passed on to your entities through the
PanacheEntity or PanacheEntityBase parent class—persist is
no exception to this. PanacheEntityBase contains both the
persist() and persistAndFlush() methods. While the flush
option will immediately send the data to the database, it is not
the recommended way of persisting the data.

Persisting is very simple, as you can see in the following:

 @POST

 public Response newLibrary(Library library) {

 library.persist();

 return Response.created(URI.create("/library/" +

library.encodedName()))

 .entity(library).build();

 }

For completion, here is the Library entity:

package org.acme.panache;

import java.io.UnsupportedEncodingException;

import java.net.URLEncoder;

import java.util.List;

import javax.persistence.CascadeType;

import javax.persistence.Entity;

import javax.persistence.OneToMany;

import io.quarkus.hibernate.orm.panache.PanacheEntity;

import io.quarkus.panache.common.Parameters;

@Entity

public class Library extends PanacheEntity {

 public String name;

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true,

 mappedBy = "library")

 public List<Inventory> inventory;

 public String encodedName() {

 String result;

 try {

 result = URLEncoder.encode(name, "UTF-8")

 .replaceAll("\\+", "%20")

 .replaceAll("\\%21", "!")

 .replaceAll("\\%27", "'")

 .replaceAll("\\%28", "(")

 .replaceAll("\\%29", ")")

 .replaceAll("\\%7E", "~");

 } catch (UnsupportedEncodingException e) {

 result = name;

 }

 return result;

 }

}

7.12 Finding All Entity Instances with
Panache listAll Method

Problem
You want to find all entries of an entity.

Solution
Use the listAll() method from the PanacheEntityBase class.

Just like the persist() method covered in the previous recipe,
listAll() is a method from the PanacheEntityBase class.
There isn’t anything special about it; it queries the database for
all the entries of the given entity. It returns those entities in a
List:

 @GET

 public List<Book> getAllBooks() {

 return Book.listAll();

 }

NOTE
This method is actually a shortcut for the findAll().list()
chain. More info can be found in the hibernate-orm-panache
code base.

7.13 Finding Individual Entities with Panache
findById Method

Problem
I want to find and load an entity from the database based on its
ID.

Solution

Use PanacheEntityBase.findById(Object).

Panache simplifies finding an entity by using the
findById(Object) method. All you need to do is pass the ID of
the object and you will be returned the correct instance from
the database:

 @GET

 @Path("/byId/{id}")

 public Book getBookById(@PathParam(value = "id") Long id) {

 Book b = Book.findById(id);

 return b;

 }

7.14 Finding Entities Using Panache Find and
List Methods

Problem
You want to query the database for a specific entity based on
its properties.

Solution
Use the various instances of the find and list methods from
PanacheEntityBase.

Depending on how you need the result returned, you will use
either list or find from the PanacheEntityBase. Internally,
list uses find, so they are essentially the same:

 public static Book findByTitle(String title) {

 return find("title", title).firstResult();

 }

 public static List<Book> findByAuthor(String author) {

 return list("author", author);

 }

 public static List<Book> findByIsbn(String isbn) {

 return list("isbn", isbn);

 }

There are multiple overrides for both methods—they change
based on the necessity of sorting and how you wish to send
parameters. The following code is an example of using
Hibernate Query Language (HQL) (or Java Persistence Query
Language [JPQL]) and using the Parameters class:

 public static Library findByName(String name) {

 return Library

 .find("SELECT l FROM Library l " +

 "LEFT JOIN fetch l.inventory " +

 "WHERE l.name = :name ",

 Parameters.with("name",

name)).firstResult();

 }

The Parameters class override is available for both find and
list methods. Consult the API for more information.

NOTE
You may be wondering, Why the full JPQL query? Put simply, it is
to avoid serialization issues with the list. Using the left join, we
are able to fetch the library and all the inventory for that library.

7.15 Obtaining a Count of Entities Using the
Panache count Method

Problem
You want to get a count of items for a resource.

Solution
Use the various count methods from PanacheEntityBase.

Just like the find methods discussed earlier, Panache has
various count method overrides available to obtain the number
of entities of a given type in the database:

Book.count()

Book.count("WHERE title = ?",)

7.16 Paginating Through Entity Lists Using
the Panache page Method

Problem

You want to use pagination.

Solution
Quarkus, specifically Panache, has pagination built in. There
are a number of methods on the PanacheQuery object that
support pagination.

Discussion
Pagination is very easy to get going. The first step is to get an
instance of a PanacheQuery. This is as easy as using the find
methods:

PanacheQuery<Book> authors = Book.find("author", author);

authors.page(Page.of(3, 25)).list();

authors.page(Page.sizeOf(10)).list();

Pages of 25 items, starting on page 3

There are, of course, other methods such as firstPage(),
lastPage(), nextPage(), and previousPage(). Boolean
supporting methods exist as well: hasNextPage(),
hasPreviousPage(), and pageCount().

See Also
For more information, see the following pages on GitHub:

Page object

https://oreil.ly/KYlsJ

PanacheQuery interface

7.17 Streaming Results via the Panache
Stream Method

Problem
You want to use streams for data.

Solution
All list methods have corresponding stream methods when
using Panache. Below you will see how these are used, which
isn’t any different than how list methods are used:

Book.streamAll();

...

Book.stream("author", "Alex Soto");

Each of the stream and streamAll methods return a
java.util.Stream instance.

NOTE
stream methods require a transaction to work correctly.

See Also
For more information, visit the following website:

https://oreil.ly/BtgHK

io.quarkus: PanacheEntityBase

7.18 Testing Panache Entities

Problem
You want to use an embedded database for testing.

Solution
Quarkus comes with helpers for the in-memory databases H2
and Derby to properly boot the database as a separate
process.

Be sure to add either the io.quarkus:quarkus-test-
h2:1.4.1.Final or the i o
. q u a r k u s : q u a r k u s - t e s t - d e r b y : 1 . 4 . 1 . F i n a l artifacts to your
build file.

The next step is to annotate any test using the embedded
database with @ Q u a r k u s
T e s t R e s o u r c e (H 2 D a t a b a s e T e s t R e s o u r c e . c l a s s) or
@QuarkusTestResource(DerbyDatabaseTestResource.class).
Lastly, be sure to set the correct database URL and driver for
the chosen database in src/test/resources/META-
INF/application.properties.

https://oreil.ly/OW2fV

The following is an example for H2:

package my.app.integrationtests.db;

import io.quarkus.test.common.QuarkusTestResource;

import io.quarkus.test.h2.H2DatabaseTestResource;

@QuarkusTestResource(H2DatabaseTestResource.class)

public class TestResources {

}

quarkus.datasource.url=jdbc:h2:tcp://localhost/mem:test

quarkus.datasource.driver=org.h2.Driver

NOTE
This helper does not add the database into the native image, only
the client code. However, feel free to use this for tests against
your application in JVM mode or native image mode.

See Also
For more information, visit the following websites:

H2 Database Engine

Apache Derby

7.19 Using a Data Access Object (DAO) or
Repository Pattern

https://oreil.ly/_MMus
https://oreil.ly/FUFeH

Problem
You want to use the DAO or the repository pattern.

Solution
Quarkus doesn’t limit with Panache; you can use the Entity
pattern as previously described, a DAO, or a repository pattern.

The two interfaces you’ll need to understand to use a
repository are PanacheRepository and PanacheRepositoryBase.
The base interface is necessary only if you have a primary key
that isn’t a Long. All of the same operations available on
PanacheEntity are available on PanacheRepository. A
repository is a CDI bean, so it must be injected when it is being
used. Here are some basic examples:

package org.acme.panache;

import java.util.Collections;

import javax.enterprise.context.ApplicationScoped;

import io.quarkus.hibernate.orm.panache.PanacheQuery;

import io.quarkus.hibernate.orm.panache.PanacheRepository;

import io.quarkus.panache.common.Parameters;

import io.quarkus.panache.common.Sort;

@ApplicationScoped

public class LibraryRepository implements

PanacheRepository<Library> {

 public Library findByName(String name) {

 return find("SELECT l FROM Library l " +

 "left join fetch l.inventory where l.name =

:name ",

 Parameters.with("name", name)).firstResult();

 }

 @Override

 public PanacheQuery<Library> findAll() {

 return find("from Library l left join fetch

l.inventory");

 }

 @Override

 public PanacheQuery<Library> findAll(Sort sort) {

 return find("from Library l left join fetch

l.inventory",

 sort, Collections.emptyMap());

 }

}

A DAO would work exactly as you would expect. You would
need to inject an EntityManager and query as normal. There
are a myriad of solutions and examples for using a DAO with
Java that are available both online and in other books. Those
examples will all function the same with Quarkus.

See Also
For more information, visit the following website:

io.quarkus: PanacheRepositoryBase

7.20 Using Amazon DynamoDB

https://oreil.ly/H6kTU

Problem
You want to use DynamoDB with a Quarkus application.

Solution
Use the DynamoDB extension and setup configuration. The
DynamoDB extension allows both sync and async clients to
make use of the Apache Amazon Web Service Software
Development Kit (AWS SDK) client. There are a few things
necessary to set up and enable in your project to get this
running. The first is, of course, the dependency:

 <dependency>

 <groupId>software.amazon.awssdk</groupId>

 <artifactId>url-connection-client</artifactId>

 </dependency>

NOTE
There is no Quarkus extension for the AWS connection client.

The extension uses the URLConnection HTTP client by
default. You need to add the correct client (URLConnection,
Apache, or Netty NIO) to your build script:

 <dependency>

 <groupId>software.amazon.awssdk</groupId>

 <artifactId>apache-client</artifactId>

 <exclusions>

 <exclusion>

 <groupId>commons-logging</groupId>

 <artifactId>commons-logging</artifactId>

 </exclusion>

 </exclusions>

 </dependency>

You must exclude commons-logging to force the client to use
the Quarkus logger

If you are using the Apache client, you will also need to make
an adjustment to the application.properties file because url is
the default:

 quarkus.dynamodb.sync-client.type=apache

There are also configurations for the client in
application.properties (please see the properties references for
more):

quarkus.dynamodb.endpoint-override=http://localhost:8000

quarkus.dynamodb.aws.region=eu-central-1

quarkus.dynamodb.aws.credentials.type=static

quarkus.dynamodb.aws.credentials.static-provider.access-key-

id=test-key

quarkus.dynamodb.aws.credentials.static-provider.secret-access-

key=test-secret

Useful if using a nonstandard endpoint, such as a local
DynamoDB instance

https://oreil.ly/HZ4A-

Correct, and valid, region

static or default

The default credential type will look for credentials in order:

System properties aws.accessKeyId and aws.secretKey

Environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY

Credential profiles at the default location
($HOME/.aws/credentials)

Credentials delivered through the Amazon EC2 container
service

Instance profile credentials delivered through Amazon EC2
metadata service

Discussion
The following example is from Recipe 7.11, but with
DynamoDB as the persistence store.

Here are the two classes used to talk to DynamoDB and create
an injectable service to be used in the REST endpoint:

package org.acme.dynamodb;

import java.util.List;

import java.util.stream.Collectors;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import

software.amazon.awssdk.services.dynamodb.DynamoDbClient;

@ApplicationScoped

public class BookSyncService extends AbstractBookService {

 @Inject

 DynamoDbClient dynamoDbClient;

 public List<Book> findAll() {

 return

dynamoDbClient.scanPaginator(scanRequest()).items().stream()

 .map(Book::from)

 .collect(Collectors.toList());

 }

 public List<Book> add(Book b) {

 dynamoDbClient.putItem(putRequest(b));

 return findAll();

 }

 public Book get(String isbn) {

 return

Book.from(dynamoDbClient.getItem(getRequest(isbn)).item());

 }

}

The following abstract class contains boilerplate code needed
to talk to DynamoDB and persist and query Book instances:

package org.acme.dynamodb;

import java.util.HashMap;

import java.util.Map;

import

software.amazon.awssdk.services.dynamodb.model.AttributeValue;

import

software.amazon.awssdk.services.dynamodb.model.GetItemRequest;

import

software.amazon.awssdk.services.dynamodb.model.PutItemRequest;

import

software.amazon.awssdk.services.dynamodb.model.ScanRequest;

public abstract class AbstractBookService {

 public final static String BOOK_TITLE = "title";

 public final static String BOOK_ISBN = "isbn";

 public final static String BOOK_AUTHOR = "author";

 public String getTableName() {

 return "QuarkusBook";

 }

 protected ScanRequest scanRequest() {

 return

ScanRequest.builder().tableName(getTableName()).build();

 }

 protected PutItemRequest putRequest(Book book) {

 Map<String, AttributeValue> item = new HashMap<>();

 item.put(BOOK_ISBN, AttributeValue.builder()

 .s(book.getIsbn()).build());

 item.put(BOOK_AUTHOR, AttributeValue.builder()

 .s(book.getAuthor()).build());

 item.put(BOOK_TITLE, AttributeValue.builder()

 .s(book.getTitle()).build());

 return PutItemRequest.builder()

 .tableName(getTableName())

 .item(item)

 .build();

 }

 protected GetItemRequest getRequest(String isbn) {

 Map<String, AttributeValue> key = new HashMap<>();

 key.put(BOOK_ISBN,

AttributeValue.builder().s(isbn).build());

 return GetItemRequest.builder()

 .tableName(getTableName())

 .key(key)

 .build();

 }

}

This last class is the class representing the Book entity:

package org.acme.dynamodb;

import java.util.Map;

import java.util.Objects;

import io.quarkus.runtime.annotations.RegisterForReflection;

import

software.amazon.awssdk.services.dynamodb.model.AttributeValue;

@RegisterForReflection

public class Book {

 private String isbn;

 private String author;

 private String title;

 public Book() {

 }

 public static Book from(Map<String, AttributeValue> item) {

 Book b = new Book();

 if (item != null && !item.isEmpty()) {

b.setAuthor(item.get(AbstractBookService.BOOK_AUTHOR).s());

b.setIsbn(item.get(AbstractBookService.BOOK_ISBN).s());

b.setTitle(item.get(AbstractBookService.BOOK_TITLE).s());

 }

 return b;

 }

 public String getIsbn() {

 return isbn;

 }

 public void setIsbn(String isbn) {

 this.isbn = isbn;

 }

 public String getAuthor() {

 return author;

 }

 public void setAuthor(String author) {

 this.author = author;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return

false;

 Book book = (Book) o;

 return Objects.equals(isbn, book.isbn) &&

 Objects.equals(author, book.author) &&

 Objects.equals(title, book.title);

 }

 @Override

 public int hashCode() {

 return Objects.hash(isbn, author, title);

 }

}

Necessary to have reflection in a native application

Required by DynamoDB client

Most of this is standard DynamoDB code, with the exception of
the Quarkus annotation registering the Book class for reflection,
which is necessary only if you are creating a native image.

As you can see, the skills you have already acquired while
working previously with DynamoDB are still usable without
much modification when working with Quarkus, which helps
you be more productive.

7.21 Working with MongoDB

Problem
You want to use MongoDB as a persistent store.

Solution
The Quarkus MongoDB extension makes use of the MongoDB
Driver and Client.

Discussion
By now you should be familiar with the basics of a RESTful
resource and Quarkus configuration. Here we’ll show the code
and example configuration used to talk to a local MongoDB
instance.

Naturally, you’ll need to add the connection information to your
application:

quarkus.mongodb.connection-string = mongodb://localhost:27017

The Book class is a representation of the document within
MongoDB:

package org.acme.mongodb;

import java.util.HashSet;

import java.util.Objects;

import java.util.Set;

import org.bson.Document;

public class Book {

 public String id;

 public String title;

 public String isbn;

 public Set<String> authors;

 // Needed for JSON-B

 public Book() {}

 public Book(String title) {

 this.title = title;

 }

 public Book(String title, String isbn) {

 this.title = title;

 this.isbn = isbn;

 }

 public Book(String title, String isbn, Set<String> authors)

{

 this.title = title;

 this.isbn = isbn;

 this.authors = authors;

 }

 public Book(String id, String title, String isbn,

Set<String> authors) {

 this.id = id;

 this.title = title;

 this.isbn = isbn;

 this.authors = authors;

 }

 public static Book from(Document doc) {

 return new Book(doc.getString("id"),

 doc.getString("title"),

 doc.getString("isbn"),

 new HashSet<>(doc.getList("authors",

String.class)));

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return

false;

 Book book = (Book) o;

 return Objects.equals(id, book.id) &&

 Objects.equals(title, book.title) &&

 Objects.equals(isbn, book.isbn) &&

 Objects.equals(authors, book.authors);

 }

 @Override

 public int hashCode() {

 return Objects.hash(id, title, isbn, authors);

 }

}

This service class acts as a DAO, a way into the MongoDB
instance:

package org.acme.mongodb;

import java.util.ArrayList;

import java.util.List;

import java.util.Objects;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import com.mongodb.client.MongoClient;

import com.mongodb.client.MongoCollection;

import com.mongodb.client.MongoCursor;

import com.mongodb.client.model.Filters;

import org.bson.Document;

@ApplicationScoped

public class BookService {

 @Inject

 MongoClient mongoClient;

 public List<Book> list() {

 List<Book> list = new ArrayList<>();

 try (MongoCursor<Document> cursor = getCollection()

 .find()

 .iterator()) {

 cursor.forEachRemaining(doc ->

list.add(Book.from(doc)));

 }

 return list;

 }

 public Book findSingle(String isbn) {

 Document document =

Objects.requireNonNull(getCollection()

 .find(Filters.eq("isbn", isbn))

 .limit(1).first());

 return Book.from(document);

 }

 public void add(Book b) {

 Document doc = new Document()

 .append("isbn", b.isbn)

 .append("title", b.title)

 .append("authors", b.authors);

 getCollection().insertOne(doc);

 }

 private MongoCollection<Document> getCollection() {

 return

mongoClient.getDatabase("book").getCollection("book");

 }

}

Lastly, a RESTful resource makes use of the previous two
classes:

package org.acme.mongodb;

import java.util.List;

import javax.inject.Inject;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

@Path("/book")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class BookResource {

 @Inject

 BookService service;

 @GET

 public List<Book> getAll() {

 return service.list();

 }

 @GET

 @Path("{isbn}")

 public Book getSingle(@PathParam("isbn") String isbn) {

 return service.findSingle(isbn);

 }

 @POST

 public Response add(Book b) {

 service.add(b);

 return Response.status(Response.Status.CREATED)

 .entity(service.list()).build();

 }

}

We’ll leave it as an exercise for the reader to create and use a
BSON Codec. One of the other handy features of the
MongoDB extension is an automatic health check that runs
when using the quarkus-smallrye-health extension. The
quarkus-smallrye-health extension will automatically create a
readiness health check for your MongoDB connection. The
readiness check, of course, is configurable.

The Quarkus MongoDB extension also includes a reactive
client, which will be detailed in Recipe 15.12.

7.22 Using Panache with MongoDB

Problem
You want to use Panache with MongoDB.

Solution
Add the mongodb-panache extension and use all the Panache
abilities with PanacheMongoEntity.

Panache for MongoDB works the same as Panache for
Hibernate, which we saw in recipes 7.7 through 7.17. It
significantly simplifies your entity code:

package org.acme.mongodb.panache;

import java.time.LocalDate;

import java.util.List;

import io.quarkus.mongodb.panache.MongoEntity;

import io.quarkus.mongodb.panache.PanacheMongoEntity;

import org.bson.codecs.pojo.annotations.BsonProperty;

@MongoEntity(collection = "book", database = "book")

public class Book extends PanacheMongoEntity {

 public String title;

 public String isbn;

 public List<String> authors;

 @BsonProperty("pubDate")

 public LocalDate publishDate;

 public static Book findByIsbn(String isbn) {

 return find("isbn", isbn).firstResult();

 }

 public static List<Book> findPublishedOn(LocalDate date) {

 return list("pubDate", date);

 }

}

The optional @MongoEntity annotation allows you to
customize the database and/or collection used

The required part—add your fields as public fields

Customize the serialized field name with @BsonProperty

Query using PanacheQL (subset of JPQL), just like with
JPA

Discussion
The Panache MongoDB extension uses the
PojoCodecProvider to map entites to a MongoDB Document.
Besides @BsonProperty, you can also ignore fields with
@BsonIgnore. You are also able to set up custom IDs with
@BsonId and extend PanacheMongoEntityBase.

Of course, if you need to write accessor methods, Panache
doesn’t stop you from doing that; in fact, at build time all the
field calls are replaced with the corresponding
accessor/mutator calls. Just like Panache for Hibernate, the
MongoDB version supports pagination, sorting, streams, and
the rest of the Panache API.

The PanacheQL query you see in the previous example is
easy to use and understand; but if you prefer to use regular
MongoDB queries, those are also supported, provided that the
query starts with {.

A slight difference between the Hibernate and MongoDB
Panache varieties is MongoDB’s ability to use Query Projection
on the return of a find() method. This allows you to restrict
which fields are returned from the database. Here is a very
basic example with our Book entity:

import io.quarkus.mongodb.panache.ProjectionFor;

@ProjectionFor(Book.class)

public class BookTitle {

 public String title;

}

PanacheQuery<BookTitle> query = Book.find("isbn", "978-1-492-

06265-3")

 .project(BookTitle.class);

If you have a hierarchy of projection classes, the parent
class(es) will also need to be annotated with @ProjectionFor.

7.23 Using Neo4j with Quarkus

Problem
You want to connect to and use Neo4j.

Solution
Use the Quarkus Neo4j extension based on the Neo4j Java
Driver.

The following examples make use of the asynchronous
programming model (based on JDK’s completable futures).
The driver also makes use of a blocking model, similar to
JDBC, and a reactive model. The reactive model is available
only to Neo4j 4+ versions.

By now you’ve seen how to add additional extensions to your
project, so we won’t cover that here. The following example
also manages books, like others before it:

package org.acme.neo4j;

import java.util.HashSet;

import java.util.Set;

import java.util.StringJoiner;

import org.neo4j.driver.Values;

import org.neo4j.driver.types.Node;

public class Book {

 public Long id;

 public String title;

 public String isbn;

 public Set<String> authors;

 // Needed for JSON-B

 public Book() {}

 public Book(String title) {

 this.title = title;

 }

 public Book(String title, String isbn) {

 this.title = title;

 this.isbn = isbn;

 }

 public Book(String title, String isbn, Set<String> authors) {

 this.title = title;

 this.isbn = isbn;

 this.authors = authors;

 }

 public Book(Long id, String title, String isbn, Set<String>

authors) {

 this.id = id;

 this.title = title;

 this.isbn = isbn;

 this.authors = authors;

 }

 public static Book from(Node node) {

 return new Book(node.id(),

 node.get("title").asString(),

 node.get("isbn").asString(),

 new HashSet<>(

 node.get("authors")

 .asList(Values.ofString())

)

);

 }

 public String toJson() {

 final StringJoiner authorString =

 new StringJoiner("\",\"", "[\"", "\"]");

 authors.forEach(authorString::add);

 return "{" +

 "\"title\":\"" + this.title + "\"," +

 "\"isbn\":\"" + this.isbn + "\"," +

 "\"authors\":" + authorString.toString() +

 "}";

 }

}

Naturally, you will need to configure the client. This can be as
easy as setting the quarkus.neo4j.uri,
quarkus.neo4j.authentication.username, and q u a r k u s
. n e o 4 j . a u t h e n t i c a t i o n . p a s s w o r d properties. You can consult
the extension for more properties.

The first thing you will need to configure the client is the Neo4j
Driver. The extension provides an injectable instance:

@Inject

Driver driver;

Next, create a new REST resource and add the Driver injection
point, then add the basic CRUD operations:

@GET

public CompletionStage<Response> getAll() {

 AsyncSession session = driver.asyncSession();

 return session

 .runAsync("MATCH (b:Book) RETURN b ORDER BY

b.title")

 .thenCompose(cursor -> cursor.listAsync(record ->

 Book.from(record.get("b").asNode())))

 .thenCompose(books -> session.

 closeAsync().thenApply(signal -> books))

 .thenApply(Response::ok)

 .thenApply(Response.ResponseBuilder::build);

}

Gets an AsyncSession from the driver

Executes Cypher (Neo4j’s query language) to fetch the data

Retrieves a cursor, creating Book instances from the nodes

Closes the session once we’re done

Builds a JAX-RS response

The rest of the class/code follow the same pattern:

@POST

public CompletionStage<Response> create(Book b) {

 AsyncSession session = driver.asyncSession();

 return session

 .writeTransactionAsync(tx ->

 {

 String query = "CREATE (b:Book " +

 "{title: $title, isbn: $isbn, authors:

$authors})" +

 " RETURN b";

 return tx.runAsync(query,

 Values.parameters("title",

b.title,

 "isbn", b.isbn,

 "authors", b.authors))

.thenCompose(ResultCursor::singleAsync);

 }

)

 .thenApply(record ->

Book.from(record.get("b").asNode()))

 .thenCompose(persistedBook -> session.closeAsync()

 .thenApply(signal -> persistedBook))

 .thenApply(persistedBook -> Response.created(

 URI.create("/book/" +

persistedBook.id)).build());

}

@DELETE

@Path("{id}")

public CompletionStage<Response> delete(@PathParam("id") Long

id) {

 AsyncSession session = driver.asyncSession();

 return session

 .writeTransactionAsync(tx -> tx

 .runAsync("MATCH (b:Book) WHERE id(b) = $id

DELETE b",

 Values.parameters("id", id))

 .thenCompose(ResultCursor::consumeAsync))

 .thenCompose(resp -> session.closeAsync())

 .thenApply(signal -> Response.noContent().build());

}

This last one is a little different, in that it handles errors:

@GET

@Path("{id}")

public CompletionStage<Response> getById(@PathParam("id") Long

id) {

 AsyncSession session = driver.asyncSession();

 return session.readTransactionAsync(tx ->

 tx.runAsync("MATCH (b:Book) WHERE id(b) = $id RETURN

b",

 Values.parameters("id", id))

 .thenCompose(ResultCursor::singleAsync))

 .handle(((record, err) -> {

 if (err != null) {

 Throwable source = err;

 if (err instanceof CompletionException)

 source = ((CompletionException)

err).getCause();

 Response.Status status = Response.Status.

INTERNAL_SERVER_ERROR;

 if (source instanceof NoSuchRecordException)

 status = Response.Status.NOT_FOUND;

 return Response.status(status).build();

 } else {

 return Response.ok(Book.from(record.get("b")

 .asNode())).build();

 }

 }))

 .thenCompose(response -> session.closeAsync()

 .thenApply(signal ->

response));

}

See Also
The Neo4j Cypher Manual will come in handy as you learn and
try new things with Cypher.

https://oreil.ly/ITHPx

7.24 Flyway at Startup

Problem
You want to use Flyway to migrate my database schema.

Solution
Use the quarkus-flyway integration extension.

Discussion
Quarkus has first-class support for schema migrations using
Flyway. There are five things you need to do to use Flyway with
Quarkus at application start:

1. Add the Flyway extension.

2. Add the JDBC driver for your database.

3. Setup the datasource(s).

4. Add migrations to src/main/resources/db/migration.

5. Set the quarkus.flyway.migrate-at-start to true.

The default naming schema for Flyway migrations is V.
<version>__<description>.sql. Everything else is taken care
of.

You can also use Flyway with multiple datasources. Any
settings that need to be configured for each datasource are
named with the same schema as datasource names:

quarkus.flyway.datasource name.setting. For example,
it might be quarkus.flyway.users.migrate-at-start.

7.25 Using Flyway Programmatically

Problem
You want to use Flyway programmatically. There may be times
when you want to control when the schema is migrated instead
of doing it at application startup.

Solution
Use the quarkus-flyway extension and inject the Flyway
instance:

@Inject

Flyway flyway

Discussion
This will inject the default org.flywaydb.core.Flyway instance
configured against the default datasource. If you have multiple
datasources and Flyway instances, you can inject specific ones
using either the @FlywayDataSource or @Named annotation.
When using @FlywayDataSource, the value is the name of the
datasource. If instead you use @Named, the value should be the
name of the datasource with the flyway_ prefix:

@Inject

@FlywayDataSource("books")

Flyway flywayBooks;

@Inject

@Named("flyway_users")

Flyway flywayUsers;

Naturally, you will be able to run all the standard Flyway
operations such as clean, migrate, validate, info, baseline,
and repair.

Chapter 8. Fault Tolerance

In this chapter, you’ll learn why you need to embrace failures in
microservice architectures because this is something that will
happen more often than not. One of the reasons this happens
is because microservices architecture heavily relies on the
network to function, and the network is a critical part that might
not always be available (network down, saturation of the wire,
change on the topology, update of the downstream service,
etc.).

For this reason, it is important to build services that are fault-
tolerant to any kind of problem and to provide graceful
solutions instead of just propagating the error.

This chapter will include recipes for the following tasks:

Implement different resilient strategies

Provide some fallback logic in case there is an error

Correctly configure fault-tolerance parameters

8.1 Implementing Automatic Retries

Problem

If there are errors, you want to execute automatic retries in
order to try to recover from the failure.

Solution
MicroProfile Fault Tolerance specification provides a way to
implement automatic retries on any CDI element, including CDI
beans and the MicroProfile REST Client.

One can implement several strategies to protect against
failures and, in the worst cases, provide some default logic
instead of a failure. Suppose you have a service that suggests
books depending on reader preference. If this service is down,
instead of failing, you could cache a list of best-selling books
so that at least you could provide the list and not a failure. So
one of the important parts to define as a fault-tolerance
strategy is a fallback logic to execute in case there is no
possible recovery.

MicroProfile Fault Tolerance focuses on several strategies to
make your code fault-tolerant. Let’s look at the first strategy,
which is as simple as executing automatic retries.

You need to add extensions for using a MicroProfile Fault
Tolerance specification:

./mvnw quarkus:add-extension -Dextensions="quarkus-smallrye-

fault-tolerance"

One of the easiest and sometimes most effective ways to
recover from a network failure is to do a retry of the same
operation. If it was an intermittent error, then the error could be
fixed with some retries.

The classes or methods annotated with
@org.eclipse.microprofile.faulttolerance.Retry execute
automatic retries if an exception is thrown. You can set different
parameters, like max retries, max duration, or jitter; or you can
specify the kind of exceptions for which the retries should be
executed.

Moreover, you can implement fallback logic by annotating the
methods with
@org.eclipse.microprofile.faulttolerance.Fallback. The
logic to execute as a fallback can be implemented as a class
implementing the
org.eclipse.microprofile.faulttolerance.FallbackHandler

interface:

 @Retry(maxRetries = 3,

 delay = 1000)

 @Fallback(RecoverHelloMessageFallback.class)

 public String getHelloWithFallback() {

 failureSimulator.failAlways();

 return "hello";

 }

 public static class RecoverHelloMessageFallback

 implements FallbackHandler<String> {

 @Override

 public String handle(ExecutionContext executionContext)

{

 return "good bye";

 }

 }

Sets the maximum retries to 3

There is a delay of 1 second between retries

Adds fallback logic if after 3 retries the problem still persists

FallbackHandler template must be the same type as the
return type of the recovering method

Discussion
You can override any of these properties via the configuration
file. The configuration key follows the followings format:
fully_qualified_class_name/method_name/fault_to

lerant_annotation/parameter.

For example, you can set the parameters specific to a method
or a class, or globally:

org.acme.quickstart.ServiceInvoker/getHelloWithFallback/Retry/ma

xDuration=30

org.acme.quickstart.ServiceInvoker/Retry/maxDuration=3000

Retry/maxDuration=3000

Overrides at the method level

Overrides at the class level

Overrides globally

See Also
For more information, visit the following pages on the Eclipse
MicroProfile website:

Fault Tolerance

Fault Tolerance: Retry Policy

8.2 Implementing Timeouts

Problem
You want to prevent an execution from waiting forever.

Solution
MicroProfile Fault Tolerance specification provides a way to
implement timeouts to operations and prevent the execution
from waiting forever.

When there is an invocation to an external service, it is good
practice to ensure that this operation has a timeout associated
with it. This way, if there are network delays or failures, the
process doesn’t wait for a long time and end up with a failure,
but fails fast so you can react to the problem sooner than later.

https://oreil.ly/WzhhA
https://oreil.ly/Kjhzj

The classes or methods annotated with
@org.eclipse.microprofile.faulttolerance.Timeout define a
timeout. If there is a timeout, then the
org.eclipse.microprofile.faulttolerance.exceptions.Timeo

utException exception is thrown:

 @Timeout(value = 2000)

 public String getHelloWithTimeout() {

 failureSimulator.longMethod();

 return "hello";

 }

Sets timeout to 2 seconds

You can override any of these properties via the configuration
file, like so:

org.acme.quickstart.ServiceInvoker/getHelloWithTimeout/Timeout/v

alue=3000

org.acme.quickstart.ServiceInvoker/Timeout/value=3000

Timeout/value=3000

Overrides at the method level

Overrides at the class level

Overrides globally

You can mix the @Timeout annotation with @Fallback to
implement some recovery logic in case of a timeout or use
@Retry to execute an automatic retry if a timeout exception
occurs (@Retry(retryOn=TimeoutException.class)).

See Also
To learn more about the timeout pattern in MicroProfile Fault
Tolerance, see the following page on GitHub:

Timeout

8.3 Avoiding Overloads with the Bulkhead
Pattern

Problem
You want to limit the number of accepted requests to a service.

Solution
The MicroProfile Fault Tolerance specification provides a
bulkhead pattern implementation.

The bulkhead pattern limits the operations that can be
executed at the same time, keeping the new requests waiting,
until the current execution requests can finish. If the waiting
requests cannot be executed after a certain amount of time,
they are discarded and an exception is thrown.

The classes or methods annotated with
@org.eclipse.microprofile.faulttolerance.Bulkhead apply a
bulkhead limitation. If there are synchronous calls (you’ll learn
how the bulkhead limitation works with asynchronous calls in
Chapter 15), the

https://oreil.ly/af9DD

org.eclipse.microprofile.faulttolerance.exceptions.Bulkh

eadException exception is thrown when the limit of concurrent
executions is reached, instead of queuing the requests:

 @Bulkhead(2)

 public String getHelloBulkhead() {

 failureSimulator.shortMethod();

 return "hello";

 }

Sets the limit to two concurrent executions

If you use the siege tool to simulate 4 concurrent requests,
then the output will look like the following:

siege -r 1 -c 4 -v http://localhost:8080/hello/bulkhead

** SIEGE 4.0.4

** Preparing 4 concurrent users for battle.

The server is now under siege...

HTTP/1.1 500 0.47 secs: 2954 bytes ==> GET

/hello/bulkhead

HTTP/1.1 500 0.47 secs: 2954 bytes ==> GET

/hello/bulkhead

HTTP/1.1 200 2.46 secs: 5 bytes ==> GET

/hello/bulkhead

HTTP/1.1 200 2.46 secs: 5 bytes ==> GET

/hello/bulkhead

Transactions: 2 hits

Availability: 50.00 %

Only 2 requests are processed

Moreover, you can override any of these properties via the
configuration file:

org.acme.quickstart.ServiceInvoker/getHelloBulkhead/Bulkhead/val

ue=10

org.acme.quickstart.ServiceInvoker/Bulkhead/value=10

Bulkhead/value=10

Overrides at the method level

Overrides at the class level

Overrides globally

Discussion
When you are dealing with (micro)services architecture, a
problem can occur when another service is overloaded by
more calls than it can consume at one time. If the overload
continues, this service might be overwhelmed and stop
processing requests in an acceptable amount of time.

You can mix @Bulkhead annotation with any other previously
demonstrated fault tolerance annotations to implement a more
resilient strategy—for example, a bulkhead + retry with delays.

See Also
To learn more about the bulkhead pattern in MicroProfile Fault
Tolerance, see the following page on GitHub:

Bulkhead

8.4 Avoiding Unnecessary Calls with the
Circuit Breaker Pattern

Problem
You want to prevent a service failure from propagating to other
services and consuming several resources.

Solution
MicroProfile Fault Tolerance specification provides the circuit
breaker pattern to avoid making unnecessary calls if there are
errors.

Let’s define a circuit breaker that is tripped after 3 errors in a
window of 4 requests:

 @CircuitBreaker(requestVolumeThreshold = 4,

 failureRatio = 0.75,

 delay = 2000)

 public String getHelloCircuitBreaker() {

 failureSimulator.fail4Consecutive();

 return "hello";

 }

Defines the rolling window

Threshold to trip the circuit (4 × 0.75 = 3)

Amount of time that the circuit is opened

https://oreil.ly/anYN5

You can override any of these properties via the configuration
file:

org.acme.quickstart.ServiceInvoker/getHelloCircuitBreaker \

 /CircuitBreaker/failureRatio=0.75

org.acme.quickstart.ServiceInvoker/CircuitBreaker/failureRatio=3

000

Timeout/value=3000

Overrides at method level; this should be on the same line

Overrides at class level

Overrides globally

Discussion
When you are dealing with (micro)services architecture, a
problem can occur when the communication to another service
becomes impossible, either because the service is down or
because of high latency. When this happens, expensive
resources such as threads or file descriptors might be
consumed on the caller while waiting for the other service to
respond. If this continues, you could end up with resource
exhaustion, which would mean that no more requests can be
handled by this service, which would trigger a cascade of
errors to other services throughout the application.

Figure 8-1 illustrates how a failure happening in a service, in
the middle of the mesh, is propagated through all its callers.
This is an example of a cascading failure.

Figure 8-1. Cascading failure

The circuit breaker pattern fixes a cascading failure by
detecting the number of consecutive failures inside a detection
window. If the defined error threshold is overtaken, then the
circuit is tripped, meaning that for a certain amount of time, all
attempts to call this method will fail immediately without trying
to execute it. Figure 8-2 illustrates the schema of circuit
breaker calls.

Figure 8-2. Circuit breaker calls

After some time, the circuit will become half-opened, which
means that the next call will not fail immediately but will try
again against the real system. If the call succeeds, then the
circuit will be closed; otherwise, it will remain open. All possible
states of a circuit breaker pattern are shown in Figure 8-3.

Figure 8-3. Circuit breaker life cycle

The classes or methods annotated with
@org.eclipse.microprofile.faulttolerance.CircuitBreaker

define a circuit breaker for that specific operation. If the circuit
is opened, then the
org.eclipse.microprofile.faulttolerance.exceptions.Circu

itBreakerOpenException exception is thrown.

You can also mix @CircuitBreaker with @Timeout, @Fallback,
@Bulkhead, or @Retry, but the following must be taken into
consideration:

If @Fallback is used, the fallback logic is executed if a
CircuitBreakerOpenException is thrown.

If @Retry is used, each retry is processed by the circuit
breaker and recorded as either a success or a failure.

If @Bulkhead is used, the circuit breaker is checked before
attempting to enter the bulkhead.

See Also
To learn more about the circuit breaker pattern in MicroProfile
Fault Tolerance, see the following page on GitHub:

Circuit Breaker

8.5 Disabling Fault Tolerance

Problem
You want to disable fault tolerance in some environments.

https://oreil.ly/iOWuR

Solution
The MicroProfile Fault Tolerance specification provides a
special parameter to enable or disable fault-tolerance logic
either globally or individually.

There are some cases in which you might want to disable fault-
tolerance logic. The MicroProfile Fault Tolerance specification
defines a special parameter called enabled that can be used to
enable or disable the logic from the configuration file either
globally or individually:

org.acme.quickstart.ServiceInvoker/getHelloCircuitBreaker/\

 CircuitBreaker/enabled=false

org.acme.quickstart.ServiceInvoker/CircuitBreaker/enabled=false

CircuitBreaker/enabled=false

MP_Fault_Tolerance_NonFallback_Enabled=false

Disable at the method level; this should be on the same line

Disable at the class level

Disable globally by type

Disable all fault tolerance

Chapter 9. Observability

In this chapter, you’ll learn about observability and why it is
important to have in the microservices architecture.
Observability answers the question of how your system is
behaving by observing some parameters like error codes,
performance, or any kind of business metric. Quarkus
integrates with several technologies used for observability
natively.

This chapter will include recipes for how to accomplish the
following tasks:

Define health checks

Provide metrics to the monitoring system

Configure distributed tracing to have an overview of a
request inside the mesh

9.1 Using Automatic Health Checks

Problem
You want to check whether the service is up and running and
able to handle requests correctly.

Solution

The MicroProfile Health specification provides an API to probe
the state of a service from another machine (e.g., Kubernetes
Controller).

To enable MicroProfile Health in a Quarkus application, you
need to register only the quarkus-smallrye-health extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-smallrye-

health"

With the extension in the classpath, Quarkus automatically
registers a default liveness and readiness probe, which both
return UP when the service is up and running:

./mvnw compile quarkus:dev

curl localhost:8080/health/live

{

 "status": "UP",

 "checks": [

]

}

curl localhost:8080/health/ready

{

 "status": "UP",

 "checks": [

]

}

Liveness URL

Status is UP

No checks (just defaults)

Readiness URL

Discussion
The MicroProfile Health specification provides two kinds of
health checks:

Liveness

Returns a 200 OK with result UP if the service has been
started, 503 Service Unavailable with result DOWN if the
service is not live, and 500 Server Error if the health check
couldn’t be calculated. The liveness probe endpoint is
registered by default at the /health/live endpoint.

Readiness

Returns a 200 OK with result UP if the service is ready to
process requests. This is different from the liveness probe
because liveness simply means that the service is up but
might not be able to process any request yet (e.g., because
it is executing a database migration). A 503 Service
Unavailable with result DOWN is returned if the service
cannot yet accept any request, and a 500 Server Error is
returned if the health check couldn’t be calculated. The
readiness probe endpoint is registered by default at the
/health/ready endpoint.

If you are configuring Quarkus to use an SQL database
(JDBC), it will automatically register a readiness health check
(in the checks section) that validates that the connection to the
database is possible.

The following extensions provide automatic readiness/liveness
probes:

Datasource

A readiness probe to check database connection status.

Kafka

A readiness probe to check Kafka connection status. It is
disabled by default and needs to be enabled by setting
quarkus.kafka.health.enabled property to true.

MongoDB

A readiness probe to check MongoDB connection status.

Neo4j

A readiness probe to check Neo4j connection status.

Artemis

A readiness probe to check Artemis JMS connection status.

Kafka Streams

Liveness (for stream state) and readiness (topics created)
probes.

Vault

A readiness probe to check Vault status.

The automatic generation of the probes can be disabled by
setting the quarkus.component.health.enabled to false:

quarkus.kafka-streams.health.enabled=false

quarkus.mongodb.health.enabled=false

quarkus.neo4j.health.enabled=false

See Also
To learn more about the MicroProfile Health specification, see
the following page on GitHub:

MicroProfile Health

9.2 Creating Custom Health Checks

Problem
You want to customize how to check that a service is up and
running and that it is able to handle requests correctly.

Solution
The MicroProfile Health specification enables you to create
custom liveness and readiness health checks. In some
circumstances, a custom health-check logic might be needed
for either liveness or readiness probes.

The MicroProfile Health specification allows you to create
custom health checks by creating a method annotated with
@org.eclipse.microprofile.health.Liveness and

https://oreil.ly/wZjHC

@org.eclipse.microprofile.health.Readiness and returning
an implementation of
org.eclipse.microprofile.health.HealthCheck interface.

Create a new class at
org.acme.quickstart.LivenessCheck.java to implement a
custom liveness probe:

@ApplicationScoped

@Liveness

public class LivenessCheck implements HealthCheck {

 @Override

 public HealthCheckResponse call() {

 HealthCheckResponseBuilder checkResponseBuilder =

HealthCheckResponse

 .named("custom liveness");

 if(isUpAndRunning()) {

 return checkResponseBuilder.up().build();

 } else {

 return checkResponseBuilder.down()

 .withData("reason", "Failed connection")

 .build();

 }

 }

}

Needs to be a CDI class

Sets health check as liveness

Implements HealthCheck as a requirement

Sets health check name

Sets result as up

Sets result as down

Let’s check that this liveness probe works as expected:

./mvnw compile quarkus:dev

curl localhost:8080/health/live

{

 "status": "UP",

 "checks": [

 {

 "name": "custom liveness",

 "status": "UP"

 }

]

}

Discussion
Because health checks are registered as CDI beans, you can
also produce health checks in factory objects, as explained in
Recipe 5.7.

Create a new factory class to contain the new health check—in
this case, a readiness check:

@ApplicationScoped

public class CustomHealthCheck {

 @Produces

 @Readiness

 public HealthCheck ready() {

 if (isReady()) {

 return io.smallrye.health.HealthStatus.up("Custom

readiness");

 } else {

 return io.smallrye.health.HealthStatus.down("Custom

readiness");

 }

 }

}

Needs to be a CDI class

The method produces a health check

Readiness probe

HealthStatus is a utility class that implements the
HealthCheck interface for you

Let’s check that this readiness probe works as expected:

./mvnw compile quarkus:dev

curl localhost:8080/health/ready

{

 "checks": [

 {

 "name": "Custom readiness",

 "status": "UP"

 }

],

 "status": "UP"

}

See Also
The MicroProfile Health specification is perfect for defining
Kubernetes liveness and readiness probes. You can learn
about them at the following website:

Kubernetes: Configure Liveness, Readiness, and Startup
Probes

9.3 Exposing Metrics

Problem
You want to proactively check the current status of a service in
production by exposing service metrics in order to detect any
misbehavior as quickly as possible.

Solution
The MicroProfile Metrics specification provides a way to build
and expose metrics from your application to a monitoring tool
(e.g., Prometheus).

To enable MicroProfile Metrics in a Quarkus application, you
need to register only the quarkus-smallrye-metrics extension:

https://oreil.ly/nTaaa

./mvnw quarkus:add-extension -Dextensions="quarkus-smallrye-

metrics"

With the extension in the classpath, Quarkus provides
monitoring parameters by default, exposing them at the
/metrics endpoint in Prometheus format:

./mvnw compile quarkus:dev

curl localhost:8080/metrics

base_cpu_processCpuLoad_percent 0.0

base_memory_maxHeap_bytes 4.294967296E9

base_cpu_systemLoadAverage 2.580078125

base_thread_daemon_count 6.0

...

vendor_memoryPool_usage_max_bytes{name="Compressed Class Space"}

3336768.0

vendor_memory_usedNonHeap_bytes 3.9182104E7

The output format can be changed to JSON by adding
application/json type in the HTTP Accept header:

curl --header "Accept:application/json" localhost:8080/metrics

{

 "base": {

 "cpu.systemLoadAverage": 4.06201171875,

 "thread.count": 20,

 "classloader.loadedClasses.count": 4914,

 ...

 },

 "vendor": {

 "memoryPool.usage.max;name=G1 Survivor Space": 7340032,

 "memory.freePhysicalSize": 814391296,

 "memoryPool.usage.max;name=CodeHeap 'non-profiled

nmethods'": 5773056,

 ...

 }

}

Discussion
Knowing how a service is behaving in microservices
architectures is critical in anticipating any problem that might
affect all your applications.

With monolith applications, monitoring service behavior was
fairly easy because you had only three or four elements to
monitor; but now with (micro)services architectures, you might
have hundreds of elements to monitor.

There are many possible values to monitor, such as the
following:

Memory

Disk space

Network

JVM resources

Performance of critical methods

Business metrics (e.g., the number of payments per second)

Overall health of your cluster

If you look closely at the output, you’ll see that the parameters
are prefixed with either base or vendor. MicroProfile Metrics
categorizes the metrics under three categories:

base

The core information of the server. These metrics are
always required because they are specified in the
specification. Access them at /metrics/base.

vendor

Vendor-specific information. Each implementation might
provide different ones. Access them at /metrics/vendor.

application

Custom information developed ad hoc for that service using
the MicroProfile Metrics extension mechanism. Access
them at /metrics/application.

You can configure where metrics are exposed by setting the
quarkus.smallrye-metrics.path property to the path where
you want to expose them. By default, this property is set to
/metrics.

See Also
To learn more about MicroProfile Metrics, visit the following
page on GitHub:

Metrics for Eclipse MicroProfile

9.4 Creating Metrics

https://oreil.ly/Q875g

Problem
You want to monitor some custom metrics, such as
performance metrics or business metrics.

Solution
The MicroProfile Metrics specification provides different
annotations to register different kinds of monitoring parameters
like counters, durations, and gauges. With these annotations,
you can create custom metrics that might be related to
business or performance parameters instead of physical values
like memory, and CPU.

The following are the MicroProfile Metrics annotations:

Annotation Description

org.eclipse.micropro

file.metrics.annotat

ion.Counted

Counts number of invocations.

org.eclipse.micropro

file.metrics.annotat

ion.Timed

Tracks the duration of invocations.

org.eclipse.micropro

file.metrics.annotat

ion.SimplyTimed

Tracks the duration of invocations without
mean and distribution calculations. A
simplified version of Timed.

org.eclipse.micropro

file.metrics.annotat

ion.Metered

Tracks the frequency of invocations.

org.eclipse.micropro

file.metrics.annotat

ion.Gauge

Samples a discrete value of an annotated
field or method.

org.eclipse.micropro

file.metrics.annotat

ion.ConcurrentGauge

Gauge to count parallel invocations.

org.eclipse.micropro

file.metrics.annotat

ion.Metric

Used to inject a metric. Valid types are Meter,
Timer, Counter and Histogram. Gauge with Metric
can only be used in a CDI producer.

Let’s look at how to use metrics annotations and how to create
an histogram metric.

Counter
A counter increments invocations that are done to a method
annotated with @Counted and can be used at method or class
level.

In the following example, the number of invocations of a
method is counted:

@Counted(

 name = "number-of-transactions",

 displayName = "Transactions",

 description = "How many transactions have been

processed"

)

@POST

@Consumes(MediaType.APPLICATION_JSON)

public Response doTransaction(Transaction transaction) {

 return Response.ok().build();

}

Registers the counter

Name of the counter

Sets a display name

Description of the counter

Let’s check the counter monitor:

./mvnw compile quarkus:dev

curl -d '{"from":"A", "to":"B", "amount":2000}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/tx

curl localhost:8080/metrics/application

application_org_acme_TransactionResource_number_of_transactions_

total 1.0

Gauge
A gauge is a simple value that you want to expose to be
measured, similar to a gas gauge on a car. To register it, you
need to annotate either a field or a method with @Gauge, and
the value/return value will be exposed automatically:

private long highestTransaction = 0;

@POST

@Consumes(MediaType.APPLICATION_JSON)

public Response doTransaction(Transaction transaction) {

 if (transaction.amount > highestTransaction) {

 highestTransaction = transaction.amount;

 }

 return Response.ok().build();

}

@Gauge(

 name = "highest-gross-transaction",

 description = "Highest transaction so far.",

 unit= MetricUnits.NONE

)

public long highestTransaction() {

 return highestTransaction;

}

Field to store the highest transaction

Updates the field if the current transaction is higher

Sets return value as a gauge

Name of the gauge

Metrics of this gauge (e.g., seconds, percentage, per
second, bytes, etc.)

Execute the following commands to run the application, seed
some metrics data, and view the output:

./mvnw compile quarkus:dev

curl -d '{"from":"A", "to":"B", "amount":2000}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/tx

curl localhost:8080/metrics/application

application_org_acme_TransactionResource_highest_gross_transacti

on 2000.0

Metered

A metered metric measures the rate at which a method is
called. The @Metered annotation can be used at the method or
class level:

@Metered(

 name = "transactions",

 unit = MetricUnits.SECONDS,

 description = "Rate of transactions"

)

Registers the metered metric

Sets units as seconds

Execute the following commands to run the application, seed
some metrics data, and view the output:

./mvnw compile quarkus:dev

curl -d '{"from":"A", "to":"B", "amount":2000}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/tx

curl localhost:8080/metrics/application

application_org_acme_TransactionResource_transactions \

 _rate_per_second 0.09766473618811813

application_org_acme_TransactionResource_transactions \

 _one_min_rate_per_second 0.015991117074135343

application_org_acme_TransactionResource_transactions \

 _five_min_rate_per_second 0.0033057092356765017

application_org_acme_TransactionResource_transactions \

 _fifteen_min_rate_per_second 0.0011080303990206543

Timed
A timed metric measures the duration of a call. The @Timed
annotation can be used at method or class level:

@Timed(

 name = "average-transaction",

 unit = MetricUnits.SECONDS,

 description = "Average duration of transaction"

)

Registers the timed metric

Execute the following commands to run the application, seed
some metrics data, and view the output:

./mvnw compile quarkus:dev

curl -d '{"from":"A", "to":"B", "amount":2000}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/tx

curl localhost:8080/metrics/application

application_org_acme_TransactionResource_average_transaction \

 _rate_per_second 0.7080455375154214

application_org_acme_TransactionResource_average_transaction \

 _one_min_rate_per_second 0.0

application_org_acme_TransactionResource_average_transaction \

 _five_min_rate_per_second 0.0

application_org_acme_TransactionResource_average_transaction \

 _fifteen_min_rate_per_second 0.0

application_org_acme_TransactionResource_average_transaction \

 _min_seconds 1.0693E-5

application_org_acme_TransactionResource_average_transaction \

 _max_seconds 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _mean_seconds 3.0145E-5

application_org_acme_TransactionResource_average_transaction \

 _stddev_seconds 1.9452E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds_count 2.0

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.5"} 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.75"} 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.95"} 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.98"} 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.99"} 4.9597E-5

application_org_acme_TransactionResource_average_transaction \

 _seconds{quantile="0.999"} 4.9597E-5

Histogram
A histogram measures the distribution of values across time; it
measures things like min, max, standard deviation, or quantiles
like the median or 95th. Histograms do not have a proper
annotation, but the
org.eclipse.microprofile.metrics.Histogram class is used
to update the metric:

@Metric(name = "transaction-evolution")

Histogram transactionHistogram;

@POST

@Consumes(MediaType.APPLICATION_JSON)

public Response doTransaction(Transaction transaction) {

 transactionHistogram.update(transaction.amount);

 return Response.ok().build();

}

Injects a histogram with given name

Updates the histogram with a new value

Execute the following commands to run the application, seed
some metrics data, and view the output:

./mvnw compile quarkus:dev

curl -d '{"from":"A", "to":"B", "amount":2000}' \

 -H "Content-Type: application/json" \

 -X POST http://localhost:8080/tx

curl localhost:8080/metrics/application

application_org_acme_TransactionResource_transaction_evolution_m

in 2000.0

application_org_acme_TransactionResource_transaction_evolution_m

ax 2000.0

application_org_acme_TransactionResource_transaction_evolution_m

ean 2000.0

application_org_acme_TransactionResource_transaction_evolution_s

tddev 0.0

application_org_acme_TransactionResource_transaction_evolution_c

ount 2.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.5"} 2000.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.75"} 2000.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.95"} 2000.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.98"} 2000.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.99"} 2000.0

application_org_acme_TransactionResource_transaction_evolution \

 {quantile="0.999"} 2000.0

Discussion
You can get metadata information from any metric by querying
into a specific endpoint using the OPTION HTTP method. The
metadata is exposed at /metrics/scope/metric_name,
where the scope is base, vendor, or application and the
metric_name is the name of the metric (in case of application
one, the one set in name attribute).

9.5 Using Distributed Tracing

Problem
You want to profile and monitor the whole application.

Solution
The MicroProfile OpenTracing specification uses the
OpenTracing standard API for instrumenting microservices for
distributed tracing. Quarkus integrates with the MicroProfile
OpenTracing specification as a solution for distributed tracing.

https://opentracing.io/

Distributed tracing is a method used to profile and monitor your
distributed systems. It can be used to detect failures in the
communication between services, determine which points are
performance problems, or perform a log record of all requests
and responses that are happening within the network mesh.

There are five important concepts in OpenTracing that you
must understand before proceeding with distributed tracing:

Span

A named operation representing a unit of work done (e.g., a
service executed). A span can contain more spans in a
child-parent form.

Span context

Trace information that is propagated from service to service
(e.g., span ID).

Baggage items

Custom key/value pairs that are propagated from service to
service.

Tags

Key/value pairs defined by the user that are set in spans so
they can be queried and filtered (e.g., http.status_code).

Logs

Key/value pairs associated with a span that contains
logging messages or other important information. Logs are
used to identify a specific moment in the span; meanwhile,
tags apply to the whole span independently of time.

For this example, the Jaeger server is used to collect all traces
from your application and make them available to be
consumed or queried. Figure 9-1 shows the interaction
between services and Jaeger.

Figure 9-1. Microservices and Jaeger

The Jaeger concepts explained in the previous paragraph are
illustrated in Figure 9-2.

https://www.jaegertracing.io/

Figure 9-2. Jaeger concepts

The jaegertracing/all-in-one container image is used
because it contains all of the Jaeger backend components and
the UI in a single image. This is not meant to be used in
production, but, for the sake of simplicity, this is the image used
in Recipe 9.5:

docker run -e COLLECTOR_ZIPKIN_HTTP_PORT=9411 -p 5775:5775/udp \

 -p 6831:6831/udp -p 6832:6832/udp -p 5778:5778 -p

16686:16686 \

 -p 14268:14268 -p 9411:9411 jaegertracing/all-in-one:1.15.1

To enable MicroProfile OpenTracing in a Quarkus application,
you need to register only the quarkus-smallrye-opentracing
extension.

./mvnw quarkus:add-extension -Dextensions="quarkus-smallrye-

opentracing"

With the extension in the classpath, Quarkus/MicroProfile
OpenTracing sends default tracing information to the Jaeger
server. The only thing you need to do is configure the Jaeger
endpoint where all tracing information should be sent.

The default tracing information collected includes the following:

Hardware metrics like CPU, memory, and available
processors.

JVM metrics like memory heap and thread pool.

MicroProfile OpenTracing creates a new span for every
inbound request. The default name of this new span is HTTP
method:package name.class name.method name.

Spans created for incoming requests will contain the following
tags with correct values:

Tags.SPAN_KIND = Tags.SPAN_KIND_SERVER

Tags.HTTP_METHOD with the HTTP method used in the
incoming request

Tags.HTTP_URL with the URL of incoming endpoints

Tags.HTTP_STATUS with the HTTP status result code

Tags.COMPONENT = "jaxrs"

Tags.ERROR to true if a server error (5XX error code)
occurred; if an exception has a provided object, two logs are
added, one with event=error and another one with
error.object=<error object instance>

In cases of outbound requests, a new span is created that is a
child of the current active span (if it exists). The default name
of the new span is <HTTP method>. Spans created for outgoing
requests will contain the following tags with correct values:

Tags.SPAN_KIND=Tags.SPAN_KIND_SCLIENT

Tags.HTTP_METHOD with the HTTP method used in outgoing
request

Tags.HTTP_URL with the URL of the outgoing endpoint

Tags.HTTP_STATUS with the HTTP status result code

Tags.COMPONENT = "jaxrs"

Tags.ERROR to true if a client error (4XX error code)
occurred; if an exception has a provided object, two logs are
added, one with event=error and another one with
error.object=<error object instance>

The last thing to do is configure the Jaeger parameters:

quarkus.jaeger.service-name=shopping-cart

quarkus.jaeger.sampler-type=const

quarkus.jaeger.sampler-param=1

quarkus.jaeger.endpoint=http://localhost:14268/api/traces

Service name to be identified inside Jaeger

Set up a sampler

Percentage of requests to sample in percentage (1 is
sampling all)

The Jaeger server location

Then start the application and send some requests to one of
the endpoints defined in the service. After that, inspect all
distributed tracings by accessing Jaeger UI. Open a browser,
and visit http://localhost:16686 (the Jaeger UI) to see the
tracing information.

In the initial page, you can filter by several parameters, but one
of them is used to select the service that will be used to view
the completed requests.

The home page of Jaeger is shown in Figure 9-3.

http://localhost:16686/

Figure 9-3. Jaeger’s home page

Push the Find Traces button to select all the traces that meet
the given criteria, and you should see the image shown in
Figure 9-4.

Figure 9-4. Find traces

You’ll see all the requests that meet the criteria. In this case,
the requests are all traces that are involved in the shopping-
cart service, as seen in Figure 9-5.

Figure 9-5. View traces

If you click on any of the requests, more detail of the specific
request is shown, as shown in Figure 9-6.

Figure 9-6. Detail of a request

In case of errors, a new log entry is added that sets the error
message, as shown in Figure 9-7.

Figure 9-7. Error log message

Disabling Tracing
Any request (incoming or outgoing) is traced by default. Disable
the tracing of a specific class or method by annotating it with
@org.eclipse.microprofile.opentracing.Traced:

@Traced(false)

public class TransactionResource {}

Discussion
Configure OpenTracing by setting options in the
src/main/resources/application.properties file or by using any
other method discussed in Recipe 9.6. Some of the most
important configuration properties are listed in Table 9-1.

T
a
b
l
e

9
-
1
.
O
p
e
n

T
r
a
c
i
n
g

c
o
n
f
i
g
u
r
a
t
i
o
n

p
r
o
p
e
r
t
i
e
s

Property Description

quarkus.ja

eger.enabl

ed

Defines if the Jaeger extension is enabled (default:
true). It is a build property and cannot be modified at
runtime.

quarkus.ja

eger.endpo

int

Traces server endpoint.

quarkus.ja

eger.auth-

token

Authentication token to the endpoint.

quarkus.ja

eger.user

Username to send as part of authentication to the
endpoint.

quarkus.ja

eger.passw

ord

Password to send as part of authentication to the
endpoint.

quarkus.ja

eger.sampl

er-type

The sampler type (const, probabilistic, ratelimiting. or
remote).

quarkus.ja

eger.sampl

er-param

Percentage of traffic sampled (0.0-1.0).

quarkus.ja

eger.servi

The service name.

ce-name

quarkus.ja

eger.tags

A comma-separated list of key/value tags that are
added to all spans. Environment variables are
supported by using ${environmentVar:default}.

quarkus.ja

eger.propa

gation

The format used to propagate the trace context (default
is jaeger). Possible values are jaeger and b3.

quarkus.ja

eger.sende

r-factory

The sender factory class name.

See Also
See Quarkus’s guide to using OpenTracing for the full list of
supported properties.

More information about MicroProfile OpenTracing specification
can be found at the following page on GitHub:

MicroProfile OpenTracing

9.6 Custom Distributed Tracing

Problem
You want to add custom information in the current tracing span.

https://oreil.ly/A2GJu
https://oreil.ly/v7kjr

Solution
The MicroProfile OpenTracing specification uses the
io.opentracing.Tracer class to add new information in the
current span.

In some situations, it is required to create a new child span or
add information in the current span, like a new tag, logging
information, or a baggage item. To add this information,
MicroProfile OpenTracing produces an instance of the
io.opentracing.Tracer class to manipulate the current span.

Suppose you want to tag all requests that are made by
important customers. For this example, important customers
are those whose ID starts with 1:

@Inject

Tracer tracer;

@POST

@Path("/add/{customerId}")

@Transactional

@Consumes(MediaType.APPLICATION_JSON)

public Response addItem(@PathParam("customerId") String

customerId, Item item) {

 if (customerId.startsWith("1")) {

 tracer.activeSpan().setTag("important.customer", true);

 }

}

Injects a Tracer instance

Creates a new tag in the current span

Then any request for an important customer is tagged
accordingly.

Custom tags are presented as shown in Figure 9-8.

Figure 9-8. Custom tags

Discussion

Quarkus supports one of the OpenTracing customizations to
instrument JDBC, so if you want to monitor SQL queries, you
don’t need to customize the current span yourself; you can use
the integration provided in the form of dependency.

Register the opentracing-jdbc artifact into your build tool:

<dependency>

 <groupId>io.opentracing.contrib</groupId>

 <artifactId>opentracing-jdbc</artifactId>

</dependency>

Then activate tracing for JDBC connections. This is done by
adding the word tracing in the JDBC URL. Because Quarkus
uses JPA, you also need to configure the datasource and
Hibernate to use the dedicated tracing driver:

quarkus.datasource.url=jdbc:tracing:h2:mem:mydb

quarkus.datasource.driver=io.opentracing.contrib.jdbc.TracingDri

ver

quarkus.datasource.username=sa

quarkus.datasource.password=

quarkus.hibernate-orm.database.generation=update

quarkus.hibernate-orm.log.sql=true

quarkus.hibernate-orm.dialect=org.hibernate.dialect.H2Dialect

Updates JDBC URL with tracing

Sets the TracingDriver instead of the database driver

Configure dialect of the real database

All queries that are done in a request are also reflected in the
Jaeger UI.

JDBC traces are presented as shown in Figure 9-9.

Figure 9-9. JDBC traces

If you look closely at the screenshot, you’ll notice that there is a
new tag, with the name db.statement, that reflects the query
that has been traced. Also, notice that there is one shopping-
cart span that at the same time contains six more spans, one
for each query.

To ignore specific queries, you can set (multiple times) the
ignoreForTracing property with the queries to ignore (e.g.,
jdbc:tracing:h2:mem:test?ignoreForTracing=SELECT * FROM

\"TEST\").

Chapter 10. Integrating with
Kubernetes

So far, you’ve been learning how to develop and run Quarkus
applications on bare-metal, but where Quarkus really shines is
when it is running in a Kubernetes cluster.

In this chapter, you’ll learn about the integration between
Quarkus and Kubernetes, and how several extensions can
help develop and deploy a Quarkus service for Kubernetes.

Kubernetes is becoming the de facto platform to deploy
applications; for this reason it is important to have a good
understanding of Kubernetes and how to correctly develop and
deploy applications on it.

In this chapter, you’ll learn how to accomplish the following
tasks:

Build and push container images

Generate Kubernetes resources

Deploy a Quarkus service

Develop a Kubernetes operator

Deploy a service in Knative

10.1 Building and Pushing Container Images

Problem
You want to build and push container images.

Solution
The working unit in Kubernetes is a pod. A pod represents a
group of containers that are running in the same host machine
and share resources like IP and ports. To deploy a service to
Kubernetes, you need to create a pod. Since a pod is
composed by one or more containers, you need to build a
container image of your service.

Quarkus provides extensions for building and optionally
pushing container images. At the time of writing, the following
container build strategies are supported:

Jib

Jib builds Docker and OCI container images for your Java
applications without a Docker daemon (Dockerless). This
makes it perfect for building Docker images when running
the process inside a container because you avoid the
hassle of the Docker-in-Docker (DinD) process. Further,
using Jib with Quarkus caches all dependencies in a
different layer than the actual application, making rebuilds
fast and small. This improves push times as well as build
times.

Docker

Using the Docker strategy builds container images using
the docker binary, which is installed locally and by default
uses Dockerfiles located under src/main/docker to build
the images.

S2I

The Source-to-Image (S2I) strategy uses s2i binary builds
to perform container builds inside an OpenShift cluster. S2I
builds require creating a BuildConfig and two ImageStream
resources. The creation of these resources is leveraged by
the Quarkus Kubernetes extension.

In this recipe, we’re going to build and push the container using
Jib; the “Discussion” section of this recipe will address Docker
and S2I.

To build and push a container image using Jib, first you need to
add the Jib extension:

./mvnw quarkus:add-extensions -Dextensions="quarkus-container-

image-jib"

Then you can customize the container image build process.
You can set these properties in the application.properties,
system properties, or environment variables, just as any other
configuration parameter in Quarkus:

quarkus.container-image.group=lordofthejars

quarkus.container-image.registry=quay.io

quarkus.container-image.username=lordofthejars

#quarkus.container-image.password=

Sets the group part of the image; by default this is
${user.name}

Registry where to push the image; by default, images are
pushed to docker.io

The username to log into the container registry

The password to log into the container registry

To build and push the container image for the project, you need
to set the quarkus.container-image.push parameter to true,
and during the package stage, the container is created and
pushed:

./mvnw clean package -Dquarkus.container-image.push=true

...

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ greeting-jib

[INFO] Building jar: /greeting-jib/target/greeting-jib-1.0-

SNAPSHOT.jar

[INFO]

[INFO] --- quarkus-maven-plugin:1.3.0.CR2:build (default) @

greeting-jib ---

[INFO] [org.jboss.threads] JBoss Threads version 3.0.1.Final

[INFO] [io.quarkus.deployment.pkg.steps.JarResultBuildStep]

Building thin jar:

 greeting-jib/target/greeting-jib-1.0-SNAPSHOT-runner.jar

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

 Starting container image build

[WARNING]

[io.quarkus.container.image.jib.deployment.JibProcessor]

 Base image 'fabric8/java-alpine-openjdk8-jre' does not use a

specific image

 digest - build may not be reproducible

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

LogEvent

 [level=INFO, message=trying docker-credential-desktop for

quay.io]

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

LogEvent

 [level=LIFECYCLE, message=Using credentials from Docker

config

 ($HOME/.docker/config.json) for

 quay.io/lordofthejars/greeting-jib:1.0-SNAPSHOT]

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

The base image

 requires auth. Trying again for fabric8/java-alpine-

openjdk8-jre...

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

Using base

 image with digest:

sha256:a5d31f17d618032812ae85d12426b112279f02951fa92a7ff8a9d69a6

d3411b1

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

Container

 entrypoint set to [java, -Dquarkus.http.host=0.0.0.0,

 -Djava.util.logging.manager=org.jboss.logmanager.LogManager,

 -cp, /app/resources:/app/classes:/app/libs/*,

 io.quarkus.runner.GeneratedMain]

[INFO] [io.quarkus.container.image.jib.deployment.JibProcessor]

Pushed

container image quay.io/lordofthejars/greeting-jib:1.0-SNAPSHOT

(sha256:e173e0b49bd5ec1f500016f46f2cde03a055f558f72ca8ee1d6cb034

a385a657)

[INFO] [io.quarkus.deployment.QuarkusAugmentor] Quarkus

augmentation completed

 in 12980ms

The container image is built

The container image is pushed to quay.io

Discussion
Apart from Jib, there are two other options available to build a
container image; to use them you simply need to register the
extension:

Docker

quarkus-container-image-docker

S2I

quarkus-container-image-s2i

Each of the extensions provides specific configuration
parameters to change the build process. These parameters let
you change the base images used for building the container
image and let you set environment variables, the arguments to
pass to the executable, or the location of the Dockerfiles.

You can also build the image but not push it to a registry. To do
this, you need to set the quarkus.container-image.build
property to true and not set the quarkus.container-
image.push property:

./mvnw clean package -Dquarkus.container-image.build=true

IMPORTANT
If Jib is used and push is set to false, the extension creates a
container image and registers it with the Docker daemon. This
means that although Docker isn’t used to build the image, it is still
necessary.

The container image extensions can create a container from a
JAR package (for use in JVM mode) and from a native
executable, depending on what is found in the build/output
directory. If you want to create a native executable that can be
run from a Linux container and then create a container image
with the resulting native executable inside, you can run the
following command:

./mvnw clean package -Dquarkus.container-image.push=true -

Pnative \

 -Dquarkus.native.container-build=true

Setting the quarkus.native.container-build property to true
creates the native executable inside a Docker container.

See Also
For more information, visit the following pages on GitHub:

Google Container Tools: Jib

Source-To-Image

https://oreil.ly/6vrh5
https://oreil.ly/8PEgn

10.2 Generating Kubernetes Resources

Problem
You want to generate Kubernetes resources automatically.

Solution
Quarkus has a Kubernetes extension that is able to generate
Kubernetes resources automatically with sane defaults and
optional user-supplied configuration. Currently, the extension
can produce resources for Kubernetes and OpenShift.

To enable the generation of Kubernetes resources, you need to
register the quarkus-kubernetes extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-kubernetes"

To generate the Kubernetes resources, execute in a new
terminal ./mvnw package. Then among the usual files
generated by the build tool in the target directory, two new
files are created inside the target/kubernetes directory. These
new files are named kubernetes.json and kubernetes.yaml,
and they each contain the definition of both a Deployment and a
Service:

{

 "apiVersion" : "v1",

 "kind" : "List",

 "items" : [{

 "apiVersion" : "v1",

 "kind" : "Service",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 },

 "spec" : {

 "ports" : [{

 "name" : "http",

 "port" : 8080,

 "targetPort" : 8080

 }],

 "selector" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "type" : "ClusterIP"

 }

 }, {

 "apiVersion" : "apps/v1",

 "kind" : "Deployment",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 },

 "spec" : {

 "replicas" : 1,

 "selector" : {

 "matchLabels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 }

 },

 "template" : {

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 }

 },

 "spec" : {

 "containers" : [{

 "env" : [{

 "name" : "KUBERNETES_NAMESPACE",

 "valueFrom" : {

 "fieldRef" : {

 "fieldPath" : "metadata.namespace"

 }

 }

 }],

 "image" : "alex/getting-started:1.0-SNAPSHOT",

 "imagePullPolicy" : "IfNotPresent",

 "name" : "getting-started",

 "ports" : [{

 "containerPort" : 8080,

 "name" : "http",

 "protocol" : "TCP"

 }]

 }]

 }

 }

 }

 }]

}

Defaults to project name

Defaults to version field

Defaults to OS username

Discussion
You can customize the group and the name used in the
generated manifest by adding these properties to
application.properties:

quarkus.container-image.group=redhat

quarkus.application.name=message-app

The Kubernetes extension allows user customizations to be
supplied to different parts of the manifest:

quarkus.kubernetes.replicas=3

quarkus.container-image.registry=http://my.docker-registry.net

quarkus.kubernetes.labels.environment=prod

quarkus.kubernetes.readiness-probe.initial-delay-seconds=10

quarkus.kubernetes.readiness-probe.period-seconds=30

Sets the number of replicas

Adds the Docker registry to pull images

Adds new labels

Sets readiness probe

You can generate different resources by setting the property as
quarkus.kubernetes.deployment-target in the
application.properties file or as a system property.

The default value of this property is kubernetes, but the
following values are also supported at the time of writing:
kubernetes, openshift, and knative.

See Also
The following web page provides a list of all Kubernetes
configuration options to modify the generated file:

Quarkus: Kubernetes Extension

10.3 Generating Kubernetes Resources with
Health Checks

Problem
You want to automatically generate Kubernetes resources with
liveness and readiness probes.

Solution

https://oreil.ly/oLxhT

By default, health probes are not generated in the output file,
but if the quarkus-smallrye-health extension is present (as
explained in Recipe 9.1), then readiness and liveness probe
sections are generated automatically:

"image" : "alex/getting-started:1.0-SNAPSHOT",

"imagePullPolicy" : "IfNotPresent",

"livenessProbe" : {

 "failureThreshold" : 3,

 "httpGet" : {

 "path" : "/health/live",

 "port" : 8080,

 "scheme" : "HTTP"

 },

 "initialDelaySeconds" : 0,

 "periodSeconds" : 30,

 "successThreshold" : 1,

 "timeoutSeconds" : 10

},

"name" : "getting-started",

"ports" : [{

 "containerPort" : 8080,

 "name" : "http",

 "protocol" : "TCP"

 }],

"readinessProbe" : {

 "failureThreshold" : 3,

 "httpGet" : {

 "path" : "/health/ready",

 "port" : 8080,

 "scheme" : "HTTP"

 },

 "initialDelaySeconds" : 0,

 "periodSeconds" : 30,

 "successThreshold" : 1,

 "timeoutSeconds" : 10

}

Defines the liveness probe

The path is the one defined by MicroProfile Health spec

Defines the readiness probe

The path is the one defined by MicroProfile Health spec

Discussion
Kubernetes uses probes to determine the health state of a
service and take automatic actions to solve any problem.

Quarkus automatically generates two Kubernetes probes:

Liveness

Kubernetes uses a liveness probe to decide if a service
must be restarted. If the application becomes unresponsive,
perhaps because of a deadlock or memory problem,
restarting the container might be a good solution to fix the
problem.

Readiness

Kubernetes uses a readiness probe to decide if a service is
available for accepting traffic. Sometimes a service might
need to execute some operations before accepting
requests. Examples include updating local caching system,
populating a change to the database schema, applying a

batch process, or connecting to an external service like
Kafka Streams.

See Also
For more information, see the following website:

Kubernetes: Configure Liveness, Readiness, and Startup
Probes

10.4 Deploying Services on Kubernetes

Problem
You want to deploy services on Kubernetes.

Solution
Use kubectl and all the features offered by Quarkus to create
and deploy a service on Kubernetes.

Quarkus makes it really easy to create and deploy a Java
application into Kubernetes by doing the following:

1. Generating a container native executable of your
enterprise application, as explained in Recipe 6.6

2. Providing a Dockerfile.native file to build the Docker
container

3. Generating a Kubernetes resources file by using quarkus-
kubernetes extension, as explained in Recipe 10.2

https://oreil.ly/PWl_B

It is time to see all these steps working together.

To create a native executable that can be run within a
container:

./mvnw package -DskipTests -Pnative -Dquarkus.native.container-

build=true

docker build -f src/main/docker/Dockerfile.native \

 -t alex/geeting-started:1.0-SNAPSHOT .

docker push docker build -f src/main/docker/Dockerfile.native \

 -t alex/getting-started:1.0-SNAPSHOT .

kubectl apply -f target/kubernetes/kubernetes.json

kubectl patch svc getting-started --type='json' \

 -p

'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service getting-started --url)/hello

Creates the native executable inside a Docker container

Creates a Docker image with the native executable
generated previously

Pushes image to the Docker registry (in minikube, this is
eval $(minikube docker-env), so no push.)

Deploys the application to Kubernetes

Changes to NodePort

Gets the URL to access the service

Notice that steps 5 and 6 are required only because the service
is deployed in minikube. Depending on the Kubernetes
platform you are using to deploy the service to, you might need
to do different things.

Discussion
Steps 1 and 2 could be simplified into one if you use the multi-
stage Docker build feature. In the first stage, the native
executable is generated, and the second stage creates the
runtime image:

FROM quay.io/quarkus/centos-quarkus-maven:19.2.1 AS build

COPY src /usr/src/app/src

COPY pom.xml /usr/src/app

USER root

RUN chown -R quarkus /usr/src/app

USER quarkus

RUN mvn -f /usr/src/app/pom.xml -Pnative clean package

FROM registry.access.redhat.com/ubi8/ubi-minimal

WORKDIR /work/

COPY --from=build /usr/src/app/target/*-runner /work/application

RUN chmod 775 /work

EXPOSE 8080

CMD ["./application", "-Dquarkus.http.host=0.0.0.0"]

Generates the native executable

Creates the runtime image from the output of the previous
stage

Remove the .dockerignore file from the root directory of the
project (rm .dockerignore). This is necessary because, by
default, the src directory is ignored, and to build the native
executable, the src directory is required:

docker build -f src/main/docker/Dockerfile.multistage -t docker

\

 build -f src/main/docker/Dockerfile.multistage -t

Creates the runtime image with native executable bundled

10.5 Deploying Services on OpenShift

Problem
You want to deploy services on OpenShift.

Solution
OpenShift works perfectly with the resources generated in the
previous recipe, so even though you are using OpenShift, you
can still use everything provided previously. But if you want to
use some of the capabilities offered by OpenShift, you can set
the kubernetes.deployment.target property to openshift.

The two generated files are placed at
target/kubernetes/openshift.json and
target/kubernetes/openshift.yaml:

{

 "apiVersion" : "v1",

 "kind" : "List",

 "items" : [{

 "apiVersion" : "v1",

 "kind" : "Service",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 },

 "spec" : {

 "ports" : [{

 "name" : "http",

 "port" : 8080,

 "targetPort" : 8080

 }],

 "selector" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "type" : "ClusterIP"

 }

 }, {

 "apiVersion" : "image.openshift.io/v1",

 "kind" : "ImageStream",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 }

 }, {

 "apiVersion" : "image.openshift.io/v1",

 "kind" : "ImageStream",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "s2i-java"

 },

 "spec" : {

 "dockerImageRepository" : "fabric8/s2i-java"

 }

 }, {

 "apiVersion" : "build.openshift.io/v1",

 "kind" : "BuildConfig",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 },

 "spec" : {

 "output" : {

 "to" : {

 "kind" : "ImageStreamTag",

 "name" : "getting-started:1.0-SNAPSHOT"

 }

 },

 "source" : {

 "binary" : { }

 },

 "strategy" : {

 "sourceStrategy" : {

 "from" : {

 "kind" : "ImageStreamTag",

 "name" : "s2i-java:2.3"

 }

 }

 }

 }

 }, {

 "apiVersion" : "apps.openshift.io/v1",

 "kind" : "DeploymentConfig",

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "name" : "getting-started"

 },

 "spec" : {

 "replicas" : 1,

 "selector" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 },

 "template" : {

 "metadata" : {

 "labels" : {

 "app" : "getting-started",

 "version" : "1.0-SNAPSHOT",

 "group" : "alex"

 }

 },

 "spec" : {

 "containers" : [{

 "env" : [{

 "name" : "KUBERNETES_NAMESPACE",

 "valueFrom" : {

 "fieldRef" : {

 "fieldPath" : "metadata.namespace"

 }

 }

 }, {

 "name" : "JAVA_APP_JAR",

 "value" : "/deployments/getting-started-1.0-

SNAPSHOT.jar"

 }],

 "image" : "",

 "imagePullPolicy" : "IfNotPresent",

 "name" : "getting-started",

 "ports" : [{

 "containerPort" : 8080,

 "name" : "http",

 "protocol" : "TCP"

 }],

 }]

 }

 },

 "triggers" : [{

 "imageChangeParams" : {

 "automatic" : true,

 "containerNames" : ["getting-started"],

 "from" : {

 "kind" : "ImageStreamTag",

 "name" : "getting-started:1.0-SNAPSHOT"

 }

 },

 "type" : "ImageChange"

 }]

 }

 }]

}

10.6 Building and Deploying a Container
Image Automatically

Problem
You want to build, push, and deploy container images
automatically.

Solution
Quarkus provides extensions for building and pushing
container images with the container-image extensions and for
deploying to Kubernetes using the kubernetes extension.

To build, push, and deploy a container image, you need to first
add the required extensions:

./mvnw quarkus:add-extensions \

 -Dextensions="quarkus-container-image-jib, quarkus-

kubernetes"

Then you can customize the container image build process.
You can set these properties in the application.properties,
system properties, or environment variables as any other
configuration parameter in Quarkus:

quarkus.container-image.group=lordofthejars

quarkus.container-image.registry=quay.io

quarkus.container-image.username=lordofthejars

#quarkus.container-image.password=

Sets the group part of the image; by default this is
${user.name}

Registry where to push the image; by default, images are
pushed to docker.io

The username to log into the container registry

The password to log into the container registry

Finally, deploy to Kubernetes using the following command:

./mvnw clean package -Dquarkus.kubernetes.deploy=true

Discussion
Notice that setting quarkus.kubernetes.deploy to true
implicitly sets the quarkus.container-image.push property to
true, so you do not need to set it manually.

The Kubernetes extension uses the standard kubectl
configuration file located at ~/.kube/config to know where to
deploy the application.

TIP
You can also use -Pnative -Dquarkus.native.container-
build=true flags to create and deploy a container image with
native compilation.

10.7 Configuring an Application from
Kubernetes

Problem
You want to configure your application through (or via)
Kubernetes instead of the configuration file.

Solution
Use ConfigMaps to configure the applications running inside a
pod.

In this example, you are going to configure a service using a
ConfigMap and Kubernetes extension. To enable the generation
of Kubernetes resources with the ConfigMap injection in the
Pod, you need to register the quarkus-kubernetes extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-kubernetes"

The service returns the greeting.message configuration value
when the /hello endpoint is called:

@ConfigProperty(name = "greeting.message")

String message;

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return "hello " + message;

}

Create the ConfigMap resource with the key-value pairs:

apiVersion: v1

kind: ConfigMap

metadata:

 name: greeting-config

data:

 greeting: "Kubernetes"

Defines the ConfigMap type

For the key greeting defines the value Kubernetes

Then the resource must be applied to the Kubernetes cluster
by running the next command in a terminal window:

kubectl apply -f src/main/kubernetes/config-greeting.yaml

Finally, set the Kubernetes extension properties in the
application.properties so that the generated Kubernetes
deployment file contains the segments to inject the config map
as an environment variable:

greeting.message=local

quarkus.container-image.group=quarkus

quarkus.container-image.name=greeting-app

quarkus.container-image.tag=1.0-SNAPSHOT

quarkus.kubernetes.env-vars.greeting-message.value=greeting

quarkus.kubernetes.env-vars.greeting-message.configmap=greeting-

config

quarkus.kubernetes.image-pull-policy=if-not-present

Configures Docker image

Sets the environment variable to override the
greeting.message property

Sets the config map resource name to load

The generation of the Kubernetes file will contain a new entry
defining the key-value pairs in the container definition called
configMapKeyRef.

To deploy the application, open a new terminal window,
package the application, create the Docker container, and
apply the generated Kubernetes resources:

./mvnw clean package -DskipTests

docker build -f src/main/docker/Dockerfile.jvm \

 -t quarkus/greeting-app:1.0-SNAPSHOT .

kubectl apply -f target/kubernetes/kubernetes.yml

kubectl patch svc greeting-app --type='json' \

 -p

'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service greeting-app --url)/hello

Discussion
ConfigMap consists of key-value pairs that Kubernetes injects
into pods’ containers in the form of files or environment
variables so the application can read them and configure
accordingly. With ConfigMaps, you can decouple the
configuration of the application from the business logic, making
it portable across environments.

IMPORTANT
ConfigMaps are meant to be used for storing and sharing non-
sensitive configuration properties.

The MicroProfile Config spec permits the override of any
configuration property using the equivalent environment
variable (in uppercase and changing dots [.] to underscores
[_]). The ConfigMap contains the configuration properties. In
application.properties, the Kubernetes extension is configured
to generate a deployment descriptor that sets these properties
as environment variables so that when the container is started
inside the Kubernetes cluster, the specific configuration applied
to this cluster is used.

See Also
To learn more about ConfigMaps in Kubernetes, visit the
following website:

Kubernetes: Configure a Pod to Use a ConfigMap

10.8 Configuring an Application from
Kubernetes with Config Extension

Problem
You want to configure your application through (or via)
Kubernetes instead of the configuration file using the
MicroProfile Config specification.

Solution
Quarkus has a Kubernetes Configuration extension that can
read the secrets and config maps elements from the
Kubernetes API Server and inject them using @ConfigProperty
annotation.

To enable the generation of Kubernetes resources, you need to
register the quarkus-kubernetes-config extension.

The extension supports injecting ConfigMaps, either as a single
key/value form or in the form in which the key is a filename
(where only application.properties or application.yaml is
supported) and the value is the content of that file.

Let’s create a config map with a single key/value:

apiVersion: v1

kind: ConfigMap

https://oreil.ly/BPmo5

metadata:

 name: my-config

data:

 greeting: "Kubernetes"

Config name is important for the extension

Then register the previous ConfigMap resource:

kubectl apply -f src/main/kubernetes/my-config.yaml

For this example, an application.properties file as ConfigMap is
also registered.

The configuration file added contains the following:

some.property1=prop1

some.property2=prop2

Then register the previous file in a ConfigMap named my-file-
config:

kubectl create configmap my-file-config \

 --from-file=./src/main/kubernetes/application.properties

The last step before you can inject these values is to configure
the extension to read values from these ConfigMaps:

quarkus.kubernetes-config.enabled=true

quarkus.kubernetes-config.config-maps=my-config,my-file-config

Enables the extension

Sets the ConfigMap names

These configuration values are injected like any other
configuration value:

@ConfigProperty(name = "greeting")

String greeting;

@ConfigProperty(name = "some.property1")

String property1;

@ConfigProperty(name = "some.property2")

String property2;

Simple key is injected

Keys from the application.properties file are injected too

To deploy the application, open a new terminal window,
package the application, create the Docker container, and
apply the generated Kubernetes resources:

./mvnw clean package -DskipTests

docker build -f src/main/docker/Dockerfile.jvm \

 -t quarkus/greeting-app:1.0-SNAPSHOT .

kubectl apply -f target/kubernetes/kubernetes.yml

kubectl patch svc greeting-app-config-ext --type='json' \

 -p

'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service greeting-app-config-ext --url)/hello

Kubernetes

curl $(minikube service greeting-app-config-ext --url)/hello/p1

prop1

curl $(minikube service greeting-app-config-ext --url)/hello/p2

prop2

10.9 Interacting with a Kubernetes Cluster
Programmatically

Problem
You want to interact with a Kubernetes API server
programmatically.

Solution
Use the kubernetes-client extension to start watching and
reacting to changes on Kubernetes resources.

To add the kubernetes-extension, run the following:

./mvnw quarkus:add-extension -Dextensions="kubernetes-client"

The main class to connect to the Kubernetes cluster is
io.fabric8.kubernetes.client.KubernetesClient. The
extension produces this instance so it can be injected in the
code. The client can be configured using various properties,
setting them in application.properties.

The example developed here is an endpoint that returns the
name of all deployed pods on the given namespace:

package org.acme.quickstart;

import java.util.List;

import java.util.stream.Collectors;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import io.fabric8.kubernetes.client.KubernetesClient;

@Path("/pod")

public class PodResource {

 @Inject

 KubernetesClient kubernetesClient;

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 @Path("/{namespace}")

 public List<String> getPods(@PathParam("namespace") String

namespace) {

 return kubernetesClient.pods()

 .inNamespace(namespace)

 .list().getItems()

 .stream()

 .map(p ->

p.getMetadata().getGenerateName())

 .collect(Collectors.toList());

 }

}

The KubernetesClient is injected like any other CDI bean

Select all pods

From given namespace

Gets only the generated name of the pod

The recommended way to access the REST API of Kubernetes
is by using kubectl in proxy mode because no man-in-the-
middle attack is possible.

The other way is by providing the location and the credentials
directly, but to avoid man-in-the-middle attacks you might need
to import the root certificate.

Because the proxy mode is the recommended way, this is the
method used for this example.

Pointing kubectl to the cluster that the application must
connect with, open a new terminal window and run the next
command:

kubectl proxy --port=8090

This command runs kubectl as a reverse proxy, exposing the
remote Kubernetes API server at http://localhost:8090.

http://localhost:8090/

Configure KubernetesClient to connect to http://localhost:8090
by using the quarkus.kubernetes-client.master-url property
in application.properties:

%dev.quarkus.kubernetes-client.master-url=http://localhost:8090

Sets the URL of the Kubernetes API server

Finally, run the service and make a request to the
/pod/default endpoint to get all the pods deployed in the
default namespace:

./mvnw compile quarkus:dev

curl http://localhost:8080/pod/default

["getting-started-5cd97ddd4d-"]

Discussion
In some circumstances, you need to create new Kubernetes
resources programmatically or get some information about
Kubernetes clusters/resources (what pods are deployed,
configuration parameters, set secrets, and so on). Where
kubernetes-client really shines is in implementing a
Kubernetes Operator in Java. Thanks to the capabilities of
Quarkus to generate a native executable, this is a great way to
implement Kubernetes Operators in Java.

In this example, the service was deployed outside the
Kubernetes cluster, and you connect to it using the Kubernetes

http://localhost:8090/

API server.

If the service was deployed into the Kubernetes cluster that
needs to be accessed, then the quarkus.kubernetes-
client.master-url property must be set to
https://kubernetes.default.svc.

The creation of KubernetesClient can be overridden by simply
declaring a CDI provider factory method returning the
configured instance of KubernetesClient:

@ApplicationScoped

public class KubernetesClientProducer {

 @Produces

 public KubernetesClient kubernetesClient() {

 Config config = new ConfigBuilder()

.withMasterUrl("https://mymaster.com")

 .build();

 return new DefaultKubernetesClient(config);

 }

}

Configures the client

Creates an instance of KubernetesClient

In most cases, to access the Kubernetes API server, a
ServiceAccount, Role, and RoleBinding are necessary. The
following might be a starting point to work the example
provided in this section:

apiVersion: v1

kind: ServiceAccount

metadata:

 name: greeting-started

 namespace: default

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 name: greeting-started

 namespace: default

rules:

 - apiGroups: [""]

 resources: ["pods"]

 verbs: ["list"]

apiVersion: rbac.authorization.k8s.io/v1

kind: RoleBinding

metadata:

 name: greeting-started

 namespace: default

roleRef:

 kind: Role

 name: greeting-started

 apiGroup: rbac.authorization.k8s.io

subjects:

 - kind: ServiceAccount

 name: greeting-started

 namespace: default

See Also
To learn more about Fabric8 Kubernetes Client, visit the
following page on GitHub:

Kubernetes & OpenShift Java Client

10.10 Testing Kubernetes Client Interactions

Problem
You want to test Kubernetes Client code.

Solution
Quarkus implements a Quarkus Test Resource that launches a
mock of the Kubernetes API server and sets the correct
configuration to make the Kubernetes Client use the mock
server instance instead of the value provided in
application.properties. Moreover, you can set up the mock
server to respond to any canned request required for any
particular test:

package org.acme.quickstart;

import io.fabric8.kubernetes.api.model.Pod;

import io.fabric8.kubernetes.api.model.PodBuilder;

import io.fabric8.kubernetes.api.model.PodListBuilder;

import

io.fabric8.kubernetes.client.server.mock.KubernetesMockServer;

import io.quarkus.test.common.QuarkusTestResource;

import io.quarkus.test.junit.QuarkusTest;

import

io.quarkus.test.kubernetes.client.KubernetesMockServerTestReso

urce;

import io.quarkus.test.kubernetes.client.MockServer;

https://oreil.ly/_QNSL

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static io.restassured.RestAssured.given;

import static org.hamcrest.CoreMatchers.is;

@QuarkusTest

@QuarkusTestResource(KubernetesMockServerTestResource.class)

public class PodResourceTest {

 @MockServer

 KubernetesMockServer mockServer;

 @BeforeEach

 public void prepareKubernetesServerAPI() {

 final Pod pod1 = new PodBuilder()

 .withNewMetadata()

 .withName("pod1")

 .withNamespace("test")

 .withGenerateName("pod1-12345")

 .and()

 .build();

 mockServer

 .expect()

 .get()

 .withPath("/api/v1/namespaces/test/pods")

 .andReturn(200, new PodListBuilder()

 .withNewMetadata()

 .withResourceVersion("1")

 .endMetadata()

 .withItems(pod1).build())

 .always();

 }

 @Test

 public void testHelloEndpoint() {

 given()

 .when().get("/pod/test")

 .then()

 .statusCode(200)

 .body(is("[\"pod1-12345\"]"));

 }

}

Sets Kubernetes Test Resource mock server

Injects Kubernetes mock server instance to record any
interaction

To maintain test isolation, before every test, the interaction
is recorded again

Builds the pod to be returned

The pod is returned as a result of querying all pods from
test namespace

10.11 Implementing a Kubernetes Operator

Problem
You want to implement a Kubernetes Operator to extend
Kubernetes using custom resources to manage applications in
Java.

Solution
Use the kubernetes-client extension and Quarkus to
implement a Kubernetes operator in Java and compile it into a
native executable.

One of the use cases for an operator is to create a template
(custom resource) where some values are set in the creation
time. The biggest difference between a file template and an
operator is that the common content (in the case of a template)

is static, whereas in an operator it is set programmatically,
which means that you’ve got the freedom to change the
definition of the common part dynamically. This is known as a
custom resource, in which, instead of using a well-known
Kubernetes resource, you implement your own custom
Kubernetes resource with your own fields.

Another use case might be to react/operate when something
happens inside the cluster. Suppose you’ve got some in-
memory data grids deployed on the cluster, and one of these
instances dies. Maybe in this case what you want is to notify all
living instances that one of the elements of the data grid cluster
has been stopped.

As you can see, it is about not only the creation of a resource
but also applying some tasks that are specific to your
application that need to be done atop one of the tasks that
Kubernetes is already doing.

The Kubernetes Operator uses Kubernetes API to decide when
and how to run some of these customizations.

The following simple example does not make a lot of sense
from the point of view of the logic it implements, but it will help
you understand the basics of writing a Kubernetes Operator.
Use it as a starting point for implementing your own
Kubernetes Operators.

To write a Kubernetes Operator, the following elements may be
needed:

1. Classes that parse custom resources.

2. Factory method that registers and generates a client to
operate with custom resources.

3. A watcher that reacts when a custom resource is applied
to the cluster. You can think of it as the operator controller
or the operator implementation.

4. Docker image with all previous code.

5. YAML/JSON file to define the custom resource
(CustomResourceDefinition).

6. Deployment file to deploy the custom operator.

Let’s implement a simple Kubernetes Operator that configures
the command to run in the container and instantiates the pod
with this configuration.

The base image used for the example is Whalesay, which
basically prints in the container console the message you
passed as argument in the run command, like this:

docker run docker/whalesay cowsay boo

< boo >

 \

 \

 \

 ## .

https://oreil.ly/98T7t

 ## ## ## ==

 ## ## ## ## ===

 /""""""""""""""""___/ ===

  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~

       \______ o          __/

        \    \        __/

          \____\______/

An example of a pod resource using this image could look like
the following:

apiVersion: v1

kind: Pod

metadata:

  name: whalesay

spec:

  containers:

  - name: whalesay

    image: docker/whalesay

    imagePullPolicy: "IfNotPresent"

    command: ["cowsay","Hello Alex"] 

Sets the output message

The goal of this operator is that only the message to be printed
must be provided. The rest of the content (e.g., Docker image,
container configuration, etc.) is set by the Kubernetes Operator
automatically.

To create a custom operator, the Kubernetes Client and
Jackson dependencies are required:



./mvnw quarkus:add-extension \

-Dextensions="io.quarkus:quarkus-kubernetes-client, 

io.quarkus:quarkus-jackson"

The first thing to do is define what the custom resource looks
like. For this example, it looks like the following:

apiVersion: acme.org/v1alpha1

kind: Hello 

metadata:

  name: example-hello

spec:

  message: Hello Alex 

Uses custom kind schema (defined later in this recipe)

Sets the message to print

An object model is required to parse the custom resource. In
this case, the Jackson library is used to map from YAML to
Java Object. Three classes are required, one for the whole
resource, another one for the spec section, and another one for
the status section, which is empty but required because it
might be filled automatically by the cluster.

Create all of them at src/main/java inside package
org.acme.quickstart.cr:

package org.acme.quickstart.cr;

import 

com.fasterxml.jackson.databind.annotation.JsonDeserialize;



import io.fabric8.kubernetes.client.CustomResource;

@JsonDeserialize 

public class HelloResource extends CustomResource { 

    private HelloResourceSpec spec; 

    private HelloResourceStatus status; 

    public HelloResourceStatus getStatus() {

        return status;

    }

    public void setStatus(HelloResourceStatus status) {

        this.status = status;

    }

    public HelloResourceSpec getSpec() {

        return spec;

    }

    public void setSpec(HelloResourceSpec spec) {

        this.spec = spec;

    }

    @Override

    public String toString() {

        return "name=" + getMetadata().getName()

                + ", version=" + 

getMetadata().getResourceVersion()

                + ", spec=" + spec;

    }

}

Sets POJO as deserializable



Inherits common custom resource fields like kind,
apiVersion, or metadata

Custom spec section

status section

The spec section is mapped as follows:

package org.acme.quickstart.cr;

import com.fasterxml.jackson.annotation.JsonProperty;

import 

com.fasterxml.jackson.databind.annotation.JsonDeserialize;

@JsonDeserialize

public class HelloResourceSpec {

    @JsonProperty("message") 

    private String message;

    public String getMessage() {

        return message;

    }

    public void setMessage(String message) {

        this.message = message;

    }

    @Override

    public String toString() {

        return "HelloResourceSpec [message=" + message + "]";

    }

}



The custom spec contains only a message field

And the empty status section is mapped as follows:

package org.acme.quickstart.cr; 

 

import 

com.fasterxml.jackson.databind.annotation.JsonDeserialize; 

 

@JsonDeserialize

public class HelloResourceStatus {

}

Still, two classes are required from the model point of view.

One class is used when, instead of applying a single custom
resource (as shown previously) to the cluster, a list of the
custom resources is provided (using the items array):

package org.acme.quickstart.cr;

import 

com.fasterxml.jackson.databind.annotation.JsonDeserialize;

import io.fabric8.kubernetes.client.CustomResourceList;

@JsonDeserialize

public class HelloResourceList extends 

CustomResourceList<HelloResource> { 

}

CustomResourceList inherits all fields required to support a
list of custom resources



The other class is used to make the custom resource editable
from the operator implementation:

package org.acme.quickstart.cr;

import io.fabric8.kubernetes.api.builder.Function;

import io.fabric8.kubernetes.client.CustomResourceDoneable;

public class HelloResourceDoneable

    extends CustomResourceDoneable<HelloResource> { 

    public HelloResourceDoneable(HelloResource resource, 

Function<HelloResource,

                                 HelloResource> function) {

        super(resource, function);

    }

}

CustomResourceDoneable class makes the resource editable

The next big thing that is required is a CDI factory bean that
provides all the machinery required by the operator. Create this
class at src/main/java inside package org.acme.quickstart:

package org.acme.quickstart;

import java.io.IOException;

import java.nio.file.Files;

import java.nio.file.Paths;

import javax.enterprise.inject.Produces;

import javax.inject.Named;

import javax.inject.Singleton;

import org.acme.quickstart.cr.HelloResource;



import org.acme.quickstart.cr.HelloResourceDoneable;

import org.acme.quickstart.cr.HelloResourceList;

import 

io.fabric8.kubernetes.api.model.apiextensions.CustomResourceDe

finition;

import io.fabric8.kubernetes.client.DefaultKubernetesClient;

import io.fabric8.kubernetes.client.KubernetesClient;

import io.fabric8.kubernetes.client.dsl.MixedOperation;

import io.fabric8.kubernetes.client.dsl.Resource;

import io.fabric8.kubernetes.internal.KubernetesDeserializer;

public class KubernetesProducer {

  @Produces

  @Singleton

  @Named("namespace")

  String findMyCurrentNamespace() throws IOException { 

    return new String(Files.readAllBytes(

          Paths

            

.get("/var/run/secrets/kubernetes.io/serviceaccount/namespace")));

  }

  @Produces

  @Singleton

  KubernetesClient makeDefaultClient(@Named("namespace") String 

namespace) {

    return new DefaultKubernetesClient().inNamespace(namespace); 

  }

  @Produces

  @Singleton

  MixedOperation<HelloResource,



                 HelloResourceList,

                 HelloResourceDoneable,

                 Resource<HelloResource, HelloResourceDoneable>>

  makeCustomHelloResourceClient(KubernetesClient defaultClient) 

{ 

    KubernetesDeserializer

        .registerCustomKind("acme.org/v1alpha1",

                            "Hello", HelloResource.class); 

    CustomResourceDefinition crd = 

defaultClient.customResourceDefinitions()

                                      .list()

                                      .getItems()

                                      .stream()

                                      .findFirst()

      .orElseThrow(RuntimeException::new); 

    return defaultClient.customResources(crd, 

HelloResource.class,

        HelloResourceList.class,

        HelloResourceDoneable.class); 

  }

}

Gets the namespace where the operator is running

Configures KubernetesClient with the current namespace;
defaults fit for Kubernetes Operator development

MixedOperation is used for watching events about the
custom resource (e.g., when a new custom resource is
applied)

Registers the apiVersion and Kind to be parsed by
org.acme.quickstart.cr.HelloResource



Gets the definition of the custom resource; because there is
only one (i.e., the one we are developing), findFirst can
be used

Registers for the customer resource, the parser, the list
parser, and the doneable class

The last Java class to implement is the controller. This
controller (or watcher/operator) is responsible for inspecting
what’s going on inside the cluster and reacting to the
subscribed events—for example, a new pod has been
created/destroyed or a custom resource of kind Hello has
been applied.

In this implementation, the controller is watching when a new
resource of kind Hello is added. When the custom resource is
applied, then the message is retrieved from the model, and the
pod definition is created using all the builders provided by the
Kubernetes Client API. Finally, the pod is deployed into the
Kubernetes cluster.

Create this class at src/main/java inside package
org.acme.quickstart:

package org.acme.quickstart;

import java.util.HashMap;

import java.util.Map;

import javax.enterprise.event.Observes;

import javax.inject.Inject;



import org.acme.quickstart.cr.HelloResource;

import org.acme.quickstart.cr.HelloResourceDoneable;

import org.acme.quickstart.cr.HelloResourceList;

import io.fabric8.kubernetes.api.model.ContainerBuilder;

import io.fabric8.kubernetes.api.model.HasMetadata;

import io.fabric8.kubernetes.api.model.ObjectMetaBuilder;

import io.fabric8.kubernetes.api.model.Pod;

import io.fabric8.kubernetes.api.model.PodBuilder;

import io.fabric8.kubernetes.api.model.PodSpecBuilder;

import io.fabric8.kubernetes.client.KubernetesClient;

import io.fabric8.kubernetes.client.KubernetesClientException;

import io.fabric8.kubernetes.client.Watcher;

import io.fabric8.kubernetes.client.dsl.MixedOperation;

import io.fabric8.kubernetes.client.dsl.Resource;

import io.quarkus.runtime.StartupEvent;

public class HelloResourceWatcher {

  @Inject

  KubernetesClient defaultClient; 

  @Inject

  MixedOperation<HelloResource,

    HelloResourceList,

    HelloResourceDoneable,

    Resource<HelloResource,

    HelloResourceDoneable>> crClient; 

  void onStartup(@Observes StartupEvent event) { 

    crClient.watch(new Watcher<HelloResource>() { 

      @Override

      public void eventReceived(Action action, HelloResource 

resource) {

        System.out.println("Received " + action

            + " event for resource " + resource);



        if (action == Action.ADDED) {

          final String app = resource.getMetadata().getName(); 

          final String message = 

resource.getSpec().getMessage();

          final Map<String, String> labels = new HashMap<>(); 

          labels.put("app", app);

          final ObjectMetaBuilder objectMetaBuilder =

            new ObjectMetaBuilder().withName(app + "-pod")

            .withNamespace(resource.getMetadata()

                .getNamespace())

            .withLabels(labels);

          final ContainerBuilder containerBuilder =

            new ContainerBuilder().withName("whalesay")

            .withImage("docker/whalesay")

            .withCommand("cowsay", message); 

          final PodSpecBuilder podSpecBuilder =

            new PodSpecBuilder()

            .withContainers(containerBuilder.build())

            .withRestartPolicy("Never");

          final PodBuilder podBuilder =

            new PodBuilder()

            .withMetadata(objectMetaBuilder.build())

            .withSpec(podSpecBuilder.build());

          final Pod pod = podBuilder.build(); 

          HasMetadata result = defaultClient

            .resource(pod)

            .createOrReplace(); 

          if (result == null) {

            System.out.println("Pod " + pod



                + " couldn't be created");

          } else {

            System.out.println("Pod " + pod + " created");

          }

        }

      }

      @Override

      public void onClose(KubernetesClientException e) { 

        if (e != null) {

          e.printStackTrace();

          System.exit(-1);

        }

      }

    });

  }

}

Injects KubernetesClient

Injects operations specific to the developed custom
resource

Executes logic when the application is started

Watches for any operation that HelloResource is implied

Gets the information provided in the custom resource

Starts the creation of the pod definition programmatically

Sets the message provided by the custom resource

Builds the pod

Adds the pod to the cluster



If there is any critical error when closing, then stop the
container

Discussion
On the Java side, this is all you need to do; however, there are
still some remaining parts, such as packaging and
containerizing the operator, or defining the custom operator
inside the cluster.

The first thing to take into consideration when developing a
Kubernetes Operator is that the communication with the
Kubernetes API server is done through HTTPS, and this
means that crypto libraries must be provided in the Docker
image if they are not provided by default.

At the time of writing, the Dockerfile.jvm file provided by
Quarkus does not contain the crypto libraries required to
communicate to the Kubernetes server. To fix this, just open
src/main/docker/Dockerfile.jvm and add the nss (Network
Security Services) package:

FROM fabric8/java-alpine-openjdk8-jre 

 

RUN apk add --no-cache nss

Then containerize the operator by running Maven and Docker:

./mvnw clean package 

 



docker build -f src/main/docker/Dockerfile.jvm \

  -t lordofthejars/quarkus-operator-example:1.0.0 .

Then register the custom resource definition into the
Kubernetes cluster so that it is aware of the new kind, the
scope of the custom resource, or the group name, among other
things.

Create a new file at src/main/kubernetes with name custom-
resource-definition.yaml that defines all the information
required by the cluster to register a new resource:

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

  name: hellos.acme.org 

spec:

  group: acme.org 

  names:

    kind: Hello 

    listKind: HelloList 

    plural: hellos 

    singular: hello 

  scope: Namespaced 

  subresources:

    status: {}

  version: v1alpha1 

plural plus group

Sets the group of the custom resource (used in the
apiVersion field of the custom resource)



Name of the kind

Name when the kind is a list of this custom resource

The plural name

The singular name

Scope of the resource

The version of the resource (used in the apiVersion field of
the custom resource)

And the last thing to create is a deployment file that deploys
the operator. Create a new file named deploy.yaml at
src/main/kubernetes:

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRole 

metadata:

  name: quarkus-operator-example

rules:

- apiGroups:

  - ''

  resources:

  - pods 

  verbs:

  - get

  - list

  - watch

  - create

  - update

  - delete

  - patch

- apiGroups:



  - apiextensions.k8s.io

  resources:

  - customresourcedefinitions

  verbs:

  - list

- apiGroups:

  - acme.org 

  resources:

  - hellos

  verbs:

  - list

  - watch

---

apiVersion: v1

kind: ServiceAccount

metadata:

  name: quarkus-operator-example

---

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

  name: quarkus-operator-example

subjects:

- kind: ServiceAccount

  name: quarkus-operator-example

  namespace: default

roleRef:

  kind: ClusterRole

  name: quarkus-operator-example

  apiGroup: rbac.authorization.k8s.io

---

apiVersion: apps/v1

kind: Deployment 

metadata:

  name: quarkus-operator-example

spec:



  selector:

    matchLabels:

      app: quarkus-operator-example

  replicas: 1

  template:

    metadata:

      labels:

        app: quarkus-operator-example

    spec:

      serviceAccountName: quarkus-operator-example 

      containers:

      - image: lordofthejars/quarkus-operator-example:1.0.0 

        name: quarkus-operator-example

        imagePullPolicy: IfNotPresent

Defines a cluster role for the role-based access control
(RBAC) for Kubernetes resources

Adds rights to get, list, watch, create, update, delete, and
patch pods

For the custom resource (hellos.acme.org), the required
operations are list and watch

An operator is deployed with a Deployment

Sets the service account linked to the cluster role defined in
the file

Sets the container image containing the operator

The last step before having the operator up and running is to
apply all these created resources:



kubectl apply -f src/main/kubernetes/custom-resource-

definition.yaml

kubectl apply -f src/main/kubernetes/deploy.yaml 

 

kubectl get pods 

 

NAME                                       READY   STATUS    

RESTARTS   AGE

quarkus-operator-example-fb77dc468-8v9xk   1/1     Running   0       

5s

The operator is now installed and running. To test the operator,
just create a custom resource of kind Hello with the message
to show:

apiVersion: acme.org/v1alpha1

kind: Hello 

metadata:

  name: example-hello

spec:

  message: Hello Alex 

Uses custom kind schema

Sets the message to print

And apply it as follows:

kubectl apply -f src/main/kubernetes/custom-resource.yaml 

 

kubectl get pods 

 

NAME                                       READY   STATUS      

RESTARTS   AGE



example-hello-pod                          0/1     Completed   0     

2m57s

quarkus-operator-example-fb77dc468-8v9xk   1/1     Running     0     

3m24s

When it’s completed, check the pod logs to validate that the
message has been printed on the console:

kubectl logs example-hello-pod 

 

 ____________

< Hello Alex >

 ------------

    \

     \

      \

                    ##        .

              ## ## ##       ==

           ## ## ## ##      ===

       /""""""""""""""""___/ ===

  ~~~ {~~ ~~~~ ~~~ ~~~~ ~~ ~ /  ===- ~~~

 ______ o __/

 \ \ __/

 __________/

Although an operator and a custom resource are usually
related, an operator without a custom resource definition is still
possible—for example, to create a watcher class to intercept
any event that affects a pod and apply some logic.

See Also

To learn more about operators, check out the following
websites:

CoreOS: Operators

Kubernetes: Operator pattern

10.12 Deploying and Managing Serverless
Workloads with Knative

Problem
You want to deploy and manage serverless workloads.

Solution
Use Knative, the Kubernetes-based platform to deploy and
manage modern serverless workloads.

The quarkus-kubernetes extension provides support for
generating Knative resources automatically with sane defaults
and optional user-supplied configuration.

To enable the generation of Kubernetes resources, you need to
register the quarkus-kubernetes extension:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-kubernetes, quarkus-container-image-

docker"

https://oreil.ly/NV2dN
https://oreil.ly/6Z77K

For this example, the quarkus-container-image-docker
extension is used to build the container image using docker
binary, so the image is built directly inside the minikube cluster
and registered inside the internal registry, so no external
registry is required.

You need to run eval $(minikube docker-env) to configure
docker to use the minikube docker host.

Then you need to set the quarkus.kubernetes.deployment-
target property to knative and set it to build a Docker
container during package phase, among other configuration
properties regarding container image creation:

quarkus.kubernetes.deployment-target=knative

quarkus.container-image.build=true

quarkus.container-image.group=lordofthejars

quarkus.container-image.registry=dev.local

Sets target deployment to knative

Builds the container image with lordofthejars group

Sets to dev.local when deploying local container images

The Knative controller resolves image tags to digests in order
to guarantee the immutability of revisions. This works well
when using a normal registry; however, it can cause problems
when used with minikube and local images.

By default, the Knative controller skips resolving digests with
images prefixed with dev.local or ko.local. If you are running
this example in minikube, you must set the registry property to
any of these two options to make Knative find the images to
deploy.

To generate the Kubernetes resources, execute in a new
terminal ./mvnw package. Then, among the usual files
generated by the build tool in the target directory, two new files
are created inside the target/kubernetes directory named
knative.json and knative.yaml containing a Knative service
definition:

{

 "apiVersion" : "v1",

 "kind" : "ServiceAccount",

 "metadata" : {

 "annotations" : {

 "app.quarkus.io/vcs-url" :

 "https://github.com/lordofthejars/quarkus-cookbook.git",

 "app.quarkus.io/build-timestamp" : "2020-03-10 - 22:55:08

+0000",

 "app.quarkus.io/commit-id" :

"17b19a409c41cc933770b20009f635a65f69440e"

 },

 "labels" : {

 "app.kubernetes.io/name" : "greeting-knative",

 "app.kubernetes.io/version" : "1.0-SNAPSHOT"

 },

 "name" : "greeting-knative"

 }

}{

 "apiVersion" : "serving.knative.dev/v1alpha1",

 "kind" : "Service",

 "metadata" : {

 "annotations" : {

 "app.quarkus.io/vcs-url" :

 "https://github.com/lordofthejars/quarkus-cookbook.git",

 "app.quarkus.io/build-timestamp" : "2020-03-10 - 22:55:08

+0000",

 "app.quarkus.io/commit-id" :

"17b19a409c41cc933770b20009f635a65f69440e"

 },

 "labels" : {

 "app.kubernetes.io/name" : "greeting-knative",

 "app.kubernetes.io/version" : "1.0-SNAPSHOT"

 },

 "name" : "greeting-knative"

 },

 "spec" : {

 "runLatest" : {

 "configuration" : {

 "revisionTemplate" : {

 "spec" : {

 "container" : {

 "image" :"dev.local/lordofthejars/greeting-

knative:1.0-SNAPSHOT",

 "imagePullPolicy" : "IfNotPresent"

 }

 }

 }

 }

 }

 }

}

Then deploy the generated Knative service:

kubectl apply -f target/kubernetes/knative.json

serviceaccount/greeting-knative created

service.serving.knative.dev/greeting-knative created

kubectl get ksvc

NAME URL

\

greeting-knative http://greeting-

knative.default.127.0.0.1.nip.io \

LATESTCREATED LATESTREADY READY REASON

greeting-knative-j8n76 greeting-knative-j8n76 True

It can take a few seconds to move the ready state from
Unknown to True. If there is a failure, which means that ready
state remains in false, you can check the reason and the
sequence of events by running the following:

kubectl get events --sort-by=.metadata.creationTimestamp

To test that the service has been deployed correctly, open a
new terminal window and do a port forward between the local
machine and Knative gateway:

kubectl port-forward --namespace kourier-system $(kubectl get

pod \

 -n kourier-system -l "app=3scale-kourier-gateway" \

 --output=jsonpath="{.items[0].metadata.name}") \

 8080:8080 19000:19000 8443:8443

Forwarding from 127.0.0.1:8080 -> 8080

Forwarding from [::1]:8080 -> 8080

Forwarding from 127.0.0.1:19000 -> 19000

Forwarding from [::1]:19000 -> 19000

Forwarding from 127.0.0.1:8443 -> 8443

Forwarding from [::1]:8443 -> 8443

Handling connection for 8080

Handling connection for 8080

Notice that this is required only because the service is
deployed in minikube. Depending on the Kubernetes platform
on which you are deploying the service, you might need to do
different things.

Finally, you can send a request to the service:

curl -v -H "Host: greeting-knative.default.127.0.0.1.nip.io" \

 http://localhost:8080/greeting

hello

To undeploy the example, you need to run the following:

kubectl delete -f target/kubernetes/knative.json

serviceaccount "greeting-knative" deleted

service.serving.knative.dev "greeting-knative" deleted

Discussion
You can combine the container-image and kubernetes
extensions to build the container image and push it to
Kubernetes automatically, as shown in Recipe 10.6, so no
manual steps are required.

See Also
To learn more, visit the following web pages:

Knative Serving

GitHub: Kourier

https://oreil.ly/RBv52
https://oreil.ly/3bSDL

Chapter 11. Authentication
and Authorization

In this chapter, you will learn about how authorization and
authentication, the backbone of application security, work within a
Quarkus application. We’ll discuss the following topics:

File-backed authentication and authorization schemes

Databased-backed authentication and authorization schemes

External-service-backed authentication and authorization
schemes

Quarkus Security Basics
Before we get to our first recipe, this section will show you the
basics of Quarkus and security, the security extensions you will
use to load authentication sources, and how to protect resources
using a role-based access control (RBAC) approach.

The examples shown in this section are not meant to be
runnable, but they will be the basis for the upcoming recipes in
which we are going to see the security extensions in action.

The following are the two main concepts regarding security:

Authentication

Validate your credentials (i.e., username/password) to verify
your identity so that the system knows who you are.

Authorization

Verify your rights to be granted access to a protected
resource. This happens after the authentication process.

Authentication
Quarkus provides two authenticating mechanisms for HTTP, the
well-known BASIC and FORM methods. These mechanisms can be
extended by any Quarkus extension to provide a custom
authentication method. An example of these mechanisms is
found in the form of the Quarkus extension to authenticate
against an OpenID Connect server such as Keycloak. We are
going to explore how to do this in this section.

To use authentication, an identity provider is required to validate
the credentials (i.e., username/password) provided by the user.
Quarkus provides the following identity providers out of the box,
but you can implement your own, too:

Elytron properties file

Provides a mapping between user/password/role in the form
of the properties file. The information can be embedded either
in application.properties file or in a specific file for this
purpose.

Elytron JDBC

Provides a mapping between user/password/role based on
JDBC queries.

JPA

Provides support for authenticating via JPA.

SmallRye JWT

Provides authentication using JSON Web Tokens (JWT) spec.

OIDC

Provides authentication using an OpenID Connect (OIDC)
provider like Keycloak.

Keycloak authorization

Provides support for a policy enforcer using Keycloak
Authorization Services.

BASIC AUTHENTICATION

To authenticate using basic access authentication, the
quarkus.http.auth.basic configuration property must be set to
true.

FORM-BASED AUTHENTICATION

The quarkus.http.auth.form.enabled configuration property
must be set to true in order to authenticate using form access
authentication.

IMPORTANT
Quarkus does not store the authenticated user in an HTTP session
because there is no clustered HTTP session support. Instead, the
authentication information is stored in an encrypted cookie.

The encryption key can be set using the
quarkus.http.auth.session.encryption-key property, and it
must be at least 16 characters long. The key is hashed using
SHA-256, and the result is used as a key for AES-256 encryption
of the cookie value. This cookie contains an expiry time as part of
the encrypted value, generating a new cookie in one-minute
intervals with an updated expiry time if the session is in use.

Authorization
Quarkus integrates with Java EE Security annotations to define
RBAC on RESTful web endpoints and CDI beans.

Moreover, you can define the authorization of RESTful Web
Endpoints using a configuration file (application.properties)
instead of annotations.

Both approaches can coexist in the same application, but
configuration file checks are executed before any annotation
check and are not mutually exclusive, which means that in case
of overlap, both checks must pass.

The following snippet shows how to secure a JAX-RS endpoint
using the Java EE Security annotations:

package org.acme.quickstart;

import javax.annotation.security.DenyAll;

import javax.annotation.security.PermitAll;

import javax.annotation.security.RolesAllowed;

import io.quarkus.security.Authenticated;

https://oreil.ly/ATPpq

import javax.ws.rs.GET;

import javax.ws.rs.Path;

@Path("/hello")

public class GreetingResource {

 @GET

 @Path("/secured")

 @RolesAllowed("Tester")

 public String greetingSecured() {}

 @GET

 @Path("/unsecured")

 @PermitAll

 public String greetingUnsecured() {}

 @GET

 @Path("/denied")

 @DenyAll

 public String greetingDenied() {}

 @GET

 @Path("/authenticated")

 @Authenticated

 public String greetingAuthenticated() {}

}

Requires an authenticated user with role Tester

Unauthenticated users have access to the method

No user can access whether authenticated or not

Permit any authenticated user to access; it is an alias of
@RolesAllowed("*") and is provided by Quarkus, not the spec

The javax.ws.rs.core.Context annotation can be used to inject
the javax.ws.rs.core.SecurityContext instance to get
information about the user that was authenticated:

@GET

@Path("/secured")

@RolesAllowed("Tester")

public String greetingSecured(@Context SecurityContext sec) {

 Principal user = sec.getUserPrincipal();

 String name = user != null ? user.getName() : "anonymous";

 return name;

}

Injects SecurityContext for current request

Gets the current logged user

IMPORTANT
Security annotations are not restricted only to JAX-RS resources.
They can be used in CDI beans to protect method calls, too.

Quarkus supports configuring RESTful web endpoints using the
configuration file instead of annotations. The equivalent security
annotation example can be expressed using the configuration
file:

quarkus.http.auth.policy.role-policy1.roles-allowed=Tester

quarkus.http.auth.permission.roles1.paths=/hello/secured

quarkus.http.auth.permission.roles1.policy=role-policy1

quarkus.http.auth.permission.roles1.methods=GET

quarkus.http.auth.permission.deny1.paths=/hello/denied

quarkus.http.auth.permission.deny1.policy=deny

quarkus.http.auth.permission.permit1.paths=/hello/unsecured

quarkus.http.auth.permission.permit1.policy=permit

quarkus.http.auth.permission.permit1.methods=GET

quarkus.http.auth.permission.roles2.paths=/hello/authenticated

quarkus.http.auth.permission.roles2.policy=authenticated

quarkus.http.auth.permission.roles2.methods=GET

Defines the roles of the application; role-policy1 is used as
reference value

Sets the permission to the resource; roles1 is an arbitrary
name to avoid repeating keys

Sets the role policy

Restricts permission to the GET method

Denies access

Permits access

It is important to note that the paths attribute supports multiple
values separated by a comma, and also the * wildcard to match
any subpath. For example,
quarkus.http.auth.permission.permit1.paths=/public/_,/rob

ots.txt sets permission for any resource placed at /public and
any of its subpaths and the file /robots.txt.

In the same way, the methods attribute allows multiple values
separated by a comma.

There are two configuration properties that affect the RBAC
behavior:

quarkus.security.jaxrs.deny-unannotated-endpoints

If it is set to true, then all JAX-RS endpoints not annotated
with security annotations are denied by default. This property
is false by default.

quarkus.security.deny-unannotated-members

If it is set to true, then all JAX-RS endpoints and CDI
methods not annotated with security annotations are denied
by default. This property is false by default.

So far, you’ve seen that in Quarkus you can set authorization
procedure (basic, form, or other provided by extension) and
define the authentication roles using security annotations or
specifying them in the configuration file.

The recipes in this chapter will explore the different Quarkus
extensions to provide authentication and authorization identity
providers.

11.1 Authentication and Authorization with
Elytron Properties File Config

Problem
You want to secure the application by storing identities in files.

Solution

Quarkus security provides support to store identities in files using
the Elytron properties file config as an identity provider.

You’ve seen how to define the authentication mechanism and
how to protect the resources with RBAC, either with security
annotations or in application.properties, but you’ve not seen how
to register an identity provider and how to store the user
information like username, password, or roles where it belongs.

Let’s see how to define identity information using the Elytron
properties file config extension. This extension is based on the
properties file to define all identity information, and its main
purpose is for development and testing. It is not recommended
that this be used in production because passwords can be
expressed only in plain text or in MD5 hashed.

To enable the Elytron properties file config, you need to register
the quarkus-elytron-security-properties-file extension:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-elytron-security-properties-file"

This extension supports the mapping of users to passwords and
users to roles with a combination of properties files.

Protect the endpoint with allowing only the Tester role to access
the resource:

@GET

@Produces(MediaType.TEXT_PLAIN)

@RolesAllowed("Tester")

public String hello() {

 return "hello";

}

To register identities, two properties files are required, one for
mapping user and password, and another one for mapping the
user and the list of roles they belong in.

The user configuration properties file defines for each line the
pair of user and password that are registered in the system:

alex=soto

In the users’ properties file, the key part is the username, and the
value part is the password.

WARNING
Notice that the password is in plain text. You can hash the
password with MD5 following this pattern:
HEX(MD5(username:realm:password).

The roles configuration file defines for each line the pair of
username and the roles (separated by commas) that the user
belongs in:

alex=Tester

In the roles properties file, the key part is the username, and the
value is the roles assigned to the user.

Finally, the Elytron Security properties file extension needs to be
configured with the classpath locations of the users and roles
properties files:

quarkus.http.auth.basic=true

quarkus.security.users.file.enabled=true

quarkus.security.users.file.plain-text=true

quarkus.security.users.file.users=users.properties

quarkus.security.users.file.roles=roles.properties

Enables basic authentication method

Enables security with the properties file extension

Sets the password that is not hashed with MD5

Sets the classpath location of the users and roles properties
files

Run the generated test to validate the protection of the endpoint:

./mvnw clean test

...

INFO [io.quarkus] (main) Installed features:

 [cdi, resteasy, security, security-properties-file]

[ERROR] Tests run: 2, Failures: 1, Errors: 0, Skipped: 0, Time

elapsed: 8.485 s

 <<< FAILURE! - in org.acme.quickstart.GreetingResourceTest

[ERROR] testHelloEndpoint Time elapsed: 0.076 s <<< FAILURE!

java.lang.AssertionError:

1 expectation failed.

Expected status code <200> but was <401>.

 at

org.acme.quickstart.GreetingResourceTest.testHelloEndpoint

 (GreetingResourceTest.java:17)

The test is failing with an HTTP 401 Unauthorized error because
the test is not providing any identity using the Basic
authentication method. Modify the test to authenticate with a
configured username and password:

@Test

public void testSecuredHelloEndpoint() {

 given()

 .auth()

 .basic("alex", "soto")

 .when()

 .get("/hello")

 .then()

 .statusCode(200)

 .body(is("hello"));

}

Sets authentication part

Basic authentication with a given username and password

Now, with valid authenticating parameters, the test passes.

Discussion
The Elytron properties file config extension also supports
embedding the mapping between user/password/roles in the
Quarkus configuration file (application.properties) instead of
using different files.

quarkus.security.users.embedded.enabled=true

quarkus.security.users.embedded.plain-text=true

quarkus.security.users.embedded.users.alex=soto

quarkus.security.users.embedded.roles.alex=Admin,Tester

Passwords stored in a file can be hashed using the formula
HEX(MD5(username ":" realm ":" password)).

An embedded Elytron properties file config can be configured by
using the properties listed in Table 11-1.

T
a
b
l
e

1
1
-
1
.
E
m
b
e
d
e
d

E
l
y
t
r

o
n

p
r
o
p
e
r
ti
e
s

Property Description

quarkus.securit

y.users.embedde

d.realm-name

The realm name used when generating a hashed
password (defaults to Quarkus).

quarkus.securit

y.users.embedde

d.enabled

Enables security with the properties file extension
(defaults to false).

quarkus.securit

y.users.embedde

d.plain-text

Sets if the password is hashed or not. If true, the
hashed password must be in the form of
HEX(MD5(username:realm:password) (defaults to false).

quarkus.securit

y.users.embedde

d.users.<user>

The user information. The key part is the username,
and the value part is the password.

quarkus.securit

y.users.embedde

d.roles.<user>

The role information. The key part is the username,
and the value part is the password.

11.2 Authentication and Authorization with
Elytron Security JDBC Config

Problem
You want to secure the application and store user identities in a
database.

Solution
Quarkus security provides support to store user identities in a
data source using Elytron Security JDBC config as an identity
provider.

You’ve seen how to define identities in properties files using the
Elytron properties file config extension in Recipe 11.1. However,
as noted there, this method is more for testing/dev purposes and
should not be used in production environments.

The Elytron Security JDBC extension can be used to store the
user identities in a database, supporting password encryption
using bcrypt password mapper, and being versatile enough to not
lock you into any predefined database schema.

To enable the Elytron Security JDBC extension, you need to
register the quarkus-elytron-security-jdbc extension, the

JDBC driver used to connect to the database, and optionally
Flyway to populate schema and some default users:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-elytron-security-jdbc,quarkus-jdbc-

h2,quarkus-flyway"

Protect the endpoint with allowing only the Tester role to access
the resource:

@GET

@RolesAllowed("Tester")

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return "hello";

}

The next step is to define the database schema to store all RBAC
information. For the sake of simplicity, a simple table with user,
password, and role is used in this example:

CREATE TABLE test_user (

 id INT,

 username VARCHAR(255),

 password VARCHAR(255),

 role VARCHAR(255)

);

INSERT INTO test_user (id, username, password, role)

 VALUES (1, 'alex', 'soto', 'Tester');

Finally, the extension must be configured to specify which query
to execute to validate the user and retrieve the roles they belong
in:

quarkus.datasource.url=jdbc:h2:mem:mydb

quarkus.datasource.driver=org.h2.Driver

quarkus.datasource.username=sa

quarkus.datasource.password=

quarkus.flyway.migrate-at-start=true

quarkus.security.jdbc.enabled=true

quarkus.security.jdbc.principal-query.sql=\

 SELECT u.password, u.role FROM test_user u WHERE u.username=?

quarkus.security.jdbc.principal-query.clear-password-

mapper.enabled=true

quarkus.security.jdbc.principal-query.clear-password-mapper\

 .password-index=1

quarkus.security.jdbc.principal-query.attribute-mappings.0.index=2

quarkus.security.jdbc.principal-query.attribute-

mappings.0.to=groups

Enables Elytron Security JDBC

Defines the query to validate the user and get the roles; the
query must contain exactly one parameter (the username)
and return at least the password, and the value should be on
the same line as the key

The password is stored in cleartext

Sets the index of the password; this should all be on the same
line

Sets the index of the role and specifies the field as role

IMPORTANT
Index is 1-based.

TIP
The query to retrieve the password (and optionally the roles) can be
as complex as required by your model (i.e., SQL joins).

Now, the authentication and authorization data are retrieved from
the database instead of a file. When the username and password
are provided (e.g., using the basic auth method), the query is
executed to retrieve all required information for the authentication
process (matching provided password against the retrieved
password from the database) and to get roles for the
authorization process.

Remember to update the test (if not done before) to make it pass:

@Test

public void testSecuredHelloEndpoint() {

 given()

 .auth().basic("alex", "soto")

 .when()

 .get("/hello")

 .then()

 .statusCode(200)

 .body(is("hello"));

}

Discussion
In this recipe, you’ve used a cleartext password, which obviously
should not be used in a production environment. The extension
provides an integration to the bcrypt password mapper, so the
authentication process also works for hashing passwords.

ABOUT BCRYPT

bcrypt is a password hashing function designed by Niels Provos and
David Mazières that incorporates several protections like a salt to protect
against rainbow table attacks and an iteration count to be resistant against
brute-force search attacks.

You need to extend the configuration file with some extra
parameters to indicate to Elytron Security JDBC that the
password is using bcrypt and should not be compared as
cleartext.

Instead of configuring clear-password-mapper, the bcrypt-
password-mapper is used. The following is an example of a
configuration file using bcrypt:

quarkus.security.jdbc.enabled=true

quarkus.security.jdbc.principal-query.sql=\

 SELECT u.password, u.role, u.salt, u.iteration \

 FROM test_user u WHERE u.username=?

quarkus.security.jdbc.principal-query.clear-password-

mapper.enabled=false

quarkus.security.jdbc.principal-query.bcrypt-password-

mapper.enabled=true

quarkus.security.jdbc.principal-query.bcrypt-password-

mapper.password-index=\

 1

quarkus.security.jdbc.principal-query.bcrypt-password-mapper.hash-

encoding=\

 BASE64

quarkus.security.jdbc.principal-query.bcrypt-password-mapper.salt-

index=\

 3

quarkus.security.jdbc.principal-query.bcrypt-password-mapper.salt-

encoding=\

 BASE64

quarkus.security.jdbc.principal-query.bcrypt-password-mapper.\

 iteration-count-index=4

quarkus.security.jdbc.principal-query.attribute-mappings.0.index=2

quarkus.security.jdbc.principal-query.attribute-

mappings.0.to=groups

Enables bcrypt

Sets password index; this should be on the same line

Sets password hash encoding; this should be on the same
line

Sets salt index; this should be on the same line

Sets salt encoding; this should be on the same line

Sets iteration count index; this should be on the same line

After this change, the password matching between the provided
password and the password retrieved by query does not happen
in cleartext. Rather, the provided password is hashed using
bcrypt and then compared with the stored password:

quarkus.security.jdbc.enabled=true

quarkus.security.jdbc.principal-query.sql=\

 SELECT u.password FROM test_user u WHERE u.username=?

quarkus.security.jdbc.principal-query.clear-password-

mapper.enabled=true

quarkus.security.jdbc.principal-query.clear-password-

mapper.password-index=1

quarkus.security.jdbc.principal-query.roles.sql=\

 SELECT r.role_name FROM test_role r, test_user_role ur \

 WHERE ur.username=? AND ur.role_id = r.id

quarkus.security.jdbc.principal-query.roles.datasource=permissions

quarkus.security.jdbc.principal-query.roles.attribute-

mappings.0.index=1

quarkus.security.jdbc.principal-query.roles.attribute-

mappings.0.to=groups

Default data source is used to retrieve the password

roles is used as a name to identify the second query; the
query should all be on the same line

Gets the role from another query

Role query is executed against a data source named
permissions

11.3 Authorization with MicroProfile JWT

Problem
You want to save security context in RESTful web services and
stateless services in general.

Solution
Use JSON Web Tokens.

JWT (JSON Web Token) is a standard specified under RFC-7519
that is used for exchanging information between services. The
particularity of JWT is that the token content is formatted in JSON
instead of in plain text or any other binary format.

Quarkus integrates with the MicroProfile JWT specification to
consume and validate JWT tokens and retrieve the claims.

A JWT token is formed by claims, which are the information to
transmit—for example, the username, the expiration of the token,
or the roles of the user. The token is digitally signed so the
information contained in the token can be trusted and verified.

A JWT token is composed of three sections. All of them are
encoded in the Base64 format:

Header

It contains some metadata, like the algorithm used to sign the
token; custom information of the token, like the type of token;
or unencrypted claims if using JSON Web Encryption (JWE).

Claims

Information to store inside the token. Some claims are
mandatory, others are options, and some are custom to our
application.

Signature

The signature of the token.

https://oreil.ly/IU0-d

Then the three sections are encoded to Base64 and
concatenated with a period sign (.), so the final token looks like
base64(Header).base64(Claims).base64(Signature).

For this example, the following JWT token is used:

{

 "kid": "/privateKey.pem",

 "typ": "JWT",

 "alg": "RS256"

},

{

 "sub": "jdoe-using-jwt-rbac",

 "aud": "using-jwt-rbac",

 "upn": "jdoe@quarkus.io",

 "birthdate": "2001-07-13",

 "auth_time": 1570094171,

 "iss": "https://quarkus.io/using-jwt-rbac",

 "roleMappings": {

 "group2": "Group2MappedRole",

 "group1": "Group1MappedRole"

 },

 "groups": [

 "Echoer",

 "Tester",

 "Subscriber",

 "group2"

],

 "preferred_username": "jdoe",

 "exp": 2200814171,

 "iat": 1570094171,

 "jti": "a-123"

}

Header part

Claims part

The issuer of the token

Groups (or roles) that the owner of the token belongs in

The following is the serialized version of the same token:

eyJraWQiOiJcL3ByaXZhdGVLZXkucGVtIiwidHlwIjoiSldUIiwiYWxnIjoiUlMyNTYifQ.

eyJzdWIiOiJqZG9lLXVzaW5nLWp3dC1yYmFjIiwiYXVkIjoidXNpbmctand0LXJiYWMiLCJ

1cG4iOiJqZG9lQHF1YXJrdXMuaW8iLCJiaXJ0aGRhdGUiOiIyMDAxLTA3LTEzIiwiYXV0aF

90aW1lIjoxNTcwMDk0MTcxLCJpc3MiOiJodHRwczpcL1wvcXVhcmt1cy5pb1wvdXNpbmcta

nd0LXJiYWMiLCJyb2xlTWFwcGluZ3MiOnsiZ3JvdXAyIjoiR3JvdXAyTWFwcGVkUm9sZSIs

Imdyb3VwMSI6Ikdyb3VwMU1hcHBlZFJvbGUifSwiZ3JvdXBzIjpbIkVjaG9lciIsIlRlc3R

lciIsIlN1YnNjcmliZXIiLCJncm91cDIiXSwicHJlZmVycmVkX3VzZXJuYW1lIjoiamRvZS

IsImV4cCI6MjIwMDgxNDE3MSwiaWF0IjoxNTcwMDk0MTcxLCJqdGkiOiJhLTEyMyJ9.

Hzr41h3_uewy-g2B-

sonOiBObtcpkgzqmF4bT3cO58v45AIOiegl7HIx7QgEZHRO4PdUtR3

4x9W23VJY7NJ545ucpCuKnEV1uRlspJyQevfI-mSRg1bHlMmdDt661-

V3KmQES8WX2B2uqi

rykO5fCeCp3womboilzCq4VtxbmM2qgf6ag8rUNnTCLuCgEoulGwTn0F5lCrom-

7dJOTryW

1KI0qUWHMMwl4TX5cLmqJLgBzJapzc5_yEfgQZ9qXzvsT8zeOWSKKPLm7LFVt2YihkXa80l

Wcjewwt61rfQkpmqSzAHL0QIs7CsM9GfnoYc0j9po83-P3GJiBMMFmn-vg

Notice how the sections are divided by periods.

MicroProfile JWT spec performs the following operations when a
request is received:

1. Extract security token from the request, usually from the
Authorization header.

2. Validate the token to make sure that the token is valid.
These checks might involve things like verifying the
signature to trust on the token or verifying that the token has
not expired.

3. Extract token information.

4. Create a security context with identity information so it can
be used in case of authorization (RBAC).

Moreover, the MicroProfile JWT spec sets a list of mandatory
claims that every token must provide:

Claim Description

ty

p

The token format. It must be JWT.

al

g

Identifies the cryptographic algorithm to secure the token. It must
be RS256.

ki

d

Indicates which key was used to secure the token.

is

s

The token issuer.

su

b

Identifies the principal subjected to the token.

au

d

Identifies the recipients that the token is intended for.

ex

p

Sets the expiration time.

ia

t

Provides the time at which the token was issued.

jt

i

Unique identifier of the token.

up

n

The user-principal name used in the java.security.Principal
interface.

gr

ou

ps

The list of group names that have been assigned to the principal of
the token. They are the roles in which the user belongs.

These are the minimal claims that are required by the
MicroProfile JWT specification, but additional claims can be
added, such as preferred_username or any other information that
your application might need to transmit between services.

Register the quarkus-smallrye-jwt extension to start using the
MicroProfile JWT specification:

./mvnw quarkus:add-extension -Dextensions="quarkus-smallrye-jwt"

Configure the extension to set the public key used to verify that
the token has not been modified and that the issuer (iss) claim of
the token the server accepts is valid.

The following are public key formats supported by the
specification:

Public Key Cryptography Standards #8 (PKCS#8) Privacy-
Enhanced Mail (PEM)

JSON Web Key (JWK)

JSON Web Key Set (JWKS)

JSON Web Key (JWK) Base64 URL encoded

JSON Web Key Set (JWKS) Base64 URL encoded

For this example, we choose the JSON Web Key Set (JWKS)
format to specify the public key used to validate the token.

The JWKS file containing the public key is placed inside the
project directory:

{

 "keys": [

 {

 "kty": "RSA",

 "kid": "/privateKey.pem",

 "e": "AQAB",

 "n":

"livFI8qB4D0y2jy0CfEqFyy46R0o7S8TKpsx5xbHKoU1VWg6QkQm-ntyIv1

 p4kE1sPEQO73-HY8-

Bzs75XwRTYL1BmR1w8J5hmjVWjc6R2BTBGAYRPFRho

 r3kpM6ni2SPmNNhurEAHw7TaqszP5eUF_F9-KEBWkwVta-

PZ37bwqSE4sCb

1soZFrVz_UT_LF4tYpuVYt3YbqToZ3pZOZ9AX2o1GCG3xwOjkc4x0W7ezbQ

ZdC9iftPxVHR8irOijJRRjcPDtA6vPKpzLl6CyYnsIYPd99ltwxTHjr3npf

 v_3Lw50bAkbT4HeLFxTx4flEoZLKO_g0bAoV2uqBhkA9xnQ"

 }

]

}

The configuration file pointing to this data is the following:

mp.jwt.verify.publickey.location=quarkus.pub.jwk.json

mp.jwt.verify.issuer=https://quarkus.io/using-jwt-rbac

Location of the public key

The issuer accepted by the service

Apart from handling the verification process of the token, the
MicroProfile JWT integrates with existing Java EE security APIs
providing the data from the token. The integration happens in the
following annotations:

javax.ws.rs.core.SecurityContext.getUserPrincipal()

javax.ws.rs.core.SecurityContext.isUserInRole(String)

javax.servlet.http.HttpServletRequest.getUserPrincipal()

javax.servlet.http.HttpServletRequest.isUserInRole(String)

javax.ejb.SessionContext.getCallerPrincipal()

javax.ejb.SessionContext.isCallerInRole(String)

javax.security.jacc.PolicyContext

 .getContext("javax.security.auth.Subject.container")

javax.security.enterprise.identitystore.IdentityStore

 .getCallerGroups(CredentialValidationResult)

@javax.annotation.security.RolesAllowed

Furthermore, the MicroProfile JWT spec provides two classes to
accommodate JWT data inside CDI or JAX-RS classes:

org.eclipse.microprofile.jwt.JsonWebToken

Interface that exposes the raw token and offers methods to
get the claims

@org.eclipse.microprofile.jwt.Claim

Annotation to provide injection of claims into classes

For example:

package org.acme.quickstart;

import javax.annotation.security.RolesAllowed;

import javax.enterprise.context.RequestScoped;

import javax.inject.Inject;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import org.eclipse.microprofile.jwt.Claim;

import org.eclipse.microprofile.jwt.Claims;

import org.eclipse.microprofile.jwt.JsonWebToken;

@Path("/hello")

@RequestScoped

public class GreetingResource {

 @Inject

 JsonWebToken callerPrincipal;

 @Claim(standard = Claims.preferred_username)

 String username;

 @GET

 @Produces(MediaType.TEXT_PLAIN)

 public String hello() {

 return "hello " + username;

 }

}

A JWT token is, by nature, request-scoped; if you expect to
use the token, the class must be RequestScoped to avoid
mixing tokens in classes

Injects JsonWebToken interface that represents the full JWT
token

Injects the preferred_username claim

Claim annotation also supports the injection of private claim
names. These claims are not official claim names provided by the
RFC but claims that are specific to the service (custom claims).
To inject a private claim, use the annotation value as the name of
the claim: @Claim("my_claim"). Moreover, in case of
nonmandatory claims, the java.util.Optional class can be
used to indicate that the claim is nullable:

@Claim(standard = Claims.birthdate)

Optional<String> birthdate;

THE CLAIMVALUE INTERFACE

To support beans/resources that are not @RequestScoped, the MicroProfile
JWT spec introduces the org.eclipse.microprofile.jwt.ClaimValue
interface that, used together with @Claim, makes the injection of the value
safe from concurrent requests:

@Claim(standard = Claims.exp)

ClaimValue<Long> username;

@Claim(standard = Claims.groups)

ClaimValue<Set<String>> groups;

@Claim("raw_token")

ClaimValue<String> rawToken;

Expiration time injected

Groups are injected in the form of java.util.Set

raw_token is a special claim that represents the JWT token in raw
format; the raw token can be used to propagate it across other
services

Update the test to send a bearer JWT token to the defined
endpoint:

@Test

public void testHelloEndpoint() {

 given().header("Authorization", "Bearer " + validToken)

.when().get("/hello").then().statusCode(200).body(is("hello

jdoe"));

}

JWT token is sent as bearer token in Authorization header

With the current solution, these assumptions are true:

If a valid token is provided, the preferred_username is
extracted.

If an invalid token is provided (expired, signature not valid,
modified by third party, etc.), then a 401 Unauthorized Error
error code is sent back to the caller.

If no token is provided, then the request is processed but the
preferred_username field is null.

The MicroProfile JWT spec also provides support for the
authorization process by integrating with the @RolesAllowed
annotation. The groups claim value is used any time the
isCallerInRole() method is called, which effectively means that
any value in groups can be used as a role in the application.

The groups claim in the JWT token used in this example contains
the following values: "groups": ["Echoer", "Tester",
"Subscriber", "group2"]. Protect the call to /hello by using
@RolesAllowed with one of the group values present in the token:

@GET

@Produces(MediaType.TEXT_PLAIN)

@RolesAllowed("Tester")

public String hello() {}

Now, you can assume the following:

If a valid token is provided and the groups claim contains the
Tester group, then the preferred_username is extracted.

If a valid token is provided and the groups claim does not
contain the Tester group, then a 403 Forbidden error code is
sent back to the caller.

If an invalid token is provided (expired, signature not valid,
modified by third party, etc.), then a 401 Unauthorized Error
error code is sent back to the caller.

If no token is provided, then a 401 Unauthorized Error error
code is sent back to the caller.

Discussion
In the past, the security context was saved in the HTTP session,
which works well until you start scaling up the services and things
start to become more and more complicated. To avoid this
problem, one of the possible solutions is to pass this information
in all calls using a token, especially a JSON token.

It is important to note that the token is signed and not encrypted,
which means that the information can be seen by anyone but not
modified. An encryption layer can be added using JSON Web
Encryption so that the claims are not in cleartext but instead are
encrypted.

The intent of this section is not for you to master JWT but for you
learn how to use it in Quarkus, so we are assuming that you
already have some knowledge about JWT. We are also providing
some links in the following “See Also” to help you become more
familiar with JWT.

See Also

To learn about JWT, visit the following web pages:

JSON Web Tokens

GitHub: JWT RBAC for MicroProfile

IETF: JSON Web Token

11.4 Authorization and Authentication with
OpenId Connect

Problem
You want to protect your RESTful Web API with OpenId Connect.

Solution
Use bearing token authorization where the token is issued by
OpenId Connect.

In the previous section, you learned how to use the JWT token
for protecting resources, but the generation of the token was not
covered because the token was generated up front and provided
in a text file.

In real-world applications, you need an identity provider that
issues the token. The de facto protocol for distributed services is
OpenId Connect and OAuth 2.0 and an authorization-compliant
server with the protocol, such as Keycloak.

Register the quarkus-oidc extension to protect resources with
OpenId Connect:

https://jwt.io/
https://oreil.ly/tXP9d
https://oreil.ly/p9jUC
https://www.keycloak.org/

./mvnw quarkus:add-extension -Dextensions="quarkus-oidc"

Configure the location of the OpenId Connect server to validate
the token:

quarkus.oidc.auth-server-

url=http://localhost:8180/auth/realms/quarkus

quarkus.oidc.client-id=backend-service

The base URL of the OpenID Connect server

Each application has a client ID used to identify the
application

Protect the endpoint using the @RolesAllowed annotation:

@Inject

io.quarkus.security.identity.SecurityIdentity securityIdentity;

@GET

@RolesAllowed("user")

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return "hello " + securityIdentity.getPrincipal().getName();

}

Quarkus interface that represents the currently logged in user

The test must be updated to get the access token from OpenId
Connect and provide it as the bearer token:

@Test

public void testHelloEndpoint() {

 System.out.println(accessToken);

 given()

 .auth().oauth2(accessToken)

 .when().get("/hello")

 .then()

 .statusCode(200)

 .body(is("hello alice"));

}

The access token is generated in the OpenId Connect server. To
generate it, some parameters must be provided, such as the
username and password, to access the server and to generate a
token representing the user:

package org.acme.quickstart;

import java.net.URI;

import java.net.URISyntaxException;

import io.restassured.RestAssured;

import io.restassured.builder.RequestSpecBuilder;

import io.restassured.response.Response;

import io.restassured.response.ResponseOptions;

import io.restassured.specification.RequestSpecification;

public class RestAssuredExtension {

 public static ResponseOptions<Response> getAccessToken(String

url,

 String

clientId,

 String

clientIdPwd,

 String

username,

 String

password) {

 final RequestSpecification request = prepareRequest(url);

 try {

 return request

 .auth()

 .preemptive()

 .basic(clientId, clientIdPwd)

 .contentType("application/x-www-form-urlencoded;

charset=UTF-8")

 .urlEncodingEnabled(true)

 .formParam("username", username)

 .and()

 .formParam("password", password)

 .and()

 .formParam("grant_type", "password")

 .post(new URI(url));

 } catch (URISyntaxException e) {

 throw new IllegalArgumentException(e);

 }

 }

 private static RequestSpecification prepareRequest(String url) {

 final RequestSpecBuilder builder = new RequestSpecBuilder();

 final RequestSpecification requestSpec = builder.build();

 return RestAssured.given().spec(requestSpec);

 }

}

The code is essentially an implementation of the next curl
command but using REST-Assured:

curl -X POST \

 http://localhost:8180/auth/realms/quarkus/protocol/openid-

connect/token \

 --user backend-service:secret \

 -H 'content-type: application/x-www-form-urlencoded' \

 -d 'username=alice&password=alice&grant_type=password'

Now, when running the test, something completely different is
shown than in Recipe 11.3.

First of all, the token (JWT token) is not static; it is issued by
OpenID Connect (Keycloak) for the alice username.

The following is example of an issued token for alice:

{

 "alg": "RS256",

 "typ": "JWT",

 "kid": "cfIADN_xxCJmVkWyN-PNXEEvMUWs2r68CxtmhEDNzXU"

},

{

 "jti": "cc54b9db-5f2f-4609-8a6b-4f76026e63ae",

 "exp": 1578935775,

 "nbf": 0,

 "iat": 1578935475,

 "iss": "http://localhost:8180/auth/realms/quarkus",

 "sub": "eb4123a3-b722-4798-9af5-8957f823657a",

 "typ": "Bearer",

 "azp": "backend-service",

 "auth_time": 0,

 "session_state": "5b674175-a2a9-4a45-a3da-394923125e55",

 "acr": "1",

 "realm_access": {

 "roles": [

 "user"

]

 },

 "scope": "email profile",

 "email_verified": false,

 "preferred_username": "alice"

}

Second, the OpenID Connect is responsible for providing
everything to validate the token; the public key is not configured
manually.

The following validations are performed by Keycloak when the
token is provided:

If a valid token is provided and the roles claim contains the
user group, then the preferred_username is extracted.

If a valid token is provided and the roles claim does not
contain the user group, then a 403 Forbidden error code is
sent back to the caller.

If an invalid token is provided (expired, signature not valid,
modified by third party, etc.), then a 403 Forbidden error code
is sent back to the caller.

If no token is provided, then a 401 Unauthorized Error error
code is sent back to the caller.

See Also
To learn more about OpenId Connect protocol, see the following
websites:

OpenID Connect

Keycloak

11.5 Protecting Web Resources with OpenId
Connect

Problem

https://openid.net/connect
https://www.keycloak.org/

You want to protect your web resources.

Solution
Use OpenId Connect and file-based role definitions to protect
web resources.

Web resources can be protected using OpenId Connect protocol
and Quarkus. The OpenId Connect extension enables
authentication to web resources by implementing the well-known
authorization code flow, where any unauthenticated user that is
trying to access a protected resource is redirected to the OpenId
Connect Provider website to authenticate. After the
authentication process is completed, the user is sent back to the
application.

Register the quarkus-oidc extension to protect resources with
OpenId Connect:

./mvnw quarkus:add-extension -Dextensions="quarkus-oidc"

Configure the location of the OpenId Connect server to validate
the token:

quarkus.oidc.auth-server-

url=http://localhost:8180/auth/realms/quarkus

quarkus.oidc.client-id=frontend

quarkus.oidc.application-type=web-app

quarkus.http.auth.permission.authenticated.paths=/*

quarkus.http.auth.permission.authenticated.policy=authenticated

The base URL of the OpenID Connect server

Each application has a client ID used to identify the
application

Enables OpenID Connect Authorization Code Flow

Sets permission to web resources

Start the application, open a browser, and enter the following
URL: http://localhost:8080:

./mvnw clean compile quarkus:dev

The default index.html page is not shown, but you are redirected
to the authentication page of Keycloak. Enter the following valid
credentials (login: alice, password: alice) to gain access to
the web resource. After pushing the Login button, the page is
redirected back to the login page.

http://localhost:8080/

Chapter 12. Application
Secrets Management

Every application has information that needs to be kept
confidential. This information could include database
credentials, external service authentication, or even the
location of certain resources. All of these are collectively called
secrets. Your application needs a secure place to store these
secrets both during application startup and at rest. In this
chapter, we will discuss secret management using Kubernetes
and Vault.

12.1 Storing Data Using Kubernetes Secrets

Problem
You want to store secrets in Kubernetes in a safer way than
directly on the Pod or container.

Solution
Use Kubernetes secrets to store and retrieve sensitive data
such as passwords, tokens, or SSH keys in plain text on a
container. Kubernetes has the concept of secret objects that
can be used to store sensitive data.

It is important to know that storing sensitive data in a secret
object does not automatically make it secure because
Kubernetes does not encrypt data but instead encodes it in
Base64 by default. Using secrets gives you some features that
are not provided by the standard configuration process:

You can define the authorization policies to access the
secret.

You can configure Kubernetes to encrypt sensitive data (this
is known as encryption at rest).

You can grant access to a specific container instance using
lists.

IMPORTANT
None of these features are enabled by default, and they require
some knowledge about Kubernetes. In the book, we explain only
how Quarkus integrates with other tools like Kubernetes; we do
not explain the operational side of the tool.

The secrets can be injected into the container as an
environment variable or as a volume. The environment variable
approach is less secure because anyone with access to the
container instance could dump the content easily. The volume
approach, on the other hand, easily becomes complex when
there are a large number of keys because Kubernetes creates
one file per key to store inside the value.

Both approaches are shown, so you can choose the one that
works better for your use case.

The example covers the use case in which an API token (e.g.,
GitHub Personal Access Token) needs to be set as secret in
the application.

To enable the generation of Kubernetes resources with the
secrets injection in the Pod, you need to register the quarkus-
kubernetes extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-kubernetes"

Create a secret by creating a Kubernetes resource of the kind
Secret or by using the kubectl CLI tool. Open a new terminal
and run the following command to register a new secret with
greeting-security ID and a key github.api.key.token with a
token (this token is invalid and is used only for example
purposes):

kubectl create secret generic greeting-security \

--from-

literal=github.api.key.token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ

9.\

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2

MjM5MDIyfQ.\

SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

Now that the secret is created, let’s see how to set it as an
environment variable.

A configuration property is required to get the property from the
environment variable. In this case, the property is called
github.api.key.token, but of course you could also access it
directly by using System.getenv(). The former approach is
better because it relies on the MicroProfile Config spec to read
the configuration properties and not some custom solution:

@ConfigProperty(name = "github.api.key.token")

String githubToken;

Set extra properties for the Kubernetes extension in the
application.properties so that the generated Kubernetes
deployment file contains the segments needed to inject the
secret as an environment variable:

quarkus.container-image.group=quarkus

quarkus.container-image.name=greeting-started-kubernetes-secrets

quarkus.container-image.tag=1.0-SNAPSHOT

quarkus.kubernetes.image-pull-policy=if-not-present

quarkus.kubernetes.env-vars.github-api-key-

token.name=github.api.key.token

quarkus.kubernetes.env-vars.github-api-key-

token.secret=greeting-security

Configures Docker image

Sets the environment variable to override the
github.api.key.token property

Sets the secret name to load

The generation of the Kubernetes file will contain a new entry
in the container definition called secretKeyRef that defines all
the key/value pairs.

The MicroProfile Config spec permits the override of any
configuration property using the equivalent environment
variable (in uppercase and changing dots [.] to underscores
[_]). The Secrets contains the configuration properties as
secrets. In application.properties, the Kubernetes extension is
configured to generate a deployment descriptor that sets these
secrets as environment variables so that when the container is
started inside the Kubernetes cluster, the secrets are injected
into the container as environment variables and are read by
MicroProfile Config as configuration properties.

To deploy the application, open a new terminal window,
package the application, create the Docker container, and
apply the generated Kubernetes resources:

./mvnw clean package -DskipTests

docker build -f src/main/docker/Dockerfile.jvm \

 -t quarkus/greeting-started-kubernetes-secrets:1.0-SNAPSHOT

.

kubectl apply -f target/kubernetes/kubernetes.yml

kubectl patch svc greeting-started-kubernetes-secrets \

 --type='json' \

 -p

'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service greeting-started-kubernetes-secrets --

url)/hello

But secrets can also be mounted as volumes instead of being
set as environment variables. Set the Kubernetes extension
properties in the application.properties so that the generated
Kubernetes deployment file contains the segments to mount
the secret file as a volume:

quarkus.kubernetes.mounts.github-token.path=/deployment/github

quarkus.kubernetes.mounts.github-token.read-only=true

quarkus.kubernetes.secret-volumes.github-token.secret-

name=greeting-security

quarkus.kubernetes.secret-volumes.github-token.default-mode=420

Mounts the volume with github-token name

Sets the path where the volume is mounted inside the
container

Sets the volume as read-only

Sets the secret name to load

Sets the mode to be readable from the process

The last step is to read the secret from the code. Since the
secret is mounted in the file system, it needs to be read as any
other file:

@GET

@Path("/file")

@Produces(MediaType.TEXT_PLAIN)

public String ghTokenFile() throws IOException {

 final byte[] encodedGHToken = Files.readAllBytes(

 Paths.get("/deployment/github/github.api.key.token"));

 return new String(encodedGHToken);

}

The location of the secret is the mount path plus the secret
key

To deploy the application, package it, create the Docker
container, and apply the generated Kubernetes resources:

./mvnw clean package -DskipTests

docker build -f src/main/docker/Dockerfile.jvm \

 -t quarkus/greeting-started-kubernetes-secrets:1.0-SNAPSHOT

.

kubectl apply -f target/kubernetes/kubernetes.yml

kubectl patch svc greeting-started-kubernetes-secrets --

type='json' \

 -p

'[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service greeting-started-kubernetes-secrets --

url=/hello/file

Discussion
Kubernetes secrets have some problems that need to be
addressed externally. The following are some of these
problems:

Secrets are not encrypted but just encoded in Base64 by
default.

You need to use SSL to communicate with etcd. This is the
place where the secrets are stored.

The disk needs to be encrypted because etcd might store
the data on the disk.

You need to correctly define the RBAC to prevent anyone
from accessing a secret.

See Also
To learn more about Kubernetes Secrets, visit the following
pages on the Kubernetes website:

Secrets

Encrypting Secret Data at Rest

Authorization Overview

Using RBAC Authorization

12.2 Store Configuration Secrets Securely
with Vault

Problem
You want to store configuration secrets securely.

Solution
Use the Quarkus Vault extension to retrieve secrets.

The key aspects when dealing with secrets are storing them so
they cannot be read by forbidden users and protecting access

https://oreil.ly/dFTgh
https://oreil.ly/_auK1
https://oreil.ly/ctlyn
https://oreil.ly/WrcaP
https://oreil.ly/UMKuH

to them so only the services that require the secrets can
access them.

Vault is a tool that simplifies these use cases by providing a
unified interface for storing and consuming secrets.

ABOUT VAULT

Vault is an open source tool for securely accessing secrets. How to run
Vault in production is outside the scope of this book.

To simplify the installation of Vault, the Vault Docker container is used:

docker run --rm --cap-add=IPC_LOCK -e

VAULT_ADDR=http://localhost:8200 \

 -p 8200:8200 --name=dev-vault vault:1.2.2

You may need to set the following environment variable:

 $ export VAULT_ADDR='http://0.0.0.0:8200'

The unseal key and root token are displayed below in case you want

to

seal/unseal the Vault or re-authenticate.

Unseal Key: s7WbMScSOh02ERK6XEfl6ep6BReRQZzl9VekrrnyKE8=

Root Token: s.ty3QS2uNaxPdiFsSZpCQfjpc

Token to initialize access to Vault

Open a shell inside the Vault container to configure Vault and add a
secret:

docker exec -it dev-vault sh

export VAULT_TOKEN=s.ty3QS2uNaxPdiFsSZpCQfjpc

vault kv put secret/myapps/vault-service/config foo=secretbar

Sets the token to access

Creates a new secret with key foo at path secret/myapps/vault-
service/config

Create a policy that gives read access to the secret:

https://oreil.ly/UMKuH

cat <<EOF | vault policy write vault-service-policy -

path "secret/data/myapps/vault-service/*" {

 capabilities = ["read"]

}

EOF

The last step is to enable credentials (userpass engine) for accessing
secrets from the service:

vault auth enable userpass

vault write auth/userpass/users/alex password=alex \

 policies=vault-service-policy

Creates a user with ID alex and password alex

Vault supports multiple authentication methods to authenticate
against the Vault service and start consuming the secrets. At
the time of writing, the following authentication methods are
supported by the Quarkus Vault extension:

token

Directly pass the user token to bypass the authentication
process.

user/password

Authenticate with Vault using a username and password
credentials.

approle

Authenticate using a role_id and a secret_id. This method
is oriented to automated workflows (machines and
services). role_id is usually embedded into a Docker
container, and secret_id is obtained by a Kubernetes

cluster as a cubbyhole response, wrapping it (single use)
and delivering it to the target service.

kubernetes

Authenticate with Vault using the Kubernetes Service
Account Token.

To get started, register the quarkus-vault extension to use
Vault:

./mvnw quarkus:add-extension -Dextensions="quarkus-vault"

The Quarkus Vault extension integrates with the MicroProfile
Configuration spec so that a secret can be injected using the
@ConfigProperty annotation. Configure the application to use
username and password as the authentication method for
Vault, and set the base path where secrets are stored:

quarkus.vault.url=http://localhost:8200

quarkus.vault.authentication.userpass.username=alex

quarkus.vault.authentication.userpass.password=alex

quarkus.vault.kv-secret-engine-version=2

quarkus.vault.secret-config-kv-path=myapps/vault-service/config

The base URL of the Vault server

The credentials to authenticate

The path where the secrets are stored

Access the secret value of the foo key by using the
@org.eclipse.microprofile.config.inject.ConfigProperty

annotation:

@ConfigProperty(name = "foo")

String foo;

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return foo;

}

Secret value for the foo key is injected

Start the application and send a request to the endpoint:

./mvnw clean compile quarkus:dev

curl http://localhost:8080/hello

secretbar

Discussion
If the path is known only at runtime, secrets can also be
retrieved programmatically by injecting the
io.quarkus.vault.VaultKVSecretEngine interface:

@Inject

VaultKVSecretEngine kvSecretEngine;

final Map<String, String> secrets = kvSecretEngine

 .readSecret("myapps/vault-service/config");

final String fooSecret = secrets.get("foo");

Provides the values stored in the Vault key/value secret
engine

See Also
To learn more about Vault, visit the following website:

Vault: Documentation

12.3 Cryptography as a Service

Problem
You want to avoid spreading all cryptographic operations
across all the services.

Solution
Use the transit engine of Vault to have all cryptographic
operations executed in the same place.

Open a shell inside the Vault container created in the previous
recipe to configure Vault and add keys to encrypt and sign
messages:

docker exec -it dev-vault sh

export VAULT_TOKEN=s.ty3QS2uNaxPdiFsSZpCQfjpc

vault secrets enable transit

https://oreil.ly/ke_Q5

vault write -f transit/keys/my_encryption

vault write transit/keys/my-sign-key type=ecdsa-p256

Sets the token to access

Enables transit engine

Creates an encryption key of type AES-256-GCM96

Creates a signing key of type ECDSA-P256

Create a policy that gives access to transit operations:

cat <<EOF | vault policy write vault-service-policy -

path "transit/*" {

 capabilities = ["create", "read", "update"]

}

EOF

The last step is to enable credentials (userpass engine) for
accessing secrets from the service:

vault auth enable userpass

vault write auth/userpass/users/alex password=alex \

 policies=vault-service-policy

Creates a user with ID alex and password alex

Register quarkus-vault extension to use Vault:

./mvnw quarkus:add-extension -Dextensions="quarkus-vault"

Configure the application to use username and password as
the authentication method for Vault:

quarkus.vault.url=http://localhost:8200

quarkus.vault.authentication.userpass.username=alex

quarkus.vault.authentication.userpass.password=alex

The base URL of the Vault server

The credentials to authenticate

Inject the io.quarkus.vault.VaultTransitSecretEngine
instance to use transit operations:

@Inject

VaultTransitSecretEngine transit;

@GET

@Path("/encrypt")

@Produces(MediaType.TEXT_PLAIN)

public String encrypt(@QueryParam("text") String text) {

 return transit.encrypt("my_encryption", text);

}

@GET

@Path("/decrypt")

@Produces(MediaType.TEXT_PLAIN)

public String decrypt(@QueryParam("text") String text) {

 return transit.decrypt("my_encryption", text).asString();

}

@GET

@Path("/sign")

@Produces(MediaType.TEXT_PLAIN)

public String sign(@QueryParam("text") String text) {

 return transit.sign("my-sign-key", text);

}

Transit operations interface

Encrypts using the encryption key

Decrypts using the encryption key

Signs the text with the given signature

Start the application and send a request to the endpoint:

./mvnw clean compile quarkus:dev

curl http://localhost:8080/hello/encrypt?text=Ada

vault:v1:iIunGAElLpbaNWWqZq1yf4cctkEUOFdJE1oRTaSI2g==

curl http://localhost:8080/hello/decrypt? \

 text=vault:v1:iIunGAElLpbaNWWqZq1yf4cctkEUOFdJE1oRTaSI2g==

Ada

curl http://localhost:8080/hello/sign?text=Alexandra

vault:v1:MEUCIGkgS5VY5KEU2yHqnIn9qwzgfBUv3O2H4bgNAFVrYCK3AiEAnQz

nfdEZI6b\

 /Xtko/wEl8WhZLuKZQ/arOYkfsnwBH3M=

Discussion
Cryptography operations such as encrypt, decrypt, sign, or
hash-based message authentication codes (HMACs) of data
are commonly required in services. These operations are
usually implemented in each of the services, which means that
you are duplicating this sensitive logic as well as the
management of the keys in each of the services.

The Vault Transit engine handles all cryptographic functions for
you without storing the resulted data. You can think of Vault as
a cryptographic-as-a-service model in which data is sent,
manipulated, and returned back without being stored internally.

Everything is managed internally by Vault, freeing developers
to focus on implementing the important business logic.

The following operations are supported by the Vault extension:

encrypt

Encrypts a regular string with a Vault key configured in the
transit secret engine.

decrypt

Decrypts the encrypted data with the specified key and
returns unencrypted data.

rewrap

Reencrypts into a new cipher text a cipher text that was
obtained from encryption using an old key version with the
last key version.

sign

Signs an input string with the specified key.

verifySignature

Checks that the signature was obtained from signing the
input with the specified key.

See Also
For more information, visit the following website:

Vault: Transit Secrets Engine

12.4 Generate Database Password as Secret

https://oreil.ly/rloOa

Problem
You want to store the database password securely.

Solution
Read the database password as a secret.

The database password is something that needs to be
protected and should not be set directly to the configuration
file. The Quarkus Vault extension integrates with persistence
configuration to read the database password as a secret from
Vault.

Open a shell inside the Vault container created in the previous
recipe to configure Vault and add the database password as a
secret:

docker exec -it dev-vault sh

export VAULT_TOKEN=s.ty3QS2uNaxPdiFsSZpCQfjpc

vault kv put secret/myapps/vault-service/db password=alex

Sets the token to access

Creates a new secret with a key password and the value
alex

Create a policy that gives read access to the secret:

cat <<EOF | vault policy write vault-service-policy -

path "secret/data/myapps/vault-service/*" {

 capabilities = ["read"]

}

EOF

The last step is to enable credentials (userpass engine) for
accessing secrets from the service:

vault auth enable userpass

vault write auth/userpass/users/alex password=alex \

 policies=vault-service-policy

Creates a user with ID alex and password alex

For this example, the PostgreSQL server is used as database.
Start a new Docker instance in a new terminal by running the
following command:

docker run --ulimit memlock=-1:-1 -it --rm=true --memory-

swappiness=0 \

 --name postgres-quarkus-hibernate -e POSTGRES_USER=alex \

 -e POSTGRES_PASSWORD=alex -e POSTGRES_DB=mydatabase \

 -p 5432:5432 postgres:10.5

Notice that the password is the same as the one set in the
secret/myapps/vault-service/db path.

Register the quarkus-vault and persistence extensions:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-vault, quarkus-hibernate-orm-panache, \

 quarkus-jdbc-postgresql, quarkus-resteasy-jsonb"

The datasource configuration is slightly different than the one
shown in Chapter 7. Instead of having the password hardcoded
in the configuration file, the password is retrieved from Vault as
a secret and is used to make the connection.

Apart from Vault configuration parameters such as the URL
and the authenticated method (i.e., user/password), you need
to define the key/value path inside Vault, where the database
configuration is stored. More specifically, it is the path where
the key named password is stored with the database password.
In the following example, to set this information into Vault, you
run the command vault kv put secret/myapps/vault-
service/db password=alex, but if you have followed this
section, you’ve already done this when configuring Vault.

Also, overriding the credentials provider used when
establishing the connection to the database is required to
indicate that the password comes from Vault and not as a
configuration property. This is done by using the q u a r k u s . d a t a
s o u r c e . c r e d e n t i a l s - p r o v i d e r property.

Configure the application with the datasource and Vault
parameters and override the credentials provider:

quarkus.datasource.url=jdbc:postgresql://localhost:5432/mydataba

se

quarkus.datasource.driver=org.postgresql.Driver

quarkus.datasource.username=alex

quarkus.datasource.credentials-provider=mydatabase

quarkus.vault.credentials-provider.mydatabase\

 .kv-path=myapps/vault-service/db

quarkus.vault.url=http://localhost:8200

quarkus.vault.authentication.userpass.username=alex

quarkus.vault.authentication.userpass.password=alex

quarkus.vault.kv-secret-engine-version=2

quarkus.hibernate-orm.database.generation=drop-and-create

%dev.quarkus.hibernate-orm.sql-load-script=import.sql

%dev.quarkus.hibernate-orm.log.sql=true

Sets the credentials provider to a custom name
(mydatabase)

Sets the key/value path where the password is stored for
the mydatabase provider

Configures Vault parameters

It is important to note that there is no
quarkus.datasource.password property because the password
is retrieved from Vault.

At this time, when the Quarkus application is started, the
following steps are executed:

1. Service authenticates to the Vault service.

2. Key/Value is retrieved from secret/myapps/vault-
service/db path.

3. The value of the key password is used as password
credentials for the database.

TIP
The key name can be changed from password to any other key
name by using the kv-key property: quarkus.vault.credentials-
provider.mydatabase.kv-key=pass.

Discussion
Vault can generate database credentials dynamically and
configure the database instances to use them as credentials
instead of having to manually configure the credentials and set
them in Vault and/or in the service that requires access to the
database. This implies that no credentials are hardcoded in
any place, as they are requested from Vault. The generated
pair of username and password are subject to Vault’s leasing
mechanism, which makes the credentials invalid after a
reasonable time.

Take the following steps to configure Vault to generate
database credentials dynamically:

1. Enable the database secret engine.

2. Set connection parameters to the database, and set the
vendor database (at this time most of SQL and NoSQL
databases are supported).

3. Configure a role that maps a name in Vault to an SQL
statement to create the database credential:

vault secrets enable database

cat <<EOF | vault policy write vault-service-policy -

path "database/creds/mydbrole" {

 capabilities = ["read"]

}

EOF

vault write database/config/mydb

 plugin_name=postgresql-database-plugin \

 allowed_roles=mydbrole \

 connection_url=postgresql://{{username}}:{{password}}\

 @localhost:5432/mydb?sslmode=disable \

 username=alex \

 password=alex

vault write database/roles/mydbrole \

 db_name=mydb \

 creation_statements="CREATE ROLE \"{{name}}\" WITH LOGIN

PASSWORD \

 '{{password}}' VALID UNTIL

'{{expiration}}'; \

 GRANT SELECT,INSERT, UPDATE, DELETE ON

ALL \

 TABLES IN SCHEMA public TO \"

{{name}}\"; \

 GRANT USAGE, SELECT ON ALL SEQUENCES

IN \

 SCHEMA public to \"{{name}}\";" \

 default_ttl="1h" \

 revocation_statements="ALTER ROLE \"{{name}}\" NOLOGIN;" \

 renew_statements="ALTER ROLE \"{{name}}\" VALID UNTIL

'{{expiration}}';" \

 max_ttl="24h"

The Vault extension also supports using dynamic database
credentials through the database-credentials-role property
on the credentials-provider:

quarkus.vault.url=https://localhost:8200

quarkus.vault.authentication.userpass.username=alex

quarkus.vault.authentication.userpass.password=alex

quarkus.datasource.driver=org.postgresql.Driver

quarkus.datasource.url=jdbc:postgresql://localhost:6543/mydb

quarkus.datasource.username=postgres

quarkus.datasource.credentials-provider=dynamic-ds

quarkus.datasource.credentials-provider-type=vault-credentials-

provider

quarkus.vault.credentials-provider.dynamic-ds.database-

credentials-role=\

 mydbrole

No password set

Configures dynamic credentials

See Also
To learn more about dynamic database credentials with Vault,
visit the following website:

Vault: Databases

12.5 Authenticating Services Using Vault
Kubernetes Auth

https://oreil.ly/RDaes

Problem
You want to authenticate services against Vault without using a
username/password.

Solution
Use the Vault Kubernetes Auth method.

So far, you’ve used credentials with the username/password
approach to authenticating the Quarkus service against the
Vault service. This method might be good in some
circumstances (testing purposes, internal applications, etc.),
but notice that you are introducing a new secret (the password)
to get more secrets. One way to fix this problem is by using
Kubernetes Secrets to set the Vault password using, for
example, the approle authentication method. Another way is to
use the Vault Kubernetes Auth, which makes it a perfect fit for
authenticating services deployed in a Kubernetes cluster.

The Vault Kubernetes auth method uses the Kubernetes
service account token and a defined role to authenticate
against a Vault service. With this method, Vault does not store
the credentials; it uses a trusted third party (the Kubernetes
cluster) to validate them. When the Pod with the service is
instantiated, the service account token is mounted inside the
container, so it is accessible by the application. The default
mounting point of the secret token is
/var/run/secrets/kubernetes.io/serviceaccount/token.

The application then attempts to authenticate using this token
by sending it to the Vault server. After that, Vault makes a call
to Kubernetes API to ensure the validity of the token. If the
token is valid, then an internal Vault token is returned to be
used in future requests to get secrets. The process is
summarized in Figure 12-1.

Figure 12-1. Kubernetes authentication method

To configure the Kubernetes auth mode, you need to set two
parameters to Vault to connect to Kubernetes API. The first one
is the token to access, and the second one is the certificate
authority to validate the communication between Vault and the
Kubernetes API. These values are retrieved from the secret
that starts with vault-token. When Vault was first set up for
this example, the value was vault-token-mm5qx.

To get the token and store it in a file, open a terminal window
and run the following command:

kubectl get secret vault-token-mm5qx -o jsonpath='{.data.token}'

\

 | base64 --decode > jwt.txt

cat jwt.txt

eyJhbGciOiJSUzI1NiIsImtpZCI6Inp0WWZBcl8weW1SaTI1bjRNYVNHNmtXOUhC

WDV\

yczhYandVYkVETktzRHMifQ.

Substitute the secret name to your secret name starting
with vault-token

Secrets are stored in Base64, so they need to be decoded

To get the certificate authority and store it in a file, run the
following in the terminal:

kubectl get secret vault-token-mm5qx -o jsonpath="

{.data['ca\.crt']}" \

 | base64 --decode > ca.crt

cat ca.crt

-----BEGIN CERTIFICATE-----

MIIC5zCCAc+gAwIBAgIBATANBgkqhkiG9w0BAQsFADAVMRMwEQYDVQQDEwptaW5p

-----END CERTIFICATE-----

Pod is named vault-0

A vault-token is set as a secret

Before deploying the application, you need to enable
Kubernetes auth method, configure it, and insert some secrets
to test it.

Expose the Vault service out of the Kubernetes cluster so that
it can be configured from your local machine. Open a new
terminal window and run the command to forward the traffic
from localhost:8200 into the Vault instance running inside the
Kubernetes cluster:

kubectl port-forward svc/vault 8200:8200

Get back to the terminal window where you run the commands
to get the token and the certificate authority, and run the
following commands to insert a secret:

export VAULT_TOKEN=root

export VAULT_ADDR='http://localhost:8200'

cat <<EOF | vault policy write vault-service-policy -

path "secret/data/myapps/vault-service/*" {

 capabilities = ["read"]

}

EOF

vault kv put secret/myapps/vault-service/config foo=secretbar

Configure Vault connection parameters

Creates a policy called vault-service-policy to
myapps/vault-service/* secrets

Sets a new secret

The last step is enabling the Kubernetes auth method and
configuring it to validate the token using the Kubernetes API.

Execute the following commands:

vault auth enable kubernetes

vault write auth/kubernetes/config \

 token_reviewer_jwt=@jwt.txt \

 kubernetes_host=https://kubernetes.default.svc \

 kubernetes_ca_cert=@ca.crt

vault write auth/kubernetes/role/example \

 bound_service_account_names=vault \

 bound_service_account_namespaces=default \

 policies=vault-service-policy

Enables Kubernetes auth method

Configures the auth method

Sets the token file retrieved in the previous step

Sets the Kubernetes API host

Sets the CA file retrieved in the previous step

Creates a new role (example) to authenticate from the
application

Sets the service account name that in our deployment is
vault

Sets the namespace where services are running

Binds the user authenticating with this method to the
created policy

Let’s develop a Quarkus service that authenticates using the
Vault Kubernetes auth method and get the secret named foo.

Add the Vault and Kubernetes extensions:

./mvnw quarkus:add-extension -Dextensions="quarkus-vault,

quarkus-kubernetes"

@ConfigProperty(name = "foo")

String foo;

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 return foo;

}

Configure the application to use the Kubernetes Vault auth
method and the Kubernetes extension to generate the correct
deployment file:

quarkus.vault.url=http://vault:8200

quarkus.vault.kv-secret-engine-version=2

quarkus.vault.secret-config-kv-path=myapps/vault-service/config

quarkus.vault.authentication.kubernetes.role=example

kubernetes.service-account=vault

kubernetes.group=quarkus

kubernetes.name=greeting-app

kubernetes.version=latest

Configures Vault location and secrets

Sets the example role to be used by the user (created in the
previous step)

Sets the serviceaccount name to set in the generated
deployment file

Sets the group name of Docker image

Notice that the
quarkus.vault.authentication.kubernetes.jwt-token-path

property is not set. The reason is that the default value
(/var/run/secrets/kubernetes.io/serviceaccount/token)
works perfectly with the defaults. If the secret was mounted on
a different path, then this property should be set to the new
location.

To deploy the application, open a new terminal window,
package the application, create the Docker container, and
apply the generated Kubernetes resources:

./mvnw clean package -DskipTests

docker build -f src/main/docker/Dockerfile.jvm \

 -t quarkus/greeting-started-vault-kubernetes-auth:1.0-SNAPSHOT

.

kubectl apply -f target/kubernetes/kubernetes.yml

kubectl patch svc greeting-app --type='json' \

 -p '[{"op":"replace","path":"/spec/type","value":"NodePort"}]'

curl $(minikube service greeting-app --url)/hello

When the Pod is deployed, the application is authenticated with
Vault, and Vault validates that the token is valid using the
Kubernetes API. The application is then authenticated and can
get the secrets from the configured path.

The big difference between this example and the previous
ones is that in this case no secret like the Vault password is
set, meaning that the secrets can be accessed securely but
without having to add any new secret.

Discussion
Our intention isn’t to show how to deploy Vault in Kubernetes
for production purposes. For this reason, a deployment file is
provided to deploy a Vault service with the minimal
requirements to run this example.

This deployment file is located at src/main/kubernetes/vault-
dev-deployment.yaml and provides the following elements:

Vault with dev mode and root token set to root.

Exposes Vault at port 8200.

ServiceAccount with the name set to vault.

ClusterRoleBinding and ClusterRole bound to vault.

All resources applied to the default namespace.

Deploy the Vault service by running the following command:

kubectl apply -f src/main/kubernetes/vault-dev-deployment.yaml

kubectl get pods

NAME READY STATUS RESTARTS AGE

vault-0 1/1 Running 0 44s

kubectl get secrets

NAME TYPE DATA

AGE

default-token-zdw8r kubernetes.io/service-account-token 3

2d

greeting-security Opaque 1

3h9m

vault-token-mm5qx kubernetes.io/service-account-token 3

8s

Pod is named vault-0

A vault-token is set as a secret

To configure Vault, you need to install the Vault CLI locally on
your computer. The Vault CLI is a single file that can be
downloaded from Vault and set in your PATH variable.

Assuming you’ve got the Vault client installed locally and
available in your PATH variable, you can configure Vault.

See Also
To learn more about Vault Kubernetes auth method, visit the
following websites:

Vault: Kubernetes Auth Method

Vault Agent with Kubernetes

https://oreil.ly/fTB0x
https://oreil.ly/AV3D_
https://oreil.ly/WGbUx

Chapter 13. Quarkus REST
Clients

In Chapter 3, you learned about developing RESTful services,
but in this chapter, you’ll learn about communication between
RESTful web services.

Using any service-based architecture inevitably means that you
need to communicate with external services. These services
might be internal services (you control the life cycle of the
service and they are usually deployed in the same cluster) or
external services (third-party services).

If these services are implemented as RESTful web services,
then you need a client to interact with these services. Quarkus
offers two ways to do that: JAX-RS Web Client, which is the
standard Java EE way of communicating with RESTful service;
and MicroProfile REST Client, which is the new way of
communicating with RESTful services.

This chapter will include recipes for the following:

Communicate to other RESTful services using the JAX-RS
client

Communicate to other RESTful services using the
MicroProfile Rest Client

Secure the communication between RESTful services

13.1 Using the JAX-RS Web Client

Problem
You want to communicate with another RESTful web service.

Solution
Use JAX-RS web client to communicate with other RESTful
web services.

Let’s look at how to communicate with other RESTful services
using the JAX-RS spec.

The external service we are going to connect with, the World
Clock API, returns the current date/time by time zone. You’ll
need to get the current date/time exposed by the API.

You need to add extensions for using a REST client and the
JAX-B/Jackson for marshalling/unmarshalling JSON and Java
objects:

./mvnw quarkus:add-extension -Dextensions="resteasy-jsonb, rest-

client"

Or, if you are creating from empty directory, run the following:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \

 -DprojectGroupId=org.acme.quickstart \

https://oreil.ly/wl2IE
https://oreil.ly/7M0tf

 -DprojectArtifactId=clock-app \

 -DclassName="org.acme.quickstart.WorldClockResource" \

 -Dextensions="resteasy-jsonb, rest-client"

 -Dpath="/now"

You can start using the JAX-RS REST Client for
communicating with an external Rest API. Let’s see what the
interaction with the world clock service looks like.

Open org.acme.quickstart.WorldClockResource.java and
add the following code:

package org.acme.quickstart;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.client.Client;

import javax.ws.rs.client.ClientBuilder;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import org.eclipse.microprofile.config.inject.ConfigProperty;

import org.eclipse.microprofile.rest.client.inject.RestClient;

@Path("/now")

public class WorldClockResource {

 @ConfigProperty(name = "clock.host",

 defaultValue = "http://worldclockapi.com")

 String clockHost;

 private Client client = ClientBuilder.newClient();

 @GET

 @Path("{timezone}")

 @Produces(MediaType.APPLICATION_JSON)

 public WorldClock getCurrentTime(@PathParam("timezone") String

timezone) {

 WorldClock worldClock = client.target(clockHost)

 .path("api/json/{timezone}/now")

 .resolveTemplate("timezone", timezone)

 .request(MediaType.APPLICATION_JSON)

 .get(WorldClock.class);

 return worldClock;

 }

}

Makes service host configurable

Creates a new REST Client

Sets the host

Sets the path to the service

Resolves the timezone placeholder to the one provided

Executes a GET HTTP method

Transforms the JSON output to the provided POJO

Try it by opening a new terminal window, starting the Quarkus
application, and sending a request to the GET method:

./mvnw clean compile quarkus:dev

curl localhost:8080/now/cet

{"currentDateTime":"2019-11-

13T13:29+01:00","dayOfTheWeek":"Wednesday"}%

Discussion
In similar way, you can make requests to other HTTP methods.
For example, to do a POST request, you call the post method:

target(host)

 .request(MediaType.APPLICATION_JSON)

 .post(entity);

You can also use the javax.ws.rs.core.Response to get all the
response details instead of just the body:

 @GET

 @Path("{timezone}/raw")

 @Produces(MediaType.APPLICATION_JSON)

 public Response getCurrentTimeResponse(@PathParam("timezone")

 String timezone) {

 javax.ws.rs.core.Response responseWorldClock =

client.target(clockHost)

 .path("api/json/{timezone}/now")

 .resolveTemplate("timezone", timezone)

 .request(MediaType.APPLICATION_JSON)

 .get(Response.class);

 System.out.println(responseWorldClock.getStatus());

 System.out.println(responseWorldClock.getStringHeaders());

 // ... more methods

 return responseWorldClock;

 }

See Also
You can further explore the JAX-RS REST Client at the
following pages on Oracle’s website:

Accessing REST Resources with the JAX-RS Client API

Using the Client API in the JAX-RS Example Applications

13.2 Using the MicroProfile REST Client

Problem
You want to communicate with another RESTful web service
without going into low-level details.

Solution
Use MicroProfile REST Client to communicate with other
RESTful web services.

So far, you’ve seen how to use the JAX-RS Web Client to
communicate with other REST APIs, but it is not type-safe, and
you need to deal with low-level parameters instead of focusing
on message communication.

The MicroProfile REST Client provides a type-safe approach to
invoke RESTful services over HTTP using as much of the JAX-
RS 2.0 spec as possible. The REST client is defined as a Java
interface, making it type-safe and providing the network
configuration using JAX-RS annotations.

https://oreil.ly/7neQm
https://oreil.ly/QA8lA

We will use the same World Clock API that was used in the
previous section here, too. Remember to get the current
date/time.

Create the org.acme.quickstart.WorldClockService interface
that is responsible for interacting with the external service:

package org.acme.quickstart;

import javax.enterprise.context.ApplicationScoped;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import

org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

@Path("/api")

@ApplicationScoped

@RegisterRestClient

public interface WorldClockService {

 @GET

 @Path("/json/{timezone}/now")

 @Produces(MediaType.APPLICATION_JSON)

 WorldClock getNow(@PathParam("timezone") String timezone);

}

The global path

https://oreil.ly/7M0tf

Sets the interface as REST client

The request uses the GET HTTP method

The subpath with a path parameter

The media type requested

The path parameter is resolved with the passed argument

Open org.acme.quickstart.WorldClockResource.java and
add the following code:

@RestClient

WorldClockService worldClockService;

@GET

@Path("{timezone}/mp")

@Produces(MediaType.APPLICATION_JSON)

public WorldClock getCurrentTimeMp(@PathParam("timezone") String

timezone) {

 return worldClockService.getNow(timezone);

}

Injects the REST client

Calls the external service

You still need to set the host of the external service.
MicroProfile REST Client has a configuration property to set it.

Open application.properties:

org.acme.quickstart.WorldClockService/mp-

rest/url=http://worldclockapi.com

The attribute name uses the following format:
fully_qualified_name_rest_client/mp-rest/url, and
the value is the hostname (or the root of the URL):

./mvnw clean compile quarkus:dev

curl localhost:8080/now/cet/mp

{"currentDateTime":"2019-11-

13T16:46+01:00","dayOfTheWeek":"Wednesday"}%

Discussion
You can also convert a response with a status code equal to or
greater than 400 into an exception by implementing the
org.eclipse.microprofile.rest.client.ex.ResponseExceptio

nMapper interface. If multiple mappers are registered, then you
need to set a priority with javax.annotation.Priority
annotation.

Create the following ResponseExecptionMapper class to have it
registered, and have the application throw IOExecptions for
status codes in the 400s:

package org.acme.quickstart;

import java.io.IOException;

import javax.ws.rs.core.MultivaluedMap;

import javax.ws.rs.core.Response;

import

org.eclipse.microprofile.rest.client.ext.ResponseExceptionMapp

er;

public class CustomResponseExceptionMapper

 implements ResponseExceptionMapper<IOException>

{

 @Override

 public IOException toThrowable(Response response) {

 return new IOException();

 }

 @Override

 public boolean handles(int status,

 MultivaluedMap<String, Object>

headers) {

 return status >= 400 && status < 500;

 }

}

Implements the mapper interface

Does the conversion to an exception

Default is to transform any response with status code ≥
400, but you can override the method to provide a smaller
range

ResponseExceptionMapper is an extension point specifically
from the MicroProfile REST Client specification, but you can
also use the extension model provided by the JAX-RS
specification:

ClientRequestFilter

The filter invoked when the request is made to the external
service.

ClientResponseFilter

The filter invoked when the response is received from the
external service.

MessageBodyReader

Reads the entity after invocation.

MessageBodyWriter

Writes a request body in the operations that support bodies.

ParamConverter

Converts a parameter in the resource to a format to be
used in a request or response.

ReadInterceptor

The listener fired when the response is received from the
external service.

WriteInterceptor

The listener fired when the request is sent on the external
service.

You can also mock the WorldClockService interface by using
the @InjectMock together with @RestClient:

@InjectMock

@RestClient

WorldClockService worldClockService;

See Also
The MicroProfile Rest Client specification can be found at the
following website:

Eclipse REST Client for MicroProfile

13.3 Implementing a CRUD Client

Problem
You want to communicate with another RESTful web service
with CRUD operations exposed.

Solution
Use MicroProfile REST Client and JAX-RS annotations to
implement a CRUD client.

So far, you’ve seen how to use MicroProfile REST Client to get
information from external services. When the service is an
internal service, more often than not you need to implement
more operations like insert, delete, or update.

To implement these operations, you can use JAX-RS
annotations on a MicroProfile REST Client. Let’s see an
example:

package org.acme.quickstart;

import java.util.List;

https://oreil.ly/7D0Zv

import javax.ws.rs.BeanParam;

import javax.ws.rs.Consumes;

import javax.ws.rs.CookieParam;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.HEAD;

import javax.ws.rs.HeaderParam;

import javax.ws.rs.POST;

import javax.ws.rs.PUT;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Response;

import

org.eclipse.microprofile.rest.client.inject.RegisterRestClient;

@Path("/developer")

@RegisterRestClient

@Consumes("application/json")

@Produces("application/json")

public interface DeveloperService {

 @HEAD

 Response head();

 @GET

 List<Developer> getDevelopers();

 @POST

 Response createDeveloper(

 @HeaderParam("Authorization") String authorization,

 Developer developer);

 @DELETE

 @Path("/{userId}")

 Response deleteUser(@CookieParam("AuthToken") String

authorization,

 @PathParam("developerId") Long developerId);

}

Requests and responses are in JSON format

Uses the HEAD HTTP method

Uses the POST HTTP method

Sets Authorization header

Developer content is sent as the body

Uses the DELETE HTTP method

Sets AuthToken cookie

Discussion
Notice how the JAX-RS annotations are used to configure how
the requests are sent to the other services. You never need to
do anything programmatically.

This approach is developer-friendly and helps to reduce the
boilerplate code that you might end up using with the JAX-RS
Web Client.

Of course, it also has some drawbacks. For example, methods
can contain a huge number of parameters because of the
number of path parameters, headers to set, and cookies. To fix
this, pass a POJO with all of the required fields (instead of
setting them in the method).

Let’s create a Java class for the PUT requirements (i.e., an
authorization header and a path parameter):

package org.acme.quickstart;

import javax.ws.rs.HeaderParam;

import javax.ws.rs.PathParam;

public class PutDeveloper {

 @HeaderParam("Authorization")

 private String authorization;

 @PathParam("developerId")

 private String developerId;

 public String getAuthorization() {

 return authorization;

 }

 public void setAuthorization(String authorization) {

 this.authorization = authorization;

 }

 public String getDeveloperId() {

 return developerId;

 }

 public void setDeveloperId(String developerId) {

 this.developerId = developerId;

 }

}

Sets the Authorization header

Sets the path parameter to resolve

The interface method using the previous class is the
following:

@PUT

@Path("/{developerId}")

Response updateUser(@BeanParam PutDeveloper putDeveloper,

 Developer developer);

The BeanParam is used to indicate that this class is a
parameter aggregator

13.4 Manipulating Headers

Problem
You want to manipulate and propagate headers from the
incoming request to the outgoing service (service-to-service
authentication).

Solution

Use the MicroProfile REST Client feature that manipulates
headers.

When you need to communicate to other RESTful web
services, you might want to pass through some headers from
the incoming request to the outgoing/downstream service. One
of these typical cases is the Authorization header to do
service-to-service authentication. Authentication and
authorization in services architecture are usually solved by
propagating a token, often a JWT token, through all services
that compose the application. You can see the idea in
Figure 13-1.

Figure 13-1. Service-to-service authentication

The MicroProfile REST Client simplifies all these operations by
allowing you to propagate and manipulate headers either at a
static level by using annotations or at a programmatic level by
implementing ClientHeadersFactory interface.

To set a header on a method or on all the methods defined in
an interface, you can use the
org.eclipse.microprofile.rest.client.annotation.ClientHe

aderParam annotation at method level or class level to set a
header with a static value:

@Path("/somePath")

@ClientHeaderParam(name="user-agent", value="curl/7.54.0")

Response get();

Sets user-agent to the request

The value can be a method invocation where the return value
would be the header’s value:

@ClientHeaderParam(name="user-agent", value="

{determineHeaderValue}")

Response otherGet();

default String determineHeaderValue(String headerName) {

 return "Hi-" + headerName;

}

Sets the method to invoke

The header name is the first argument of the method

These approaches offer a basic manipulation of headers but
don’t help in propagating headers from the incoming request to
the outgoing service. It is also possible to add or propagate
headers by implementing the ClientHeadersFactory interface
and registering it with the RegisterClientHeaders annotation.

Suppose that your service receives the authentication token
from your upstream service in a header named x-auth, and
your downstream service requires that this value is set to the
Authorization header. Let’s implement this rename of headers
in a MicroProfile REST Client:

package org.acme.quickstart;

import java.util.List;

import javax.ws.rs.core.MultivaluedHashMap;

import javax.ws.rs.core.MultivaluedMap;

import

org.eclipse.microprofile.rest.client.ext.ClientHeadersFactory;

public class CustomClientHeadersFactory implements

ClientHeadersFactory {

 @Override

 public MultivaluedMap<String, String> update(

 MultivaluedMap<String, String> incomingHeaders,

 MultivaluedMap<String, String> clientOutgoingHeaders) {

 final MultivaluedMap<String, String> headers =

 new MultivaluedHashMap<String, String>(incomingHeaders);

 headers.putAll(clientOutgoingHeaders);

 final List<String> auth = headers.get("x-auth");

 headers.put("Authorization", auth);

 headers.remove("x-auth");

 return headers;

 }

}

The headers from the inbound JAX-RS request

The headers parameters specified on the client interface

Adds all headers

Renames the header value

Finally, you need to register this factory in the client by using
the R e g i s t e r C l i e n t H e a d e r s annotation:

@RegisterClientHeaders(CustomClientHeadersFactory.class)

public interface ConfigureHeaderServices {

Registers the headers factory for this client

Discussion
If you want to propagate the headers only as is, without any
modification, you can do it by just annotating the REST client
with @RegisterClientHeaders without specifying any factory.
Then the default headers factory is used.

This default factory will propagate specified headers from the
inbound JAX-RS request to the outbound request. To configure
which headers are propagated, you need to set them as
comma-separated values under the
org.eclipse.microprofile.rest.client.propagateHeaders

property:

org.eclipse.microprofile.rest.client.propagateHeaders=Authorizat

ion,\

MyCustomHeader

13.5 Using REST Client for Multipart
Messages

Problem
You want to send multipart content to interact with the REST
APIs requiring it.

Solution
Use RESTEasy multipart support to deal with multipart
messages.

Sometimes the service you need to connect with requires that
you send multiple content bodies embedded into one message,
usually using the multipart/form-data MIME-type. The
easiest way to work with multipart mime-types is using the
RESTEasy multipart provider, which integrates with the
MicroProfile REST client.

IMPORTANT
This feature is specific of RESTEasy/Quarkus and is not under
MicroProfile REST client spec.

Before you start developing, you need to add the resteasy-
multipart-provider dependency in your build tool:

<dependency>

 <groupId>org.jboss.resteasy</groupId>

 <artifactId>resteasy-multipart-provider</artifactId>

</dependency>

Then you need to create the model object that defines the
payload of the message. Let’s define a multipart message with
two parts, one as a binary content and another one as a string:

package org.acme.quickstart;

import java.io.InputStream;

import javax.ws.rs.FormParam;

import javax.ws.rs.core.MediaType;

import

org.jboss.resteasy.annotations.providers.multipart.PartType;

public class MultipartDeveloperModel {

 @FormParam("avatar")

 @PartType(MediaType.APPLICATION_OCTET_STREAM)

 public InputStream file;

 @FormParam("name")

 @PartType(MediaType.TEXT_PLAIN)

 public String developerName;

}

JAX-RS annotation to define the form parameter contained
inside the request

RESTEasy annotation to define the content type of the part

Finally, you need to declare a new method using the
MultipartDeveloperModel object as a parameter annotated
with
org.jboss.resteasy.annotations.providers.multipart.Multi

partForm:

@POST

@Consumes(MediaType.MULTIPART_FORM_DATA)

@Produces(MediaType.TEXT_PLAIN)

String sendMultipartData(@MultipartForm

 MultipartDeveloperModel data);

Sets the output mime-type as multipart

Defines the parameter as a multipart/form-type mime-
type

Multipart data

13.6 Using REST Client to Configure SSL

Problem
You want to configure REST client to use SSL.

Solution
The MicroProfile REST Client provides a way to configure SSL
for communication with other services.

By default, the MicroProfile REST Client uses the JVM trust
store to verify the certificates when HTTPS connections are
used. But sometimes, especially in cases of internal services,
the certificates cannot be validated using the JVM trust store
and you need to provide your custom trust store.

The MicroProfile REST Client accepts setting custom trust
stores by using the trustStore configuration property:

org.acme.quickstart.FruityViceService/mp-rest/trustStore= \

 classpath:/custom-truststore.jks

org.acme.quickstart.FruityViceService/mp-

rest/trustStorePassword=acme

org.acme.quickstart.FruityViceService/mp-rest/trustStoreType=JKS

trustStore sets the trust store location; this can be a class
path resource (classpath:) or a file (file:)

trustStorePassword sets the password for the trust store

trustStoreType sets the type of trust store

Keystores are also provided, which are really useful in two-way
SSL connections.

MicroProfile REST Client accepts setting custom key stores by
using the keyStore configuration property.

org.acme.quickstart.FruityViceService/mp-rest/keyStore= \

 classpath:/custom-keystore.jks

org.acme.quickstart.FruityViceService/mp-

rest/keyStorePassword=acme

org.acme.quickstart.FruityViceService/mp-rest/keyStoreType=JKS

keyStore sets the key store location; this can be a class
path resource (classpath:) or a file (file:)

keyStorePassword sets the password for the trust store

keyStoreType sets the type of key store

Finally, you can implement javax.net.ssl.HostnameVerifier
to override the behavior when the URL’s hostname and the
server’s identification hostname mismatch. Then the
implementation of this interface can determine whether this
connection should be allowed.

The following is an example of hostname verifier:

package org.acme.quickstart;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.SSLSession;

public class FruityHostnameVerifier implements HostnameVerifier

{

 @Override

 public boolean verify(String hostname, SSLSession session) {

 if ("fruityvice.com".equals(hostname)) {

 return true;

 }

 return false;

 }

}

You need to enable it in the configuration file:

org.acme.quickstart.FruityViceService/mp-rest/hostnameVerifier=\

org.acme.quickstart.FruityHostnameVerifier

Discussion
Most of the time, when you are running tests locally, you might
not have installed all the trust stores or key stores required to
connect to an external service. In these cases, you might run
tests against the HTTP version of the service. This is not
always possible, however, and in some third-party services,
only the HTTPS protocol is enabled.

One possible solution to this problem is to configure the
MicroProfile REST Client to trust any certificate. To do this, you
need to configure the client and provide a custom trust
manager:

package org.acme.quickstart;

import java.net.Socket;

import java.net.URI;

import java.security.KeyManagementException;

import java.security.NoSuchAlgorithmException;

import java.security.cert.CertificateException;

import java.security.cert.X509Certificate;

import javax.enterprise.context.ApplicationScoped;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLEngine;

import javax.net.ssl.TrustManager;

import javax.net.ssl.X509ExtendedTrustManager;

import org.apache.http.conn.ssl.NoopHostnameVerifier;

import org.eclipse.microprofile.rest.client.RestClientBuilder;

@ApplicationScoped

public class TrustAllFruityViceService {

 public FruityVice getFruitByName(String name) {

 FruityViceService fruityViceService =

RestClientBuilder.newBuilder()

 .baseUri(URI.create("https://www.fruityvice.com/"))

 .hostnameVerifier(NoopHostnameVerifier.INSTANCE)

 .sslContext(trustEverything())

 .build(FruityViceService.class);

 return fruityViceService.getFruitByName(name);

 }

 private static SSLContext trustEverything() {

 try {

 SSLContext sc = SSLContext.getInstance("SSL");

 sc.init(null, trustAllCerts(), new

java.security.SecureRandom());

HttpsURLConnection.setDefaultSSLSocketFactory(sc.getSocketFactor

y());

 return sc;

 } catch (KeyManagementException | NoSuchAlgorithmException

e) {

 throw new IllegalStateException(e);

 }

 }

 private static TrustManager[] trustAllCerts() {

 return new TrustManager[]{

 new X509ExtendedTrustManager(){

 @Override

 public X509Certificate[] getAcceptedIssuers() {

 return null;

 }

 @Override

 public void checkServerTrusted(X509Certificate[] chain,

 String authType)

 throws CertificateException {

 }

 @Override

 public void checkClientTrusted(X509Certificate[] chain,

 String authType)

 throws CertificateException {

 }

 @Override

 public void checkServerTrusted(X509Certificate[] chain,

 String authType,

 SSLEngine sslEngine)

 throws CertificateException {

 }

 @Override

 public void checkServerTrusted(X509Certificate[] chain,

 String authType,

 Socket socket)

 throws CertificateException {

 }

 @Override

 public void checkClientTrusted(X509Certificate[] chain,

 String authType,

 SSLEngine sslEngine)

 throws CertificateException {

 }

 @Override

 public void checkClientTrusted(X509Certificate[] chain,

 String authType,

 Socket socket)

 throws CertificateException {

 }

 }

 };

 }

}

Creates a CDI bean; you need to use @Inject instead of
@RestClient to make use of it

Disable host verification

Trust all certificates without doing any verification

Customize SSLContext with an empty trust manager,
effectively negating all SSL checks

Then if you inject this instance instead of the production one,
every HTTPS request is valid independently of the certificate
used by the external service.

Chapter 14. Developing
Quarkus Applications Using
Spring APIs

Up to this point, you’ve seen that every example was
developed using CDI annotations such as @Inject or
@Produces, JAX-RS annotations, or Java EE Security
annotations. But Quarkus also offers a compatibility layer for
some of the most-used Spring libraries, so you can use all your
knowledge about Spring Framework to develop Quarkus
applications.

This chapter will include recipes for the following:

Spring Dependency Injection

Spring REST Web

Spring Data JPA

Spring Security

Spring Boot Configuration

14.1 Using Spring Dependency Injection

Problem

You want to use the Spring Dependency Injection (DI) API to
develop with Quarkus.

Solution
Quarkus offers an API compatibility layer (using an extension)
to use Spring DI annotations.

Although we encourage you to use CDI annotations, you are
free to use the Spring annotations as well because the final
application will behave in exactly the same way.

A greeting service is developed, as it was at the beginning of
the book. If you are familiar with the Spring Framework, a lot of
things will look familiar to you.

To add the Spring DI extension, run the following command:

./mvnw quarkus:add-extension -Dextensions="spring-di"

Or, you can create a project with the Spring DI extension by
running the following:

mvn io.quarkus:quarkus-maven-plugin:1.4.1.Final:create \

 -DprojectGroupId=org.acme.quickstart \

 -DprojectArtifactId=spring-di-quickstart \

 -DclassName="org.acme.quickstart.GreeterResource" \

 -Dpath="/greeting" \

 -Dextensions="spring-di"

Open the application.properties file and add a new property:

greetings.message=Hello World

To inject this configuration value to any class, use the
@org.springframework.beans.factory.annotation.Value

Spring annotation:

package org.acme.quickstart;

import java.util.function.Function;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration

public class AppConfiguration {

 @Bean(name = "suffix")

 public Function<String, String> exclamation() {

 return new Function<String, String>() {

 @Override

 public String apply(String t) {

 return t + "!!";

 }

 };

 }

}

Uses the @Configuration annotation to define the class as
a configuration object

Creates a bean that adds the suffix to the given message

Implements the service

It is important to notice that in both cases the Spring
annotations are used.

The bean can be injected using the
@org.springframework.beans.factory.annotation.Autowired

and
@org.springframework.beans.factory.annotation.Qualifier

annotations:

package org.acme.quickstart;

import org.springframework.stereotype.Service;

@Service

public class PrefixService {

 public String appendPrefix(String message) {

 return "- " + message;

 }

}

Sets this class as a service

And it can be injected using the constructor instead of
@Autowired:

private PrefixService prefixService;

public GreetingResource(PrefixService prefixService) {

 this.prefixService = prefixService;

}

Injects the instance using the constructor; notice that
@Autowired is not required

Finally, all these operations can be combined to produce the
following output:

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 String prefixed = prefixService.appendPrefix(message);

 return this.suffixComponent.apply(prefixed);

}

If you run the project, you’ll be able to see that all the objects
are created and injected correctly, even though the Spring DI
annotations are used:

./mvnw compile quarkus:dev

curl http://localhost:8080/greeting

- Hello World!!

Discussion
It is important to note that Quarkus does not start a Spring
Application Context instance. That’s because its integration is
only at the API level (annotations, return types, etc.), which
means the following:

Using any other Spring library will not have any effect. You’ll
see later that Quarkus offers integrations to other Spring

libraries.

org.springframework.beans.factory.config.BeanPostProc

essor will not be executed.

Table 14-1 shows the equivalent annotations between
MicroProfile/CDI and Spring.

T
a
b
l
e

1
4
-
1
.
E
q
u
i
v
a
l
e
n
t
a
n
n
o
t
a
ti

o
n
s
i
n

M
i
c
r
o
P
r
o
fi
l
e
/
C
D
I
a
n
d

S
p
r
i
n
g

Spring CDI / MicroProfile

@Autowire

d

@Injecct

@Qualifie

r

@Named

@Value @ConfigProperty. The expression language of typical use
cases is supported.

@Componen

t

@Singleton

@Service @Singleton

@Reposito

ry

@Singleton

@Configur

ation

@ApplicationScoped

@Bean @Produces

14.2 Using Spring Web

Problem
You want to use the Spring Web API to develop with Quarkus.

Solution
Quarkus offers an API compatibility layer (using an extension)
to use Spring Web annotations/classes.

To add the Spring Web extension, run the following command:

./mvnw quarkus:add-extension -Dextensions="spring-web"

Create a new resource using only Spring Web annotations:

package org.acme.quickstart;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/greeting")

public class SpringController {

 @GetMapping

 public ResponseEntity<String> getMessage() {

 return ResponseEntity.ok("Hello");

 }

 @GetMapping("/{name}")

 public String hello(@PathVariable(name = "name") String name)

{

 return "hello " + name;

 }

}

REST resource definition

Maps the root path

Sets GET HTTP method

Returns Spring’s ResponseEntity

Gets path information

Only Spring annotations and classes are used to implement
the resource. There are no traces of the JAX-RS API.

Discussion
You’ve seen how to use Spring Dependency Injection
annotations in a Quarkus application. Quarkus integrates with
Spring Web via an extension.

Although we encourage you to use JAX_RS annotations, you
are free to use the Spring Web classes and annotations.
Regardless of which is used, the final application will behave
the same way.

Quarkus supports only the REST-related features of Spring
Web. In summary, all @RestController features are supported
except the ones related to the generic @Controller.

The following Spring Web annotations are supported:
@RestController, @RequestMapping, @GetMapping,
@PostMapping, @PutMapping, @DeleteMapping, @PatchMapping,

@RequestParam, @RequestHeader, @MatrixVariable,
@PathVariable, @CookieValue, @RequestBody, @ResponseStatus,
@ExceptionHandler (only to be used in a
@RestControllerAdvice class), and @RestControllerAdvice
(only the @ExceptionHandler capability is supported).

The following are return types that are supported out of the box
for REST controllers: primitives, String (as a literal, not as an
MVC support), POJO, and
org.springframework.http.ResponseEntity.

The following are method parameters that are supported out of
the box, for REST controllers: primitives, String, POJO,
javax.servlet.http.HttpServletRequest, and
javax.servlet.http.HttpServletResponse.

The following are return types that are supported out of the box
for exception handlers:
org.springframework.http.ResponseEntity and
java.util.Map

The following are method parameters that are supported out of
the box for exception handlers: java.lang.Exception or any
other subtype, javax.servlet.http.HttpServletRequest, and
javax.servlet.http.HttpServletResponse.

IMPORTANT
To use the javax.servlet classes you need to register the
quarkus-undertow dependency.

Table 14-2 shows the equivalent annotations between JAX-RS
and Spring Web.

T
a
b
l
e
1
4
-
2
.
E
q
u
i
v
a
l
e
n
t
a
n
n
o
t

a
ti
o
n
s
i
n
J
A
X
-
R
S

a
n
d
S
p
ri
n
g
W
e
b

Spring JAX-RS

@RequestController

@RequestMapping(path="/api") @Path("/api")

@RequestMapping(consumes="app

lication/json")

@Consumes("application/json")

@RequestMapping(produces="app

lication/json")

@Produces("application/json")

@RequestParam @QueryParam

@PathVariable @PathParam

@RequestBody

@RestControllerAdvice

@ResponseStatus Use javax.ws.rs.core.Response class

@ExceptionHandler Implements
javax.ws.rs.ext.ExceptionMapper
interface

14.3 Using Spring Data JPA

Problem
You want to use the Spring Data JPA API to develop the
persistent layer in Quarkus.

Solution
Quarkus offers an API compatibility layer (using an extension)
to use Spring Data JPA classes.

To add the Spring Web extension, run the following command:

./mvnw quarkus:add-extension -Dextensions="spring-data-jpa"

The big difference between using Panache or the Spring Data
JPA is that your repository class must implement the Spring
Data org.springframework.data.repository.CrudRepository
class instead of
io.quarkus.hibernate.orm.panache.PanacheRepository. But
the rest of the parts, like defining the entity or configuring the
data source in application.properties, are exactly the same.

Create a new class with the name
org.acme.quickstart.DeveloperRepository:

package org.acme.quickstart;

import java.util.List;

import org.springframework.data.repository.CrudRepository;

public interface DeveloperRepository extends

CrudRepository<Developer, Long> {

 List<Developer> findByName(String name);

}

Defines a Spring Data JPA CRUD repository

Derived query method

Run the project and send some requests to validate that the
objects are persisted using the Spring Data interface. To do so,
run the following in a terminal:

./mvnw compile quarkus:dev

curl -d '{"name":"Ada"}' -H "Content-Type: application/json" \

 -X POST http://localhost:8080/developer -v

< HTTP/1.1 201 Created

< Content-Length: 0

< Location: http://localhost:8080/developer/1

<

* Connection #0 to host localhost left intact

Discussion
In Chapter 7, you learned how to develop persistent code with
Quarkus, and in particular, using the Panache framework.
Quarkus also integrates with Spring Data JPA via an extension.

Although we encourage you to use the Panache framework,
you are free to use the Spring Data JPA classes as well
because the final application will behave in exactly the same
way.

Quarkus supports a subset of Spring Data JPA’s features,
which are basically the most commonly used features.

The following interfaces are supported to define a repository:

org.springframework.data.repository.Repository

org.springframework.data.repository.CrudRepository

org.springframework.data.repository.CrudRepository

org.springframework.data.repository.PagingAndSortingR

epository

org.springframework.data.jpa.repository.JpaRepository

IMPORTANT
The methods that update the database are automatically
annotated with @Transactional. If you are using
@org.springframework.data.jpa.repository.Query, then you
need to annotate the method with
@org.springframework.data.jpa.repository.Modifying to make
it transactional.

At the time of writing, the following features are unsupported:

Methods of the
org.springframework.data.repository.query.QueryByExam
pleExecutor

QueryDSL support

Customizing the base repository for all repository interfaces
in the codebase

java.util.concurrent.Future or classes extending it as
return types of repository methods

Native and named queries when using @Query

These limitations might be fixed in the near future.

14.4 Using Spring Security

Problem
You want to use the Spring Security API to protect resources.

Solution
Quarkus offers an API compatibility layer (using an extension)
to use Spring Security classes.

To add the Spring Security extension (and the identity
provider), run the following command:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-spring-security, quarkus-spring-web, \

 quarkus-elytron-security-properties-file"

From this point, the code can be protected using the Spring
Security annotations
(org.springframework.security.access.annotation.Secured
and
org.springframework.security.access.prepost.PreAuthorize

) instead of the Java EE ones
(@javax.annotation.security.RolesAllowed):

package org.acme.quickstart;

import org.springframework.security.access.annotation.Secured;

import

org.springframework.security.access.prepost.PreAuthorize;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping("/hello")

public class GreetingController {

 @GetMapping

 @Secured("admin")

 public String helloAdmin() {

 return "hello from admin";

 }

 @PreAuthorize("hasAnyRole('user')")

 @GetMapping

 @RequestMapping("/any")

 public String helloUsers() {

 return "hello from users";

 }

}

@Secured annotation

@PreAuthorize annotation to add expression support

Register valid users and roles in the application.properties file
because the Elytron file properties extension is registered as
identity provider:

quarkus.security.users.embedded.enabled=true

quarkus.security.users.embedded.plain-text=true

quarkus.security.users.embedded.users.alexandra=aixa

quarkus.security.users.embedded.roles.alexandra=admin,user

quarkus.security.users.embedded.users.ada=dev

quarkus.security.users.embedded.roles.ada=user

Only alexandra can access both endpoints, while ada can
access only the user one.

Discussion
In Chapter 11, you learned how to protect RESTful web
services using the Java EE security annotations
(@RolwsAllowed). Quarkus integrates with Spring Security via
an extension, allowing Spring Security annotations to be used
as well.

It is important to note that the Spring Security integration
happens at the API level and that an identity provider
implementation like Elytron file properties is still required.

Quarkus supports a subset of Spring Security @PreAuthorze
expression language, which is basically a collection of the most
commonly used features:

@PreAuthorize("hasRole('admin')")

@PreAuthorize("hasRole(@roles.USER)")

@PreAuthorize("hasAnyRole(@roles.USER, 'view')")

@PreAuthorize("permitAll()")

@PreAuthorize("denyAll()")

@PreAuthorize("isAnonymous()")

@PreAuthorize("isAuthenticated()")

Where roles is a bean defined with the @Component
annotation and USER is a public field of the class

Conditional expressions are also supported:

@PreAuthorize("#person.name ==

authentication.principal.username")

public void doSomethingElse(Person person){}

@PreAuthorize("@personChecker.check(#person,

authentication.principal.username)")

public void doSomething(Person person){}

@Component

public class PersonChecker {

 public boolean check(Person person, String username) {

 return person.getName().equals(username);

 }

}

@PreAuthorize("hasAnyRole('user', 'admin') AND #user ==

principal.username")

public void allowedForUser(String user) {}

14.5 Using Spring Boot Properties

Problem
You want to use Spring Boot to map configuration properties
into Java objects.

Solution
Quarkus offers an API compatibility layer (using an extension)
to use Spring Boot configuration properties.

Quarkus is integrated with Spring Boot in the form of an
extension, so the
@org.springframework.boot.context.properties.Configurati

onProperties annotation can be used to map configuration
properties into a Java object.

To add the Spring Boot extension (and the other Spring
integrations), run the following command:

./mvnw quarkus:add-extension \

 -Dextensions="quarkus-spring-di, quarkus-spring-web, \

 quarkus-spring-boot-properties,

 quarkus-hibernate-validator"

Add some configuration properties to be bound into a Java
object:

greeting.message=Hello World

greeting.configuration.uppercase=true

The next step is to create the POJOs with getters/setters to
bind the configuration properties from file to Java object. It is
important to note that the property uppercase is defined in a
subcategory named configuration, and this affects how the
POJO classes are created because each subcategory must be
added into its own class:

package org.acme.quickstart;

import javax.validation.constraints.Size;

import

org.springframework.boot.context.properties.ConfigurationPrope

rties;

@ConfigurationProperties(prefix = "greeting")

public class GreetingConfiguration {

 @Size(min = 2)

 private String message;

 private Configuration configuration;

 public void setMessage(String message) {

 this.message = message;

 }

 public String getMessage() {

 return message;

 }

 public void setConfiguration(Configuration configuration) {

 this.configuration = configuration;

 }

 public Configuration getConfiguration() {

 return configuration;

 }

}

Annotate the parent class with ConfigurationProperties,
and set the prefix of the configuration properties

Bean Validation annotations are supported

Subcategory configuration is mapped in a field with the
same name

Subcategory POJO is just a Java class with the uppercase
attribute.

package org.acme.quickstart;

public class Configuration {

 private boolean uppercase;

 public boolean isUppercase() {

 return uppercase;

 }

 public void setUppercase(boolean uppercase) {

 this.uppercase = uppercase;

 }

}

The configuration object is injected in any class, as is any other
bean using @Inject or @Autowired:

@Autowired

GreetingConfiguration greetingConfiguration;

@GetMapping

public String hello() {

 if (greetingConfiguration.getConfiguration().isUppercase())

{

 return greetingConfiguration.getMessage().toUpperCase();

 }

 return greetingConfiguration.getMessage();

}

Injects configuration object with data bound to it

Configuration properties are populated automatically to the
Java object

Chapter 15. Working with a
Reactive Programming
Model

We are all familiar with the client-server architecture that has
dominated enterprise software development for decades.
However, we have recently had a shift in architecture styles. In
addition to the standard client-server approach, we have
message-driven applications, microservices, reactive
applications, and even serverless! All of these types of
applications are possible to create using Quarkus. In the follow
recipes, you’ll learn about reactive programming models,
message buses, and streaming.

NOTE
Quarkus (and this book!) makes use of SmallRye Mutiny for its
reactive library. You can read more about Mutiny at SmallRye
Mutiny. There is also support for RxJava and Reactor, but they
are not the preferred choice. To use either of them, you will need
to use converters from Mutiny.

15.1 Creating Async HTTP Endpoints

https://oreil.ly/nBP7H

Problem
You want to create an async HTTP endpoint.

Solution
Quarkus has integrations with Java Streams, the Eclipse
MicroProfile Reactive spec, and SmallRye Mutiny. These
integrations make it easy to support an asynchronous HTTP
endpoint. The first thing you will need to do is determine which
libraries you wish to use. If you wish to use native Streams or
the MicroProfile Reactive specification, you will need to add the
quarkus-smallrye-reactive-streams-operators extension. If
you want to use SmallRye Mutiny, add the quarkus-resteasy-
mutiny extension to your project.

NOTE
Going forward, Mutiny will be the preferred library within Quarkus
for all things reactive.

Once the extension is in place, all you need to do with your
HTTP endpoints is return a reactive class:

@GET

@PATH("/reactive")

@Produces(MediaType.TEXT_PLAIN)

public CompletionStage<String> reactiveHello() {

 return ReactiveStreams.of("h", "e", "l", "l", "o")

 .map(String::toUpperCase)

 .toList()

 .run()

 .thenApply(list -> list.toString());

}

Naturally, any valid MediaType is valid; for simplicity, we
used plain text

CompletionStage comes from the java.util.concurrent
package

For Mutiny, this example becomes the following:

@GET

@PATH("/reactive")

@Produces(MediaType.TEXT_PLAIN)

public Multi<String> helloMutiny() {

 return Multi.createFrom().items("h", "e", "l", "l", "o");

}

See Also
For more information, visit the following websites:

SmallRye Mutiny

SmallRye Reactive Streams Operators

Reactive Streams

15.2 Streaming Data Asynchronously

Problem

https://oreil.ly/nBP7H
https://oreil.ly/Ab8eo
https://oreil.ly/pgyMk

You want to stream data in an async way.

Solution
Very similar to creating an asynchronous HTTP endpoint,
Quarkus allows you to stream events from your application
using server-sent events or server-side events (SSE). What
you will need to do in this case is to return a Publisher and tell
JAX-RS that your endpoint produces
MediaType.SERVER_SENT_EVENTS. Here’s an example that
streams a long every 500 milliseconds:

@GET

@Path("/integers")

@Produces(MediaType.SERVER_SENT_EVENTS)

public Publisher<Long> longPublisher() {

 return Multi.createFrom()

 .ticks().every(Duration.ofMillis(500));

}

Make sure you tell JAX-RS you are using SSEs

The return type for the method must be a
org.reactivestream.Publisher from the Reactive Streams
library

With Mutiny, a Multi is a Publisher, making this even easier
by simply returning a Multi.

See Also
For more information, visit the following websites:

Wikiwand: Server-Sent Events

MDN Web Docs: Using server-sent events

15.3 Using Messaging to Decouple
Components

Problem
You want to use messaging to decouple components.

Solution
One of the underlying/bundled frameworks used by Quarkus is
Vert.x. Vert.x is a framework for building asynchronous, event-
driven, reactive applications, much like Quarkus! Quarkus
makes use of the Vert.x Event Bus for sending and receiving
events/messages with decoupled classes.

To make use of Vert.x, just like many features with Quarkus,
you will need to add the proper extension to your application.
The name for the Vert.x extension is vertx.

HANDLING EVENTS/MESSAGES

We’ll first take a look at listening to or consuming events. The
easiest way to consume events in Quarkus is to use the
io.quarkus.vertx.ConsumeEvent annotation. @ConsumeEvent
has attributes, which we’ll get to, but let’s see it in action:

https://oreil.ly/m0cAC
https://oreil.ly/ZIX4X

package com.acme.vertx;

import javax.enterprise.context.ApplicationScoped;

import io.quarkus.vertx.ConsumeEvent;

@ApplicationScoped

public class GreetingService {

 @ConsumeEvent

 public String consumeNormal(String name) {

 return name.toUpperCase();

 }

}

With no value set, the address of the event is the fully
qualified name of the bean; in this case, it would be
com.acme.vertx.GreetingService

The parameter for the consumer is the message body; if the
method returns anything, it is packaged as the message
response

SENDING EVENTS/MESSAGES

To send an event, you will be interacting with the Vert.x Event
Bus. You can obtain the instance via injection: @Inject
io.vertx.axle.core.eventbus.EventBus bus. You will be
primarily making use of two methods on the event bus:

send

Sends a message and optionally expects a reply

publish

Publishes a message to each listener

bus.send("address", "hello");

bus.publish("address", "hello");

bus.send("address", "hello, how are you?")

 .thenAccept(msg -> {

 // do something with the message

});

Send a message to a specific address, and a single
consumer receives it, then forget about the response.

Publish a message to a specific address, and all consumers
receive the message.

Send a message to a specific address, and expect a reply.

You should have enough information to create your own
version of the Greeting Service using Vert.x Eventing!

Discussion
You can also return a CompletionStage to handle events in
asynchronous fashion. Lastly, if you wish to use the
io.vertx.axle.core.eventbus.Message as the method param,
you may do so and get access to the rest of the message
within your event handler.

Fire-and-forget style interactions are just as easy—simply
return void from your method.

WARNING
The method consuming an event is called on the Vert.x event
loop. The first tenet of Vert.x is to never block the event loop.
Your code must be nonblocking. If you need the method to block,
set the blocking attribute on @ConsumeEvent to true.

To configure the name or address of the event handler, use the
value parameter:

 @ConsumeEvent(value = "greeting")

 public String consumeNamed(String name) {

 return name.toUpperCase();

 }

See Also
For more information, visit the following websites:

Vert.x

Vert.x: The Event Bus

15.4 Reacting to Apache Kafka Messages

Problem
You want to react to Apache Kafka messages.

Solution

https://www.vertx.io/
https://oreil.ly/TAnxk

Quarkus makes use of Eclipse MicroProfile Reactive
Messaging to interact with Apache Kafka.

The Reactive Messaging specification is built on top of three
main concepts:

1. Message

2. @Incoming

3. @Outgoing

This recipe focuses on Message and @Incoming; see Recipe
15.5 if you need to go the other direction.

MESSAGE

In short, a Message is an envelope around a payload. The
envelope also carries with it optional metadata, though more
often than not, you care only about the payload.

@INCOMING ANNOTATION

This annotation
(org.eclipse.microprofile.reactive.messaging.Incoming)
indicates that the method consumes a stream of messages.
The only attribute is the name of the name of the stream or
topic. Methods are annotated this way for the end of a
processing chain, also known as a sink. The following are a
couple of uses within Quarkus:

package org.acme.kafka;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import javax.enterprise.context.ApplicationScoped;

import org.eclipse.microprofile.reactive.messaging.Incoming;

import org.eclipse.microprofile.reactive.messaging.Message;

@ApplicationScoped

public class CharacterReceiver {

 @Incoming("ascii-char")

 public CompletionStage<Void> processKafkaChar(Message<String>

character) {

 return CompletableFuture.runAsync(() -> {

 System.out.println("Received a message from Kafka "

 + "using CompletableFuture: '" +

character.getPayload() + "'");

 });

 }

 @Incoming("ascii-char")

 public void processCharacter(String character) {

 System.out.println("Received a String from kafka: '" +

character + "'");

 }

}

You can see that either method works; however, in the case of
processKafkaCharacter it takes a Message and returns a
CompletionStage. If your method receives a Message as the
parameter, it must return a CompletionStage.

If you are interested only in the payload, you don’t need to
worry about any of that and can simply accept the type of the

payload and return void, as is demonstrated in
processCharacter in the previous code.

CONFIGURATION

As expected, you will need to configure your application to talk
to Apache Kafka:

mp.messaging.incoming.ascii-char.connector=smallrye-kafka

mp.messaging.incoming.ascii-

char.value.deserializer=org.apache.kafka.common\

.serialization\

.StringDeserializer

mp.messaging.incoming.ascii-char.broadcast=true

In the preceding code, we have multiple subscribers, so we
need to use broadcast=true. The broadcast attribute lets
MicroProfile Reactive Messaging (SmallRye is an
implementation) know that messages received can be
dispatched to more than one subscriber.

The syntax of the configuration is as follows:

mp.messaging.[outgoing|incoming].{channel-name}.property=value

The value in the channel-name segment must match the value
set in @Incoming (and @Outgoing, which is covered in the next
recipe).

There are some sensible defaults that you can see in SmallRye
Reactive Messaging: Apache Kafka.

Discussion
To get up and running quickly with Apache Kafka in a
development environment, you can visit the websites listed in
“See Also”, or use the following docker-compose.yml file along
with docker-compose:

version: '2'

services:

 zookeeper:

 image: strimzi/kafka:0.11.3-kafka-2.1.0

 command: [

 "sh", "-c",

 "bin/zookeeper-server-start.sh

config/zookeeper.properties"

]

 ports:

 - "2181:2181"

 environment:

 LOG_DIR: /tmp/logs

 kafka:

 image: strimzi/kafka:0.11.3-kafka-2.1.0

 command: [

 "sh", "-c",

 "bin/kafka-server-start.sh config/server.properties

 --override listeners=$${KAFKA_LISTENERS}

 --override

advertised.listeners=$${KAFKA_ADVERTISED_LISTENERS}

https://oreil.ly/L5WHK

 --override zookeeper.connect=$${KAFKA_ZOOKEEPER_CONNECT}"

]

 depends_on:

 - zookeeper

 ports:

 - "9092:9092"

 environment:

 LOG_DIR: "/tmp/logs"

 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://localhost:9092

 KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092

 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

See Also
For more information, visit the following:

GitHub: Reactive Messaging for MicroProfile

SmallRye Reactive Messaging

Apache Kafka

Apache Kafka: Consumer Configs

Vert.x Kafka client

15.5 Sending Messages to Apache Kafka

Problem
You want to send messages to Apache Kafka.

Solution

https://oreil.ly/DSu7u
https://oreil.ly/QlGHK
https://oreil.ly/6xsAP
https://oreil.ly/iE8aU
https://oreil.ly/zFD5J

First, you’ll need to add the quarkus-smallrye-reactive-
messaging-kafka extension to your project. In this example,
we’re also using SmallRye Mutiny, so add the
io.smallrye.reactive:mutiny dependency as well.

To send messages to Apache Kafka, use the @Outgoing
annotation from Eclipse MicroProfile Reactive Messaging.

When you generate data to send to Apache Kafka, you will
annotate your methods with
org.eclipse.microprofile.reactive.messaging.Outgoing.
You can send either a stream of messages or a single
message. If you wish to publish a stream of messages, you
must return a org.reactivestreams.Publisher or a
org.eclipse.microprofile.reactive.streams.operators.Publ

isherBuilder. If you wish to publish a single message, return a
org.eclipse.microprofile.reactive.messaging.Message,
java.util.concurrent.CompletionStage, or the corresponding
type for your message payload.

The following is a basic example that creates a new ASCII
character every second and sends it to the “letter-out” channel:

package org.acme.kafka;

import java.time.Duration;

import java.util.concurrent.ThreadLocalRandom;

import io.smallrye.mutiny.Multi;

import org.eclipse.microprofile.reactive.messaging.Outgoing;

import org.reactivestreams.Publisher;

public class CharacterGenerator {

 @Outgoing("letter-out")

 public Publisher<String> generate() {

 return Multi.createFrom()

 .ticks().every(Duration.ofSeconds(1))

 .map(tick -> {

 final int i =

ThreadLocalRandom.current().nextInt(95);

 return String.valueOf((char) (i + 32));

 });

 }

}

The value attribute for @Outgoing is required and is the name of
the outbound channel. In this example, we used SmallRye
Mutiny, but you could use anything that returns an instance of
org.reactivestreams.Publisher; a Flowable from RXJava2,
for example, would also work well.

The following configuration is also necessary:

mp.messaging.outgoing.letter-out.connector=smallrye-kafka

mp.messaging.outgoing.letter-out.topic=ascii-char

mp.messaging.outgoing.letter-

out.value.serializer=org.apache.kafka.common\

.serialization\

.StringSerializer

Discussion

If you find yourself needing to send a message in an imperative
way, you can use an
org.eclipse.microprofile.reactive.messaging.Emitter

injected into your application:

@Inject @Channel("price-create") Emitter<Double> priceEmitter;

@POST

@Consumes(MediaType.TEXT_PLAIN)

public void addPrice(Double price) {

 priceEmitter.send(price);

}

See Also
For more information, check out the following:

Recipe 15.4

Apache Kafka: Producer Configs

SmallRye Reactive Messaging

15.6 Marshalling POJOs into/out of Kafka

Problem
You want to serialize/deserialize POJOs into Kafka.

Solution
Quarkus has capabilities to work with JSON Kafka messages;
you will need to select either JSONB or Jackson as an

https://oreil.ly/hZ9Bm
https://oreil.ly/QlGHK

implementation. The required extensions are either quarkus-
resteasy-jsonb or quarkus-resteasy-jackson, depending on
your preference.

You will then need to create a deserializer. The easiest way to
do this is to extend either the JsonDeserializer for JSONB or
the ObjectMapperDeserializer for Jackson. Here is the Book
class and its deserializer:

package org.acme.kafka;

public class Book {

 public String title;

 public String author;

 public Long isbn;

 public Book() {

 }

 public Book(String title, String author, Long isbn) {

 this.title = title;

 this.author = author;

 this.isbn = isbn;

 }

}

For JSONB, the deserializer looks like this:

package org.acme.kafka;

import

io.quarkus.kafka.client.serialization.JsonbDeserializer;

public class BookDeserializer extends JsonbDeserializer<Book> {

 public BookDeserializer() {

 super(Book.class);

 }

}

For Jackson, it is also just as easy:

package com.acme.kafka;

import

io.quarkus.kafka.client.serialization.ObjectMapperDeserializer;

public class BookDeserializer extends

ObjectMapperDeserializer<Book> {

 public BookDeserializer() {

 super(Book.class);

 }

}

The last bit you will need to do is to add your deserializer and
the default serializer to the Quarkus configuration:

Configure the Kafka source (we read from it)

mp.messaging.incoming.book-in.connector=smallrye-kafka

mp.messaging.incoming.book-in.topic=book-in

mp.messaging.incoming.book-in.value.deserializer=com.acme\

.kafka.BookDeserializer

Configure the Kafka sink (we write to it)

mp.messaging.outgoing.book-out.connector=smallrye-kafka

mp.messaging.outgoing.book-out.topic=book-out

mp.messaging.outgoing.book-

out.value.serializer=io.quarkus.kafka\

.client.serialization\

 .JsonbSerializer

Or, for Jackson:

Configure the Kafka source (we read from it)

mp.messaging.incoming.book-in.connector=smallrye-kafka

mp.messaging.incoming.book-in.topic=book-in

mp.messaging.incoming.book-in.value.deserializer=com.acme\

.kafka.BookDeserializer

Configure the Kafka sink (we write to it)

mp.messaging.outgoing.book-out.connector=smallrye-kafka

mp.messaging.outgoing.book-out.topic=book-out

mp.messaging.outgoing.book-

out.value.serializer=io.quarkus.kafka.client\

 .serialization\

.ObjectMapperSerializer

Discussion
If you are using JSONB and you do not wish to create a
deserializer for each POJO sent over the wire, you can use the
generic
io.vertx.kafka.client.serialization.JsonObjectDeserializ

er. The resulting object returned will be a
javax.json.JsonObject. Here, we have chosen to use the
default serializers.

You can also create your own serializers if you need something
more than the basic functionality.

15.7 Using Kafka Streams API

Problem
You want to use the Kafka Streams API for querying data.

Solution
The Apache Kafka extension in Quarkus (quarkus-smallrye-
reactive-messaging-kafka) has integration with the Apache
Kafka Streams API. This example is a bit in depth and requires
some additional moving parts. You’ll of course need an Apache
Kafka instance up and running. We recommend you set up an
Apache Kafka instance using Kubernetes if you don’t already
have one available. If you simply need something for
development, you can use the following docker-compose.yml
file:

version: '3.5'

services:

 zookeeper:

 image: strimzi/kafka:0.11.3-kafka-2.1.0

 command: [

 "sh", "-c",

 "bin/zookeeper-server-start.sh

config/zookeeper.properties"

]

 ports:

 - "2181:2181"

 environment:

 LOG_DIR: /tmp/logs

 networks:

 - kafkastreams-network

 kafka:

 image: strimzi/kafka:0.11.3-kafka-2.1.0

 command: [

 "sh", "-c",

 "bin/kafka-server-start.sh config/server.properties

 --override listeners=$${KAFKA_LISTENERS}

 --override

advertised.listeners=$${KAFKA_ADVERTISED_LISTENERS}

 --override zookeeper.connect=$${KAFKA_ZOOKEEPER_CONNECT}

 --override num.partitions=$${KAFKA_NUM_PARTITIONS}"

]

 depends_on:

 - zookeeper

 ports:

 - "9092:9092"

 environment:

 LOG_DIR: "/tmp/logs"

 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092

 KAFKA_LISTENERS: PLAINTEXT://0.0.0.0:9092

 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181

 KAFKA_NUM_PARTITIONS: 3

 networks:

 - kafkastreams-network

The next part in this solution is to create a producer that
generates values and sends those generated values to a Kafka
topic. We’ll be using the idea of a jukebox for this. Our jukebox
will contain a number of songs and their artists, as well as the

number of times a song was played. Each of those will be sent
to a different topic and then aggregated together by another
service:

package org.acme.kafka.jukebox;

import java.time.Duration;

import java.time.Instant;

import java.util.Arrays;

import java.util.Collections;

import java.util.List;

import java.util.concurrent.ThreadLocalRandom;

import javax.enterprise.context.ApplicationScoped;

import io.smallrye.mutiny.Multi;

import io.smallrye.reactive.messaging.kafka.KafkaRecord;

import org.eclipse.microprofile.reactive.messaging.Outgoing;

import org.jboss.logging.Logger;

@ApplicationScoped

public class Jukebox {

 private static final Logger LOG =

Logger.getLogger(Jukebox.class);

 private ThreadLocalRandom random =

ThreadLocalRandom.current();

 private List<Song> songs = Collections.unmodifiableList(

 Arrays.asList(

 new Song(1, "Confessions", "Usher"),

 new Song(2, "How Do I Live", "LeAnn Rimes"),

 new Song(3, "Physical", "Olivia Newton-John"),

 new Song(4, "You Light Up My Life", "Debby

Boone"),

 new Song(5, "The Twist", "Chubby Checker"),

 new Song(6, "Mack the Knife", "Bobby Darin"),

 new Song(7, "Night Fever", "Bee Gees"),

 new Song(8, "Bette Davis Eyes", "Kim Carnes"),

 new Song(9, "Macarena (Bayside Boys Mix)", "Los

Del Rio"),

 new Song(10, "Yeah!", "Usher")

)

);

 @Outgoing("song-values")

 public Multi<KafkaRecord<Integer, String>> generate() {

 return

Multi.createFrom().ticks().every(Duration.ofMillis(500))

 .onOverflow().drop()

 .map(tick -> {

 Song s =

songs.get(random.nextInt(songs.size()));

 int timesPlayed = random.nextInt(1, 100);

 LOG.infov("song {0}, times played:

{1,number}",

 s.title, timesPlayed);

 return KafkaRecord.of(s.id, Instant.now()

 + ";" +

timesPlayed);

 });

 }

 @Outgoing("songs")

 public Multi<KafkaRecord<Integer, String>> songs() {

 return Multi.createFrom().iterable(songs)

 .map(s -> KafkaRecord.of(s.id,

 "{\n" +

 "\t\"id\":\""+ s.id + "\",\n" +

 "\t\"title\":\"" + s.title + "\",\n" +

 "\t\"artist\":\"" + s.artist + "\"\n" +

 "}"

));

 }

 private static class Song {

 int id;

 String title;

 String artist;

 public Song(int id, String title, String artist) {

 this.id = id;

 this.title = title;

 this.artist = artist;

 }

 }

}

Every 500 milliseconds, a new message containing the song
and the times it was played, along with a time stamp, is sent
out to the songs topic. We’ll forgo the extra configuration—you
can see steps for that in the Recipe 15.5 recipe.

Next, we need to build the pipeline. The first step is to create
some value holders:

package org.acme.kafka.jukebox;

public class Song {

 public int id;

 public String title;

 public String artist;

}

Now we need a holder for a play count:

package org.acme.kafka.jukebox;

import java.time.Instant;

public class PlayedCount {

 public int count;

 public String title;

 public String artist;

 public int id;

 public Instant timestamp;

 public PlayedCount(int id, String title, String artist,

 int count, Instant timestamp) {

 this.count = count;

 this.title = title;

 this.artist = artist;

 this.id = id;

 this.timestamp = timestamp;

 }

}

Last, for the value holders is an object to track the aggregation
of values while the messages are processed in the pipeline:

package org.acme.kafka.jukebox;

import java.math.BigDecimal;

import java.math.RoundingMode;

public class Aggregation {

 public int songId;

 public String songTitle;

 public String songArtist;

 public int count;

 public int sum;

 public int min;

 public int max;

 public double avg;

 public Aggregation updateFrom(PlayedCount playedCount) {

 songId = playedCount.id;

 songTitle = playedCount.title;

 songArtist = playedCount.artist;

 count++;

 sum += playedCount.count;

 avg = BigDecimal.valueOf(sum / count)

 .setScale(1,

RoundingMode.HALF_UP).doubleValue();

 min = Math.min(min, playedCount.count);

 max = Math.max(max, playedCount.count);

 return this;

 }

}

Now, on to the magic! The last part of the puzzle is streaming
the query implementation. We only need to define a method
that is a CDI producer that returns an Apache Kafka Stream
Topology. Quarkus will take care of the configuration, and the
life cycle will take care of the Kafka Streams engine:

package org.acme.kafka.jukebox;

import java.time.Instant;

import javax.enterprise.context.ApplicationScoped;

import javax.enterprise.inject.Produces;

import io.quarkus.kafka.client.serialization.JsonbSerde;

import org.apache.kafka.common.serialization.Serdes;

import org.apache.kafka.streams.StreamsBuilder;

import org.apache.kafka.streams.Topology;

import org.apache.kafka.streams.kstream.Consumed;

import org.apache.kafka.streams.kstream.GlobalKTable;

import org.apache.kafka.streams.kstream.Materialized;

import org.apache.kafka.streams.kstream.Produced;

import

org.apache.kafka.streams.state.KeyValueBytesStoreSupplier;

import org.apache.kafka.streams.state.Stores;

@ApplicationScoped

public class TopologyProducer {

 static final String SONG_STORE = "song-store";

 private static final String SONG_TOPIC = "songs";

 private static final String SONG_VALUES_TOPIC = "song-

values";

 private static final String SONG_AGG_TOPIC = "song-

aggregated";

 @Produces

 public Topology buildTopology() {

 StreamsBuilder builder = new StreamsBuilder();

 JsonbSerde<Song> songSerde = new JsonbSerde<>

(Song.class);

 JsonbSerde<Aggregation> aggregationSerde =

 new JsonbSerde<>(Aggregation.class);

 KeyValueBytesStoreSupplier storeSupplier =

 Stores.persistentKeyValueStore(SONG_STORE);

 GlobalKTable<Integer, Song> songs =

builder.globalTable(SONG_TOPIC,

 Consumed.with(Serdes.Integer(), songSerde));

 builder.stream(SONG_VALUES_TOPIC,

Consumed.with(Serdes.Integer(),

 Serdes.String()))

 .join(

 songs,

 (songId, timestampAndValue) -> songId,

 (timestampAndValue, song) -> {

 String[] parts =

timestampAndValue.split(";");

 return new PlayedCount(song.id,

song.title,

 song.artist,

 Integer.parseInt(parts[1]),

 Instant.parse(parts[0]));

 }

)

 .groupByKey()

 .aggregate(

 Aggregation::new,

 (songId, value, aggregation) ->

 aggregation.updateFrom(value),

 Materialized.<Integer, Aggregation>

as(storeSupplier)

 .withKeySerde(Serdes.Integer())

 .withValueSerde(aggregationSerde)

)

 .toStream()

 .to(

 SONG_AGG_TOPIC,

 Produced.with(Serdes.Integer(),

aggregationSerde)

);

 return builder.build();

 }

}

Explaining all of what is happening is beyond the scope of this
recipe, but the Kafka Streams site, linked to in “See Also”, has
entire tutorials and videos dedicated to this topic. In a nutshell,
this connects to the previous songs and song-values topic then
merges the values together based on song ID. The play count
values then have some aggregation performed on them, and
the output is sent back to Apache Kafka on a new topic.

Discussion
We recommend using the kafkacat utility for seeing the
messages as they are sent to the topics.

IMPORTANT
In both of the examples with Apache Kafka we connected with
only a single client and machine. This is not a limitation of
Quarkus but something we have done to help simplify the
examples.

See Also
For more information, visit the following websites:

Apache Kafka: Kafka Streams

Confluent: kafkacat Utility

https://oreil.ly/gNAof
https://oreil.ly/bgIT_

15.8 Using AMQP with Quarkus

Problem
You want to use AMQP (Advanced Message Queuing Protocol)
as the messaging system.

Solution
Use the quarkus-smallrye-reactive-messaging-amqp
extension.

Just like the Kafka integration, Quarkus uses Eclipse
MicroProfile Reactive Messaging as the facade around all
messaging interactions. By adding the quarkus-smallrye-
reactive-messaging-amqp extension to your project, you will
get the SmallRye AMQP connector and associated
dependencies. This will allow @Outbound, @Inbound,
@Broadcast, and other Eclipse MicroProfile Reactive
Messaging annotations and concepts to work with AMQP.

WARNING
These annotations work with AMQP 1.0, not 0.9.x.

You will also need to set the channel connector to smallrye-
amqp in the application.properties file. Remember that the
syntax for those configurations is the following:

mp.messaging.[outgoing|incoming].[channel-name].property=value

You can also set the username and password for AMQP
connections globally via the following:

amqp-username=[my-username]

amqp-password=[my-secret-password]

Or, if you need to talk to different instances with their own
credentials, you may set those on a per-channel basis. Please
see the SmallRye documentation for further properties.

The code from Recipe 15.5 will work exactly the same with
AMQP as it will with Kafka, assuming that the channels are the
same name and that the rest of the AMQP setup and
connection information are correct.

See Also
For more information, visit the following website:

SmallRye Reactive Messaging: AMQP 1.0

15.9 Using MQTT

Problem
You want to use MQTT (MQ Telemetry Transport) as the
messaging system.

https://oreil.ly/ViPyo

Solution
Use the quarkus-smallrye-reactive-messaging-mqtt
extension.

Just like the Kafka and AMQP integration, Quarkus uses
Eclipse MicroProfile Reactive Messaging as the facade around
all messaging interactions. By adding the quarkus-smallrye-
reactive-messaging-mqtt extension to your project, you will
get the SmallRye MQTT connector and associated
dependencies. This will allow @Outbound, @Inbound,
@Broadcast, and other Eclipse MicroProfile Reactive
Messaging annotations and concepts to work with MQTT.

You will also need to set the channel connector to smallrye-
mqtt in the application.properties file. Remember, the syntax
for those configurations is the following:

mp.messaging.[outgoing|incoming].[channel-name].property=value

Connection and credentials can be set on a channel-by-
channel basis. Please see the SmallRye documentation for
further properties.

The code from Recipe 15.4 will work exactly the same with
MQTT as it will with Kafka, assuming that the channels have
the same name and that the rest of the MQTT setup is correct
along with the connection information.

Discussion

There is also support for acting as an MQTT server; however, it
is not a fully featured MQTT server. For example, it will handle
only publish requests and their acknowledgment; it does not
handle subscription requests.

See Also
For more information, visit the following website:

SmallRye Reactive Messaging: MQTT

15.10 Query Using Reactive SQL

Problem
You want to query data using the PostgreSQL reactive client.

Solution
Quarkus integrates with the Vert.x Reactive SQL client, which
works with MySQL/MariaDB, and PostgreSQL. In this recipe,
we will be demonstrating this with PostgreSQL; in the following
recipe we will use MariaDB.

Naturally, you will need to add an extension to utilize the
reactive SQL client. Currently, there are two of them: quarkus-
reactive-pg-client and quarkus-reactive-mysql-client,
respective to the two databases. You will also need to ensure
that the following extensions are in your project (if you are
using JAX-RS):

https://oreil.ly/QmkVY

quarkus-resteasy

quarkus-resteasy-jsonb or quarkus-resteasy-jackson

quarkus-resteasy-mutiny

Just as with any data store, you will need to configure access:

quarkus.datasource.db-kind=postgresql

quarkus.datasource.username=quarkus_test

quarkus.datasource.password=quarkus_test

quarkus.datasource.reactive.url=postgresql://localhost:5432/quar

kus_test

Now you can use the client:

package org.acme.pg;

import io.smallrye.mutiny.Multi;

import io.smallrye.mutiny.Uni;

import io.vertx.mutiny.pgclient.PgPool;

import io.vertx.mutiny.sqlclient.Row;

import io.vertx.mutiny.sqlclient.Tuple;

public class Book {

 public Long id;

 public String title;

 public String isbn;

 public Book() {

 }

 public Book(String title, String isbn) {

 this.title = title;

 this.isbn = isbn;

 }

 public Book(Long id, String title, String isbn) {

 this.id = id;

 this.title = title;

 this.isbn = isbn;

 }

 public static Book from(Row row) {

 return new Book(row.getLong("id"),

 row.getString("title"),

 row.getString("isbn"));

 }

 public static Multi<Book> findAll(PgPool client) {

 return client.query("SELECT id, title, isbn " +

 "FROM books ORDER BY title ASC")

.onItem().produceMulti(Multi.createFrom()::iterable)

 .map(Book::from);

 }

}

Query the database, returning a Uni<RowSet<Row>>

Create a Multi<Row> once the query returns

Map each row into a Book instance

To complete the exercise, you can use the RESTful endpoint:

package org.acme.pg;

import javax.annotation.PostConstruct;

import javax.inject.Inject;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import io.smallrye.mutiny.Uni;

import io.vertx.mutiny.pgclient.PgPool;

import org.eclipse.microprofile.config.inject.ConfigProperty;

@Path("/books")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class BookResource {

 @Inject

 PgPool client;

 @GET

 public Uni<Response> get() {

 return Book.findAll(client)

 .collectItems().asList()

 .map(Response::ok)

 .map(Response.ResponseBuilder::build);

 }

}

Discussion
You can also use prepared queries by using the preparedQuery
method and the Tuple class:

 public static Uni<Boolean> delete(PgPool client, Long id) {

 return client.preparedQuery("DELETE FROM books " +

 "WHERE id = $1",

Tuple.of(id))

 .map(rowSet -> rowSet.rowCount() == 1);

 }

Using metadata, return from the RowSet instance to verify
the row was deleted

See Also
The underlying implementation can be found at Vert.x:
Reactive PostgreSQL Client.

15.11 Insert Using Reactive SQL Client

Problem
You want to insert data using the MySQL reactive client.

Solution
Similar to the previous recipe using PostgreSQL, data insertion
can be done with a reactive MySQL client. The same
extensions need to be used to changed the quarkus-reactive-
pg-client for quarkus-reactive-mysql-client:

quarkus-resteasy

quarkus-resteasy-jsonb or quarkus-resteasy-jackson

quarkus-resteasy-mutiny

You will, of course, need to set up the datasource:

https://oreil.ly/0nuDM

quarkus.datasource.db-kind=mysql

quarkus.datasource.username=quarkus_test

quarkus.datasource.password=quarkus_test

quarkus.datasource.reactive.url=mysql://localhost:3306/quarkus_t

est

You will see very similar themes in the Book.save method as
you did in the previous recipe:

 public Uni<Long> save(MySQLPool client) {

 String query = "INSERT INTO books (title,isbn) VALUES

(?,?)";

 return client.preparedQuery(query, Tuple.of(title,

isbn))

 .map(rowSet -> rowSet

.property(MySQLClient.LAST_INSERTED_ID));

 }

Use the property from the RowSet to get the inserted ID.

By now, you should be able to put together the appropriate
POST method for the BookResource endpoint, calling the save
method on the new Book instance received from the user.

See Also
For more information, visit the following website:

Vert.x: Reactive MySQL Client

15.12 Using the Reactive MongoDB Client

https://oreil.ly/UHxfh

Problem
You want to use the Reactive MongoDB client.

Solution
The MongoDB Quarkus extension also includes a reactive
MongoDB client. As was shown in Recipe 7.21, you will need
to add the quarkus-mongodb-client. You will also need to add
the following extensions to your project:

quarkus-resteasy-mutiny

To return and interact with Mutiny for endpoint returns.

quarkus-smallrye-context-propagation

This allows things like injection and transactions to work
with async code.

The rest of the integration is pretty straightforward. Here are
the versions of the service and the resource classes from the
previous MongoDB recipe, but written in a reactive way:

package org.acme.mongodb;

import java.util.List;

import java.util.Objects;

import javax.enterprise.context.ApplicationScoped;

import javax.inject.Inject;

import com.mongodb.client.model.Filters;

import io.quarkus.mongodb.reactive.ReactiveMongoClient;

import io.quarkus.mongodb.reactive.ReactiveMongoCollection;

import io.smallrye.mutiny.Uni;

import org.bson.Document;

@ApplicationScoped

public class ReactiveBookService {

 @Inject

 ReactiveMongoClient mongoClient;

 public Uni<List<Book>> list() {

 return getCollection().find()

 .map(Book::from).collectItems().asList();

 }

 public Uni<Void> add(Book b) {

 Document doc = new Document()

 .append("isbn", b.isbn)

 .append("title", b.title)

 .append("authors", b.authors);

 return getCollection().insertOne(doc);

 }

 public Uni<Book> findSingle(String isbn) {

 return Objects.requireNonNull(getCollection()

 .find(Filters.eq("isbn", isbn))

 .map(Book::from))

 .toUni();

 }

 private ReactiveMongoCollection<Document> getCollection() {

 return mongoClient.getDatabase("book")

 .getCollection("book");

 }

}

Besides imports and moving from an imperative to a reactive
approach with Mutiny, nothing has changed. The same can be
seen for the REST endpoint:

package org.acme.mongodb;

import java.util.List;

import javax.inject.Inject;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.PathParam;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import io.smallrye.mutiny.Uni;

@Path("/reactive_books")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class ReactiveBookResource {

 @Inject

 ReactiveBookService service;

 @GET

 public Uni<List<Book>> getAll() {

 return service.list();

 }

 @GET

 @Path("{isbn}")

 public Uni<Book> getSingle(@PathParam("isbn") String isbn) {

 return service.findSingle(isbn);

 }

 @POST

 public Uni<Response> add(Book b) {

 return service.add(b).onItem().ignore()

 .andSwitchTo(this::getAll)

 .map(books ->

Response.status(Response.Status.CREATED)

 .entity(books).build());

 }

}

See Also
For more information, visit the following website:

Quarkus: Context Propagation in Quarkus

15.13 Using the Reactive Neo4j Client

Problem
You want to use the reactive Neo4j client.

Solution
The Neo4j Quarkus extension has support for the reactive
driver.

You will need to use version 4 or higher of Neo4j to go fully
reactive. You will also need to add the quarkus-resteasy-

https://oreil.ly/bd9hA

mutiny extension to your project. Following up from Recipe
7.23, there isn’t much that has changed, besides using an
RxSession from the driver and using Mutiny:

package org.acme.neo4j;

import java.util.stream.Collectors;

import javax.inject.Inject;

import javax.ws.rs.Consumes;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import javax.ws.rs.core.Response;

import io.smallrye.mutiny.Multi;

import io.smallrye.mutiny.Uni;

import org.neo4j.driver.Driver;

import org.neo4j.driver.Record;

import org.neo4j.driver.Value;

import org.neo4j.driver.Values;

import org.neo4j.driver.reactive.RxResult;

import org.reactivestreams.Publisher;

@Path("/reactivebooks")

@Produces(MediaType.APPLICATION_JSON)

@Consumes(MediaType.APPLICATION_JSON)

public class ReactiveBookResource {

 @Inject

 Driver driver;

 @GET

 @Produces(MediaType.SERVER_SENT_EVENTS)

 public Publisher<Response> getAll() {

 return Multi.createFrom().resource(

 driver::rxSession,

 rxSession -> rxSession.readTransaction(tx -> {

 RxResult result = tx.run("MATCH (b:Book)

RETURN " +

 "b ORDER BY

b.title");

 return

Multi.createFrom().publisher(result.records())

 .map(Record::values)

 .map(values ->

values.stream().map(Value::asNode)

.map(Book::from)

.map(Book::toJson))

 .map(bookStream ->

 Response.ok(bookStream

.collect(Collectors.toList()))

 .build());

 }))

 .withFinalizer(rxSession -> {

 return

Uni.createFrom().publisher(rxSession.close());

 });

 }

 @POST

 public Publisher<Response> create(Book b) {

 return Multi.createFrom().resource(

 driver::rxSession,

 rxSession -> rxSession.writeTransaction(tx -> {

 String query = "CREATE " +

 "(b:Book {title: $title,

isbn: $isbn," +

 " authors: $authors}) " +

 "RETURN b";

 RxResult result = tx.run(query,

 Values.parameters("title", b.title,

 "isbn", b.isbn, "authors",

b.authors));

 return

Multi.createFrom().publisher(result.records())

 .map(record -> Response.ok(record

 .asMap()).build());

 })

).withFinalizer(rxSession -> {

 return

Uni.createFrom().publisher(rxSession.close());

 });

 }

}

Get an RxSession from the driver

Use Mutiny to interact with the ReactiveStreams Publisher

Stream the results back to the user

Close the session at the very end

Chapter 16. Additional
Quarkus Features

This chapter contains features of Quarkus that don’t fit into any
other chapter. That, of course, doesn’t make them any less
useful! In this chapter, you’ll learn about the following topics:

Quarkus’s templating solution, Qute

OpenAPI integration

Sending emails

Scheduling functions

Application data caching

16.1 Creating Templates with the Qute
Template Engine

Problem
You want to create templates and render them with specific
data.

Solution
Use the Qute template engine.

Qute is a templating engine designed specifically to meet the
Quarkus needs of minimizing the usage of reflection and
supporting the imperative and reactive style of coding.

Qute can be used as a standalone library (generating reports
to disk or generating e-mail body messages) or together with
JAX-RS to deliver HTML content.

To start using Qute with JAX-RS, add the resteasy-qute
extension:

./mvnw quarkus:add-extension -Dextensions="quarkus-resteasy-

qute"

By default, templates are stored at the
src/main/resources/templates directory and its subdirectories.

The following might be a simple template as a plain-text file:

Hello {name}!

The template is a simple sentence parametrized with the name
parameter.

To render the template with concrete data, you just need to
inject the io.quarkus.qute.Template instance and provide the
template parameters:

@Inject

io.quarkus.qute.Template hello;

@GET

@Produces(MediaType.TEXT_PLAIN)

public TemplateInstance hello() {

 final String name = "Alex";

 return hello.data("name", name);

}

Template instance defines the operations to do in a
template

By default, the field name is used to locate the template; in
this case, the template path is
src/main/resources/templates/hello.txt

Rendering is not necessary because RESTEasy integrates
with the TemplateInstance object to render the content

data method is used to set the template parameters

If you run the project, you’ll be able to see how the template is
rendered:

./mvnw compile quarkus:dev

curl http://localhost:8080/hello

Hello Alex!

Discussion
Qute supports more syntax (e.g., include and insert
fragments, injecting CDI beans directly, or variant templates)
as well as integration with other Quarkus parts like email or
schedule tasks.

See Also
Visit the following website to learn more about Qute:

Quarkus: Qute Reference Guide

16.2 Rending HTML Using Qute

Problem
You want to render HTML using Qute.

Solution
Qute will render HTML just as easily as text. All that needs to
happen is for Quarkus to find the template that matches your
injection. The actual content of the template doesn’t matter
much.

Let’s render an HTML page with more complex structures on
the template. A simple HTML report is rendered in this case.
Create a POJO class containing the parameters of the report:

package org.acme.quickstart;

import java.util.ArrayList;

import java.util.List;

import io.quarkus.qute.TemplateData;

@TemplateData

public class Movie {

https://oreil.ly/R1A1S

 public String name;

 public int year;

 public String genre;

 public String director;

 public List<String> characters = new ArrayList<>();

 public float ratings;

 public int getStars() {

 return Math.round(ratings);

 }

}

This annotation allows Quarkus to avoid using reflection to
access the object at runtime

Custom method

Discussion
The following are some details of the HTML template that are
worth explaining.

The first part to look at is an optional header that you can put in
any template to help Quarkus validate all the expressions at
compile time:

{@org.acme.quickstart.Movie movie}

<!DOCTYPE html>

<html>

Parameter declaration; this is not mandatory, but it helps
Quarkus to validate your template for type safety

Basic syntax like conditionals or loops are supported:

<div class="col-sm-12">

 <dl>

 {#if movie.year == 0}

 <dt>Year:</dt> Not Known

 {#else}

 <dt>Year:</dt> {movie.year}

 {/if}

 {#if movie.genre is 'horror'}

 <dt>Genre:</dt> Buuuh

 {#else}

 <dt>Genre:</dt> {movie.genre}

 {/if}

 <dt>Director:</dt> {movie.director ?: 'Unknown'}

 <dt>Main Characters:</dt>

 {#for character in movie.characters}

 {character}

 {#if hasNext}

 -

 {/if}

 {/for}

 <dt>Rating:</dt>

 {#for i in movie.stars}

 {/for}

 </dl>

</div>

Conditional with a numeric type

Else part

Conditional with a string type using is

Elvis operator; if the parameter is null, the default value is
used

Iterate over all characters

Show the character info

hasNext is a special attribute that checks if there are more
elements

Method call defined in the POJO; iterates the number of
times defined in the call

TIP
Inside a loop, the following implicit variables can be used:
hasNext, count, index, odd, and even.

WARNING
At this time, it is possible to use only Iterable, Map.Entry, Set,
Integer, and Stream.

16.3 Changing the Location of Qute
Templates

Problem

You want to change the location Qute uses to find templates.

Solution
You can customize the template location (still within
src/main/resources/templates and output to the templates
directory in your application deployable) by using the
io.quarkus.qute.api.ResourcePath annotation:

@ResourcePath("movies/detail.html")

Template movies;

Sets the path of the template to
src/main/resources/templates/movies/detail.html

Run the application again (or if already running, let live
reloading do its job), and then open a browser and enter this
URL: http://localhost:8080/movie.

16.4 Extending Qute Data Classes

Problem
You want to extend the functionality of a Qute data class.

Solution
A template extension method must follow the following rules:

Must be static.

http://localhost:8080/movie

Must not return void.

Must contain at least one parameter. The first parameter is
used to match the base data object.

TIP
You can use template extensions to add methods specifically for
reporting purposes when you do not have access to data object
source code.

You can implement template extension methods by using the
@io.quarkus.qute.TemplateExtension annotation. In this case,
let’s implement a method that rounds the rating number:

@TemplateExtension

static double roundStars(Movie movie, int decimals) {

 double scale = Math.pow(10, decimals);

 return Math.round(movie.ratings * scale) / scale;

}

First parameter is the POJO data object

Custom parameters can be set

From the template engine, movie has a roundStars method
with one argument, which is the number of decimals to round.

In a template you can now call the following:

({movie.roundStars(2)})

Movie class doesn’t define a roundStars method, but it is
accessible because it is a template extension

Run the application again (or if already running, let live
reloading do its job), and then open a browser and enter the
URL: http://localhost:8080/movie.

The output should be similar to the output shown in Figure 16-
1.

http://localhost:8080/movie

Figure 16-1. HTML output

16.5 Describing Endpoints with OpenAPI

Problem
You want to describe your REST API with OpenAPI.

Solution

Use the SmallRye OpenAPI extension.

Once you have a RESTful API created with Quarkus, all you
need to do is add the openapi extension:

./mvnw quarkus:add-extension -Dextensions="openapi"

Then restart the application for everything to take effect:

./mvnw compile quarkus:dev

The specification of the API is available at /openapi by default.
To change this, use the quarkus.smallrye-openapi.path
configuration:

quarkus.smallrye-openapi.path=/rest-api

You can get to the specification at
http://localhost:8080/openapi:

openapi: 3.0.1

info:

 title: Generated API

 version: "1.0"

paths:

 /task:

 get:

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

http://localhost:8080/openapi

 $ref: '#/components/schemas/SetTask'

 post:

 requestBody:

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Task'

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SetTask'

 delete:

 requestBody:

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Task'

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SetTask'

components:

 schemas:

 Task:

 type: object

 properties:

 complete:

 type: boolean

 description:

 type: string

 reminder:

 format: date-time

 type: string

 SetTask:

 type: array

 items:

 type: object

 properties:

 complete:

 type: boolean

 description:

 type: string

 reminder:

 format: date-time

 type: string

Based on the previous spec, there are GET, POST, and
DELETE endpoints. You can also see that there is a task object
required for DELETE and POST. The task requires a boolean,
string, and a date-time. This is simple and easy to understand.

Discussion
It is very easy to create an OpenAPI specification using the
SmallRye OpenAPI extension in Quarkus. This gives you an
easy-to-use and easy-to-read view into your RESTful APIs.

SmallRye OpenAPI is an implementation of the Eclipse
MicroProfile OpenAPI. The OpenAPI Specification is a
standard, language-agnostic means of describing and
discovering RESTful APIs. It is readable by both humans and

machines. An OpenAPI document is defined either as JSON or
YAML.

See Also
For more information, visit the following pages on GitHub:

Eclipse MicroProfile OpenAPI

MicroProfile OpenAPI Specification

OpenAPI Specification

In Recipe 16.6 you will learn how to use the annotations from
SmallRye OpenAPI to customize the resulting spec.

16.6 Customizing OpenAPI Spec

Problem
You want to customize the generated API spec.

Solution
Use OpenAPI annotations from the SmallRye OpenAPI
extension.

Reusing the task API created in the previous recipe, Recipe
16.5 it is easy to make use of the OpenAPI annotations to add
customizations and further documentation to your API:

https://oreil.ly/hczN4
https://oreil.ly/ufzr6
https://oreil.ly/uslyb

package org.acme.openapi;

import java.time.LocalDateTime;

import java.util.Collections;

import java.util.LinkedHashMap;

import java.util.Set;

import javax.ws.rs.Consumes;

import javax.ws.rs.DELETE;

import javax.ws.rs.GET;

import javax.ws.rs.POST;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.MediaType;

import org.eclipse.microprofile.openapi.annotations.Operation;

import

org.eclipse.microprofile.openapi.annotations.media.Content;

import

org.eclipse.microprofile.openapi.annotations.media.Schema;

import

org.eclipse.microprofile.openapi.annotations.parameters.Parame

ter;

 @Path("/task")

 @Produces(MediaType.APPLICATION_JSON)

 @Consumes(MediaType.APPLICATION_JSON)

 public class TaskResource {

 Set<Task> tasks = Collections.newSetFromMap(

 Collections.synchronizedMap(new LinkedHashMap<>()));

 public TaskResource() {

 tasks.add(new Task("First task",

 LocalDateTime.now().plusDays(3), false));

 tasks.add(new Task("Second task",

 LocalDateTime.now().plusDays(6), false));

 }

 @GET

 @Operation(summary = "Get all tasks",

 description = "Get the full list of tasks.")

 public Set<Task> list() {

 return tasks;

 }

 @POST

 @Operation(summary = "Create a new task")

 public Set<Task> add(

 @Parameter(required = true, content =

 @Content(schema = @Schema(implementation =

Task.class))) Task task) {

 tasks.add(task);

 return tasks;

 }

 @DELETE

 @Operation(summary = "Remove the specified task")

 public Set<Task> delete(

 @Parameter(required = true,

 content = @Content(schema = @Schema(implementation =

Task.class)))

 Task task) {

 tasks.removeIf(existingTask -> existingTask.equals(task));

 return tasks;

 }

 }

package org.acme.openapi;

import java.time.LocalDateTime;

import java.util.Objects;

import javax.json.bind.annotation.JsonbDateFormat;

import

org.eclipse.microprofile.openapi.annotations.enums.SchemaType;

import

org.eclipse.microprofile.openapi.annotations.media.Schema;

public class Task {

 public String description;

 @Schema(description = "Flag indicating the task is

complete")

 public Boolean complete;

 @JsonbDateFormat("yyyy-MM-dd'T'HH:mm")

 @Schema(example = "2019-12-25T06:30", type =

SchemaType.STRING,

 implementation = LocalDateTime.class,

 pattern = "yyyy-MM-dd'T'HH:mm",

 description = "Date and time for the reminder.")

 public LocalDateTime reminder;

 public Task() {

 }

 public Task(String description,

 LocalDateTime reminder,

 Boolean complete) {

 this.description = description;

 this.reminder = reminder;

 this.complete = complete;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return

false;

 Task task = (Task) o;

 return Objects.equals(description, task.description) &&

 Objects.equals(reminder, task.reminder) &&

 Objects.equals(complete, task.complete);

 }

 @Override

 public int hashCode() {

 return Objects.hash(description, reminder, complete);

 }

}

The previous code will create the following spec:

openapi: 3.0.1

info:

 title: Generated API

 version: "1.0"

paths:

 /task:

 get:

 summary: Get all tasks

 description: Get the full list of tasks.

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SetTask'

 post:

 summary: Create a new task

 requestBody:

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Task'

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SetTask'

 delete:

 summary: Remove the specified task

 requestBody:

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/Task'

 responses:

 200:

 description: OK

 content:

 application/json:

 schema:

 $ref: '#/components/schemas/SetTask'

components:

 schemas:

 Task:

 type: object

 properties:

 complete:

 description: Flag indicating the task is complete

 type: boolean

 description:

 type: string

 reminder:

 format: date-time

 description: Date and time for the reminder.

 pattern: yyyy-MM-dd'T'HH:mm

 type: string

 example: 2019-12-25T06:30

 SetTask:

 type: array

 items:

 type: object

 properties:

 complete:

 description: Flag indicating the task is complete

 type: boolean

 description:

 type: string

 reminder:

 format: date-time

 description: Date and time for the reminder.

 pattern: yyyy-MM-dd'T'HH:mm

 type: string

 example: 2019-12-25T06:30

Based on the previous spec, there are GET, POST, and
DELETE endpoints. You can also see that there is a task object
required for DELETE and POST. The task requires a boolean,
string, and a date-time. This is simple and easy to understand.

Discussion
Various OpenAPI annotations are used to provide additional
information about the API, including descriptions, summaries,

and examples. More information can be found about these
annotations in the spec and at the links in the “See Also”
section.

Further customization of the generated OpenAPI specification
is very easy with Quarkus. For ultimate customization, Quarkus
supports serving a static file OpenAPI spec. To do this, you
need to place your valid OpenAPI spec file at META-
INF/openapi.yml or at META-INF/openapi.json. Quarkus will
then combine the two and serve a combined static and
dynamic spec. To disable the dynamic spec generation, just
use the mp.openapi.scan.disable=true configuration in the
applications.properties file.

See Also
For more information, visit the following pages on GitHub:

Eclipse MicroProfile OpenAPI Specification

Eclipse MicroProfile OpenAPI: Annotation Samples

Swagger 2.X Annotations: OpenAPI Annotations

16.7 Sending Email Synchronously

Problem
You want to synchronously send an email.

Solution

https://oreil.ly/i47k_
https://oreil.ly/ITXQz
https://oreil.ly/ol6nb

Make use of the Quarkus mailer extension.

Quarkus makes it very intuitive to send emails in both plain text
and HTML, and to add attachments. There is also an easy-to-
use method for testing whether emails have been properly sent
without having to setup your own relay. Add the Email Quarkus
extension to an existing project:

mvn quarkus:add-extensions -Dextensions="mailer"

Quarkus uses the Vert.x Mail client, though there are two
wrappers for ease of use:

@Inject

Mailer mailer;

@Inject

ReactiveMailer reactiveMailer;

The Mailer class uses standard blocking and synchronous API
calls, and the ReactiveMailer, as expected, uses nonblocking
and asynchronous API calls. The ReactiveMailer will be
discussed in the following recipe; both classes offer the same
features. To send an email, simply use the withText or
withHtml methods. You will need to supply a recipient, a
subject, and a body. If you need to add things such as CC,
BCC, and attachments, you can do so on the actual Mail
instance.

You will also need to configure the SMTP provider (in this case,
we’re using Gmail TLS):

quarkus.mailer.from=quarkus-test@gmail.com

quarkus.mailer.host=smtp.gmail.com

quarkus.mailer.port=587

quarkus.mailer.start-tls=REQUIRED

quarkus.mailer.username=YOUREMAIL@gmail.com

quarkus.mailer.password=YOURGENERATEDAPPLICATIONPASSWORD

These can also be set with system properties and/or
environment properties

Testing of the email component is done easily by making use of
the MockMailbox component. It is a simple component
consisting of three methods:

getMessagesSentTo

clear

getTotalMessagesSent

The following test demonstrates all three of these methods:

package org.acme.email;

import java.util.List;

import javax.inject.Inject;

import io.quarkus.mailer.Mail;

import io.quarkus.mailer.Mailer;

import io.quarkus.mailer.MockMailbox;

import io.quarkus.test.junit.QuarkusTest;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.assertj.core.api.Assertions.assertThat;

@QuarkusTest

public class MailerTest {

 @Inject

 Mailer mailer;

 @Inject

 MockMailbox mbox;

 @BeforeEach

 void clearMBox() {

 mbox.clear();

 }

 @Test

 public void assertBasicTextEmailSent() {

 final String mailTo = "test@example.org";

 final String testingSubject = "Testing email";

 final String testingBody = "Hello World!";

 mailer.send(Mail.withText(mailTo,

 testingSubject,

 testingBody));

 assertThat(mbox.getTotalMessagesSent()).isEqualTo(1);

 List<Mail> emails = mbox.getMessagesSentTo(mailTo);

 assertThat(emails).hasSize(1);

 Mail email = emails.get(0);

assertThat(email.getSubject()).isEqualTo(testingSubject);

 assertThat(email.getText()).isEqualTo(testingBody);

 }

}

We clear out the mailbox before the start of each test

Use getTotalMessagesSent to verify how many messages
Quarkus sent out

Verify the messages sent to a particular address

Discussion
Both regular attachments and inline attachments are
supported. Here is a simple example of an inline attachment:

 @Test

 void attachmentTest() throws Exception {

 final String mailTo = "test@example.org";

 final String testingSubject = "email with Attachment";

 final String html = "E-mail by:" + "\n"

+

 "<p></p>";

 sendEmail(mailTo, testingSubject, html);

 Mail email = mbox.getMessagesSentTo(mailTo).get(0);

 List<Attachment> attachments = email.getAttachments();

 assertThat(email.getHtml()).isEqualTo(html);

 assertThat(attachments).hasSize(1);

 assertThat(attachments.get(0).getFile())

 .isEqualTo(new File(getAttachmentURI()));

 }

 private void sendEmail(String to, String subject, String

body)

 throws URISyntaxException {

 final File logo = new File(getAttachmentURI());

 Mail email = Mail.withHtml(to, subject, body)

 .addInlineAttachment("quarkus-logo.svg",

 logo,

 "image/svg+xml",

 "<logo@quarkus.io>");

 mailer.send(email);

 }

Be sure to reference the inline attachment by the content-
id

The content-id of the attachment

See Also
For more information, see the following:

Recipe 16.8

Vert.x Mail client (SMTP client implementation)

16.8 Sending Email Reactively

Problem
You want to send an email in a nonblocking, reactive fashion.

https://oreil.ly/aqGZU

Solution
Make use of the Quarkus mailer extension.

The previous section details the basics. To do this reactively,
simply inject the ReactiveMailer component and use it instead.
The methods are the same; they simply return reactive
counterparts instead of synchronous ones:

package org.acme.email;

import java.util.List;

import java.util.concurrent.CountDownLatch;

import javax.inject.Inject;

import io.quarkus.mailer.Mail;

import io.quarkus.mailer.MockMailbox;

import io.quarkus.mailer.reactive.ReactiveMailer;

import io.quarkus.test.junit.QuarkusTest;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import static org.assertj.core.api.Assertions.assertThat;

@QuarkusTest

public class ReactiveMailerTest {

 @Inject

 ReactiveMailer reactiveMailer;

 @Inject

 MockMailbox mbox;

 @BeforeEach

 void clearMbox() {

 mbox.clear();

 }

 @Test

 public void testReactiveEmail() throws Exception {

 final String mailTo = "test@example.org";

 final String testingSubject = "Testing email";

 final String testingBody = "Hello World!";

 final CountDownLatch latch = new CountDownLatch(1);

 reactiveMailer.send(Mail.withText(mailTo,

 testingSubject,

testingBody)).subscribeAsCompletionStage().join();

 assertThat(mbox.getTotalMessagesSent()).isEqualTo(1);

 List<Mail> emails = mbox.getMessagesSentTo(mailTo);

 assertThat(emails).hasSize(1);

 Mail email = emails.get(0);

assertThat(email.getSubject()).isEqualTo(testingSubject);

 assertThat(email.getText()).isEqualTo(testingBody);

 }

}

This test is exactly the same as the one in the previous section;
the only difference is turning the CompletionStage to a
CompletableFuture and calling join to get back to an
imperative style for the test.

Discussion

Qute integrates with Mailer extension so the body content of
the message is rendered from a template.

You need only the qute extension this time because no
RESTEasy integration is required:

mvn quarkus:add-extensions -Dextensions="quarkus-qute"

The main class is the io.quarkus.mailer.MailTemplate, and it
is used in the same way as the io.quarkus.qute.Template, but
the first one contains methods that are specific to mail logic:

@ResourcePath("mail/welcome.txt")

MailTemplate mailTemplate;

CompletionStage<Void> c = hello.to("to@acme.org")

 .subject("Hello from Qute template")

 .data("name", "Alex")

 .send();

Template placed at
src/main/resources/templates/mail/welcome.txt

Sends the email rendering the body from the template file
with provided data

The reactive way of sending emails follows the exact same
method names and usage, instead using reactive classes. This
makes it very easy to switch and understand.

See Also

For more information, see the following:

Recipe 16.7

Recipe 16.1

16.9 Creating Scheduled Jobs

Problem
You want some tasks to run on a schedule.

Solution
Scheduling tasks in Quarkus is fast and easy yet provides a
high level of control and customization. Quarkus has a
scheduler extension that integrates with Quartz.

Creating scheduled jobs is very easy: simply add the
@io.quarkus.scheduler.Scheduled annotation to an
application-scoped bean. There are two attributes available for
specifying the schedule for the task: cron and every.

The cron attribute uses the Quartz cron syntax. If you are not
familiar with Quartz, please note that there are some
differences to standard cron syntax. You can learn more about
this at the link in “See Also”.

The every attribute is probably the easiest to use, though it has
some nuances. every parses the string using Duration#parse.

If the expression starts with a digit, the PT prefix is
automatically added.

Both every and cron will do a config look up for an expression
started with { and ended with }.

There is a delay attribute that takes a long, and there is a
delayUnit attribute that takes a TimeUnit. Used together, these
will specify a delay, after which the trigger is started. By default,
the trigger starts when it is registered.

Here is a demonstration of a very simple usage:

package org.acme.scheduling;

import java.util.concurrent.atomic.AtomicInteger;

import javax.enterprise.context.ApplicationScoped;

import io.quarkus.scheduler.Scheduled;

import io.quarkus.scheduler.ScheduledExecution;

@ApplicationScoped

public class Scheduler {

 private AtomicInteger count = new AtomicInteger();

 int get() {

 return count.get();

 }

 @Scheduled(every = "5s")

 void fiveSeconds(ScheduledExecution execution) {

 count.incrementAndGet();

 System.out.println("Running counter: 'fiveSeconds'. Next

fire: "

 + execution.getTrigger().getNextFireTime());

 }

}

Discussion
Qute can be used to periodically generate reports.

You need only the qute extension because no RESTEasy
integration is required:

mvn quarkus:add-extensions -Dextensions="quarkus-qute"

Now the render() method must be called manually to get the
result:

@ResourcePath("reports/report_01.html")

Template report;

@Scheduled(cron="0 30 * * * ?")

void generate() {

 final String reportContent = report

 .data("sales", listOfSales)

 .data("now", java.time.LocalDateTime.now())

 .render();

 Files.write(reportOuput, reportContent.getBytes());

}

See Also
For more information, see the following:

Quartz: Cron Trigger Tutorial

Recipe 16.1

16.10 Using Application Data Caching

Problem
You want to avoid waiting time when methods take a long time
to respond.

Solution
Use application data caching.

There are some cases in which a method might take more time
than expected to respond, maybe because it is making a
request to an external system or because the logic being
executed takes a long time to execute.

One way to improve this situation is by using application data
caches. The idea is to save the result of a method call so that
further calls with the same inputs to that method return the
previously calculated result.

Quarkus integrates with Caffeine as a caching provider.

To start using application data caching, add the cache
extension:

./mvnw quarkus:add-extension -Dextensions="cache"

https://oreil.ly/XdQ7r
https://oreil.ly/1NjlX

Here is a method that simulates a long execution time:

@GET

@Produces(MediaType.TEXT_PLAIN)

public String hello() {

 long initial = System.currentTimeMillis();

 String msg = greetingProducer.getMessage();

 long end = System.currentTimeMillis();

 return msg + " " + (end - initial) + "ms";

}

This logic has a random sleep time

If you run the project, you’ll be able to see this delay:

./mvnw compile quarkus:dev

curl http://localhost:8080/hello

Hello World 4009ms

curl http://localhost:8080/hello

Hello World 3003ms

Let’s cache the getMessage() method call by using the
@io.quarkus.cache.CacheResult annotation:

@CacheResult(cacheName = "greeting-cache")

public String getMessage() {

 try {

 TimeUnit.SECONDS.sleep(random.nextInt(4) + 1);

 return "Hello World";

 } catch (InterruptedException e) {

 throw new IllegalStateException(e);

 }

}

Creates a new cache for this method call

Run the application again (or if it is already running, let live
reloading do its job) and repeat the calls to
http://localhost:8080/hello:

curl http://localhost:8080/hello

Hello World 2004ms

curl http://localhost:8080/hello

Hello World 0ms

The second time the method is called, the method is never
invoked but is returned from the cache. Quarkus computes for
every call a cache key and checks for a hit in the cache
system.

To calculate the cache key, Quarkus uses all argument values
by default. If there are no argument methods, the key is
derived from the cache name.

Discussion
The @io.quarkus.cache.CacheKey annotation can be used in
method arguments to specify exactly which arguments must be
used for cache key calculation—for example the public
String myMethod(@CacheKey String keyElement1, String

notPartOfTheKey).

http://localhost:8080/hello

IMPORTANT
The @io.quarkus.cache.CacheKey annotation cannot be used on
a method returning void.

The @io.quarkus.cache.CacheInvalidate annotation can be
used to invalidate an entry from the cache. When a method
annotated with @CacheInvalidate is invoked, the cache key is
calculated and used to remove an existing entry from the
cache.

The @io.quarkus.cache.CacheInvalidateAll annotation is
used to invalidate all cache entries.

Each of the data caching options can be configured individually
in the application.properties file:

quarkus.cache.caffeine."greeting-cache".initial-capacity=10

quarkus.cache.caffeine."greeting-cache".expire-after-write=5S

Minimum total size for the internal data structures of the
greeting-cache cache

Sets the expiration time, counting after the write operation
of greeting-cache cache

Run the application again (or if it is already running, let live
reloading do its job) and repeat the calls to
http://localhost:8080/hello:

http://localhost:8080/hello

curl http://localhost:8080/hello

Hello World 2004ms

curl http://localhost:8080/hello

Hello World 0ms

// Wait 5 seconds

curl http://localhost:8080/hello

Hello World 1011ms

TIP
The quarkus.cache.caffeine."greeting-cache".expire-after-
access property can be used to set the expiration time of the
cache to an amount of time after the most recent read or write of
the cache value.

Appendix A. Minikube

All the recipes in the book that involve a Kubernetes cluster
have been tested in minikube; however, they should also work
in any other Kubernetes cluster.

Minikube is a tool that makes it easy to run Kubernetes locally
instead of in a remote Kubernetes cluster.

In this book, minikube 1.7.3 and Kubernetes 1.17.3 has been
used; but again, any other version should be fine because no
advanced techniques are used. Minikube requires a hypervisor
to be installed. We recommend you use the VirtualBox
hypervisor. In our experience, this is the most portable and
stable way to run minikube.

How you install minikube, VirtualBox, and kubectl might
depend on the system you are running, so we are providing the
links where you can find the instructions to install each of these
components:

VirtualBox

Minikube

kubectl

https://oreil.ly/KU2vk
https://oreil.ly/gth-J
https://oreil.ly/FpZzN

After installing all the software, you can start minikube by
opening a terminal window and running the following:

minikube start --vm-driver=virtualbox --memory='8192mb' \

 --kubernetes-version='v1.17.3'

�䠠[serverless] minikube v1.7.3 on Darwin 10.15.3

✨ Using the virtualbox driver based on user configuration

⌛ Reconfiguring existing host ...

�䠠Starting existing virtualbox VM for "default" ...

�㠠Preparing Kubernetes v1.17.3 on Docker 19.03.6 ...

��Launching Kubernetes ...
��Enabling addons: dashboard, default-storageclass, storage-

provisioner

�䠠Done! kubectl is now configured to use "default"

Then, configure the docker CLI to use the minikube docker
host:

eval $(minikube docker-env)

Then any operation executed with docker, like docker build or
docker run, happens within the minikube cluster.

Appendix B. Keycloak

Keycloak is an open source identity and access management
system. Configuring and deploying Keycloak in production is
outside the scope of this book. In the following example, a
realm file is provided with all users, roles, configurations, and
so on, and needs to be imported into a running Keycloak
server.

To simplify the installation of Keycloak, the Keycloak Docker
container is used:

docker run --name keycloak -e KEYCLOAK_USER=admin -e

KEYCLOAK_PASSWORD=admin \

 -p 8180:8080 jboss/keycloak:8.0.1

Then open a browser and enter the following URL:
http://localhost:8180.

Click Administration Console, as shown in Figure B-1.

http://localhost:8180/

Figure B-1. Keycloak home page

Next, you will be presented with a login option similar to the
one you see in Figure B-2. Use login/password admin as the
credentials.

Figure B-2. Keycloak login page

In the main page, toggle the Master button to reveal the Add
realm button, and click that so that your screen looks like the

one shown in Figure B-3.

Figure B-3. Keycloak Add realm button

Finally, you should see a screen like the one shown in
Figure B-4. You will need to import a Keycloak file. The file we
used is in the code for the book at https://oreil.ly/quarkus-
cookbook-code.

https://oreil.ly/quarkus-cookbook-code

Figure B-4. Result of importing realm

Appendix C. Knative

In Chapter 10, you need to have access to a Kubernetes
cluster—it can be a minikube installation or any other kind. But
you also need Knative Serving installed to run the Knative
recipe. For this book, Kourier is used as an Ingress for Knative.

In this book, minikube 1.7.3, Kubernetes 1.17.3, Knative
0.13.0, and Kourier 0.3.12 were used.

To install Knative Serving, you need to run the following
commands:

kubectl apply -f \

https://github.com/knative/serving/releases/download/v0.13.0/ser

ving-core.yaml

kubectl apply -f \

https://raw.githubusercontent.com/3scale/kourier/v0.3.12/deploy/

\

 kourier-knative.yaml

Configure Knative Serving to use the proper ingress.class:

kubectl patch configmap/config-network \

 -n knative-serving \

 --type merge \

 -p '{"data":

{"clusteringress.class":"kourier.ingress.networking.knative.dev"

,

"ingress.class":"kourier.ingress.networking.knative.dev"}}'

Set your desired domain; in this case, 127.0.0.1 is used
because it runs in minikube:

kubectl patch configmap/config-domain \

 -n knative-serving \

 --type merge \

 -p '{"data":{"127.0.0.1.nip.io":""}}'

Now, you are ready start deploying Knative services.

Index

SYMBOLS

400 Bad Request, Discussion

500 Internal Server Error, Discussion

@Bulkhead annotation, Discussion, Discussion

@ConfigProperty annotation, Solution, Solution, Solution,
Solution, Solution

@Context annotation, Solution

@CookieParam, Solution

@Counted annotation, Counter

@DELETE annotation, Solution, Solution

@Fallback annotation, Solution, Discussion

@FlywayDataSource annotation, Discussion

@FormParam, Solution

@Gauge annotation, Gauge

@GET annotation, Solution, Solution

@HEAD annotation, Solution

@Incoming annotation, @Incoming annotation

@Inject annotation, Discussion

@InjectMock, Discussion

@io.quarkus.cache.CacheKey annotation, Discussion

@io.quarkus.qute.TemplateExtension annotation, Solution

@javax.inject.Named annotation, Solution

@javax.transaction.Transactional annotation, Solution

@MatrixParam, Solution

@Metered annotation, Metered

@MongoEntity annotation, Solution

@Named annotation, Discussion

@OPTIONS annotation, Solution

@Outgoing annotation, Solution

@PATCH annotation, Solution

@Path annotation, Solution

@POST annotation, Solution, Solution

@PostConstruct annotation, Discussion

@PreDestroy annotation, Discussion

@Priority annotation, Discussion

@PUT annotation, Solution, Solution

@QuarkusTest annotation, Solution, Solution

@Retention(RUNTIME), Solution

@Retry annotation, Solution, Discussion

@Route, Solution

@Timed annotation, Timed

@Timeout annotation, Solution, Discussion

@Transactional annotation, Solution, Discussion, Solution

@TransactionConfiguration annotation, Solution

@XmlAttribute, Discussion

@XmlElement, Discussion

@XmlRootElement, Discussion

@XmlTransient, Discussion

@XmlType, Discussion

A

Add Extension command, Discussion

Agroal extension, Solution

Amazon DynamoDB, Problem-Discussion

Amazon EC2, Solution

AMQP (Advanced Message Queuing Protocol), Problem

annotations, Problem, Problem

(see also specific annotations)

AOP (aspect-oriented programming), Discussion

Apache Commons Logging, Solution

Apache Derby, Discussion, Solution

Apache Kafka

extension, Discussion

marshalling POJOs into/out of, Problem

reacting to messages in, Problem

sending messages to, Problem

Apache Kafka Streams API, Problem-See Also

Apache Maven, Problem, Discussion

application logs, Problem

application.properties file, Solution

applications

categories for, Discussion

configuring with custom properties, Problem-Discussion

data caching, Problem-Discussion

executing lifecycle events, Problem

approle authentication method, Solution

Artemis extension, Discussion

AspectJ, Discussion

AssertJ, Solution

async HTTP endpoints, creating, Problem

authentication and authorization, Authentication and
Authorization-Solution

about, Authentication and Authorization

protecting web resources with OpenID Connect, Problem

service-to-service, Solution

with Elytron Properties File config, Problem-Discussion

with Elytron Security JDBC config, Problem-Discussion

with MicroProfile JWT, Problem-See Also

with OpenID Connect, Problem-See Also

authorization (see authentication and authorization)

automatic retries, implementing, Problem

AWS SDK (Apache Amazon Web Service Software
Development Kit), Solution

B

baggage items, Solution

base category, Discussion

BASIC method, Authentication

bcrypt, Discussion

Bean Validation

about, Solution, Solution

annotations, Discussion

extension, Solution, Solution

specification, Solution

begin() method, Solution

behavioral tests, writing, Problem-See Also

binding HTTP methods, Problem

Book class, Discussion

Box, Don

Essential.NET, Vol. 1: The Common Language Runtime, See
Also

BSON Codec, Discussion

built-in converter, Discussion

built-in profiles, Discuss

bulkhead pattern, avoiding overloads with, Problem

C

cascading failure, Discussion

CDI (Contexts and Dependency Injection), Solution, Solution,
Solution, Solution

CDI bean, Solution

certificate validation, Solution

circuit breaker pattern, avoiding unnecessary calls with,
Problem-See Also

claims, Solution

ClaimValue interface, Solution

class location, Discussion

client errors, Discussion

client interactions, testing, Problem

ClientRequestFilter, Discussion

ClientResponseFilter, Discussion

clusters, interacting with Kubernetes, Problem-See Also

command mode, running in, Problem

commit() method, Solution

commons-logging, Solution

computer class, Solution

config directory, Solution

Config extension, configuring application from Kubernetes with,
Problem

config/application.properties, Solution

ConfigMaps, Solution

ConfigSource, Discussion

configuration, Configuration-Discussion

accessing properties programmatically, Problem

adding application logs, Problem

advanced logging, Problem-See Also

annotations, Problem

application with custom properties, Problem-Discussion

applications from Kubernetes, Problem, Problem

changing logger configuration, Problem

creating custom converters, Problem-Discussion

creating custom sources, Problem

grouping values, Problem

OpenTracing, Discussion

overwriting values externally, Problem

profiles, Problem

validating values, Problem

with custom profiles, Problem

container images, Problem-See Also, Problem

container-image extension, Discussion

Containers in Pods, Quarkus Overview

cookie values, Solution

CORS (cross-origin resource sharing), Problem

count() method, Problem

counter, Counter

CRUD, Problem, Problem

cryptography-as-a-service, Problem-See Also

current directory, Discussion

custom converters, Discussion, Problem-Discussion

custom profiles, configuring with, Problem

custom qualifiers, Problem

custom resource, Solution

custom sources, Problem

custom validations, Problem

D

DAOs (data access objects), Problem

data, Problem-Discussion, Problem

database passwords, generating as secrets, Problem-See Also

Datasource extension, Discussion

datasources

adding health checks, Problem

defining, Problem

persisting with Panache, Problem

using multiple, Problem

dependencies, injecting, Problem

deploying

container images, Problem

in basic workflow, A Basic Quarkus Workflow

serverless workloads with Knative, Problem-Discussion

services on Kubernetes, Problem

services on OpenShift, Problem

Vault, Discussion

Derby (Apache), Discussion, Solution

deserializer, Solution

dev profile, Discuss

developer class, Solution, Solution

developer-friendliness, of Quarkus, Developer-Friendly

development mode, live reloading with, Problem

DI (dependency injection), Discussion

disabling

fault tolerance, Problem

tracing, Solution

distributed tracing, Problem-See Also

Docker, Solution, Discussion

Docker containers

about, Discussion

building for JAR files, Problem

building for native files, Problem

Dockerfiles, Integration with Kubernetes

double quotes, Discussion

E

Eclipse MicroProfile Configuration, Solution, Discussion,
Solution, Solution, Solution, Solution

Eclipse MicroProfile OpenAPI, See Also, See Also

Eclipse MicroProfile Reactive Messaging, Solution, Solution,
Solution, Solution

EFK (Elasticsearch, Fluentf, Kibana), Solution

Elasticsearch, Solution

ELK (Elasticsearch, Logstash, Kibana), Solution

Elytron JDBC, Authentication

Elytron properties file, Authentication, Problem-Discussion

Elytron Security JDBC, Problem-Discussion

email, Problem-Discussion

encryption key, Form-based authentication

ending HTML using Qute, Problem

endpoints

creating, Solution

creating REST API, Problem, Solution

describing with OpenAPI, Problem

Enterprise JavaBeans, Discussion

entities

counting using Panache count() method, Problem

finding instances with Panache listAll() method, Problem

finding with Panache find() and list() methods, Problem

finding with Panache findByID() method, Problem

paginating through using Panache page9) method, Problem

testing Panache, Problem

using from different JAR files, Problem

EntityManager, Discussion

escape character, Solution

Essential.NET, Vol. 1: The Common Language Runtime (Box
and Sells), See Also

event handling, Handling events/messages

event loops, Discussion

executeOrder method, Solution

extensions, See Also, Problem

(see also specific extensions)

extracting request parameters, Problem

F

factories, Problem

factory class, Discussion

fault tolerance, Fault Tolerance-Solution

about, Fault Tolerance

avoiding overloads with bulkhead pattern, Problem

avoiding unnecessary calls with circuit breaker pattern,
Problem-See Also

disabling, Problem

implementing automatic retries, Problem

implementing timeouts, Problem

features, additional, Additional Quarkus Features-Discussion

find() method, Problem, Discussion, Discussion

findByID() method, Problem

firstPage() method, Discussion

500 Internal Server Error, Discussion

Fluentd, Solution

Flyway, Problem

FORM method, Authentication

form parameters, Solution

400 Bad Request, Discussion

G

gauge, Gauge

GELF (Graylog extended log format), Solution

GET method, Solution, Solution

getStatus() method, Solution

GraalVM, Solution, Solution

Gradle

creating runnable JAR files with, Discussion

running development mode in, Discussion

scaffolding projects with, Problem

H

H2 Database Engine, Discussion, Solution

hasNextPage() method, Discussion

hasPreviousPage() method, Discussion

headers, Solution, Problem-Discussion

health checks

automatic, Problem

creating custom, Problem

generating resources with, Problem

Hibernate, Discussion, Problem

histogram, Histogram

HMACs (hash-based message authentication codes),
Discussion

HQL (Hibernate Query Language), Solution

HTML, rending using Qute, Problem

HTTP 401 Unauthorized error, Solution

HTTP methods, binding, Problem

HTTP requests, intercepting, Problem-See Also

I

I/O thread, Discussion

in-memory config source, Solution

informational responses, Discussion

injecting dependencies, Problem

input values, validating, Problem-See Also

intercepting HTTP requests, Problem-See Also

interceptors, Problem

isCallerInRole() method, Solution

iteration count, Discussion

J

Jackson, Discussion, Solution, Solution

Jackson-Extension, Discussion

Jaeger, Solution

JAR files

building Docker containers for, Problem

creating runnable, Problem

using entities from different, Problem

Java 11, Solution

Java EE Security annotations, Authorization

javax packages, Solution

javax.servlet class, Discussion

JAX-RS Client, Solution, Solution, Problem-See Also, Solution

JBoss, Solution

JDBC driver, Solution

JDK java.util.logging, Solution

Jib, Solution, See Also

JPA, Problem, Authentication

JPQL (Java Persistence Query Language), Solution

JSON, Solution, Problem-See Also

JSON-B (Jakarta JSON Binding)

deserializer in, Solution

extension, Solution

website, See Also

JUnit 5, Solution, See Also, Solution

JVM mode, Solution, Solution, Solution

JWKS (JSON Web Key Set), Solution

JWT (JSON Web Token), Solution, See Also

K

Kafka (see Apache Kafka)

Kafka-Streams extension, Discussion

kafkacat utility, Discussion

Keycloak, Discussion, Authentication, Solution, See Also,
Keycloak

Keycloak Authorization, Authentication

keyStore, Solution, Solution

keyStorePassword, Solution

keyStoreType, Solution

keytool, See Also

Kibana, Solution

Kiczales, Gregor, Discussion

Knative, Problem-Discussion, Knative

Kubernetes, Integrating with Kubernetes-See Also

about, Quarkus Overview, Integrating with Kubernetes

authentication method, Solution

building container images, Problem-See Also, Problem

configuring applications from, Problem, Problem

deploying container images, Problem

deploying serverless workloads with Knative, Problem-
Discussion

deploying services on, Problem

deploying services on OpenShift, Problem

extension, Discussion

generating resources, Problem-See Also

generating resources with health checks, Problem

implementing Kubernetes Operator, Problem-See Also

integration with, Integration with Kubernetes

interacting with clusters programmatically, Problem-See Also

managing serverless workloads with Knative, Problem-
Discussion

pushing container images, Problem-See Also

testing client interactions, Problem

Kubernetes Client, Solution

Kubernetes Operator, Discussion, Problem-See Also

Kubernetes secrets (see secrets)

kubernetes-client extension, Solution

L

lastPage() method, Discussion

launch dev mode, in basic workflow, A Basic Quarkus
Workflow

list() method, Problem, Solution

listAll() method, Problem

live reloading, with development mode, Problem

liveness health check, Discussion, Discussion

location, changing for Qute templates, Problem

LOCK verb, Solution

logging

advanced, Problem-See Also

changing configuration, Problem

libraries for, Solution

logging-gelf extension, Solution

logs, Solution

Logstash, Solution

M

Mailer class, Solution

main method, Solution

MariaDB, Discussion, Discussion

marshalling

JSON, Problem-See Also

POJOs into/out of Kafka, Problem

XML, Problem

matrix parameters, Solution

Maven, Problem, Discussion

MD5, Solution

memory, Memory and First Response Time

MessageBodyReader, Discussion

MessageBodyWriter, Discussion

messaging

handling, Handling events/messages

sending, Sending events/messages, Problem

using to decouple components, Problem

meta-annotation, Solution, Problem

metered metric, Metered

metrics, Problem, Problem-Discussion

MicroProfile Config specification, Discussion, Solution

MicroProfile Fault Tolerance (see fault tolerance)

MicroProfile Health, See Also, Solution, Solution

MicroProfile JWT, Problem-See Also

MicroProfile Metrics specification, Solution, Solution

MicroProfile OpenTracing specification, Solution, Solution

MicroProfile REST Client, Problem-See Also, Solution

Microsoft SQL Server, Discussion

Minikube, Minikube

mock objects, Problem

Mockito, Problem

MongoDB

about, Solution

extension, Discussion

using Panache with, Problem

working with, Problem-Discussion

mongodb-panache extension, Solution

MQTT (MQ Telemetry Transport), Problem

multivalue properties, Solution

MySQL, Discussion

N

named qualifiers, Problem

native executable files, Problem-Discussion, Problem

native files, building Docker containers for, Problem

native image mode, Solution

NativeImageTest annotation, Solution

Neo4j, Problem-See Also, Discussion

Netty, Discussion

nextPage() method, Discussion

O

object life cycle events, executing, Problem

objects, validating programmatically, Problem

observability, Observability-Discussion

about, Observability

creating custom health checks, Problem

creating metrics, Problem-Discussion

custom distributed tracing, Problem

distributed tracing, Problem-See Also

exposing metrics, Problem

using automatic health checks, Problem

OIDC, Authentication

OpenAPI

annotations, Discussion

customizing, Problem-See Also

describing endpoints with, Problem

OpenID Connect

authentication and authorization with, Problem-See Also

protecting web resources with, Problem

server, Authentication

website, See Also

OpenShift, Problem

OpenTracing, Solution, Discussion

ORM, Discussion

output values, validating, Problem-See Also

overloads, avoiding with bulkhead pattern, Problem

overwriting configuration values externally, Problem

P

package, in basic workflow, A Basic Quarkus Workflow

packaging, Packaging Quarkus Applications-Discussion

building Docker containers for JAR files, Problem

building Docker containers for native files, Problem

building native executable files, Problem

building native SSL applications, Problem

building runnable JAR files, Problem

building uber-JAR, Problem

dockerizing native SSL applications, Problem

running in command mode, Problem

page() method, Problem

pageCount() method, Discussion

Panache

about, Discussion

counting entities using Panache count() method, Problem

finding entities with find() and list() methods, Problem

finding entities with findByID() method, Problem

finding entity instances with listAll() method, Problem

paginating through using page() method, Problem

persisting data with, Problem

stream() method, Problem

using with MongoDB, Problem

PanacheEntityBase class, Solution, Solution, See Also

PanacheMongoEntity, Solution

PanacheRepository, Solution

PanacheRepositoryBase, Solution

paramater aggregator, Discussion

ParamConverter, Discussion

Parameters class, Solution

percentage values, transforming, Solution

persist() method, Solution, Solution

persistAndFlush() method, Discussion

persistence, Persistence-Discussion

about, Persistence

adding datasource health checks, Problem

defining datasources, Problem

defining transaction boundaries declaratively, Problem

finding entities with Panache find() and list() methods,
Problem

finding entities with Panache findByID() method, Problem

finding entity instances with Panache listAll() method,
Problem

modifying transaction timeouts, Problem

obtaining entity counts using Panache count() method,
Problem

of data with Panache, Problem

paginating through entity lists using Panache page() method,
Problem

programmatic transaction control, Problem

repository pattern, Problem

setting transaction context, Problem

setting transaction timeouts, Problem

setting up with persistence.xml, Problem

setting up without persistence.xml, Problem

streaming results via Panache stream() method, Problem

testing Panache entities, Problem

using Amazon DynamoDB, Problem-Discussion

using DAOs, Problem

using entities from different JAR files, Problem

using Flyway at startup, Problem

using Flyway programmatically, Problem

using multiple datasources, Problem

using Neo4j with Quarkus, Problem-See Also

using Panache with MongoDB, Problem

working with MongoDB, Problem-Discussion

persistence.xml, Problem

pod, Solution

POJOs, Problem

POST method, Solution

PostgreSQL, Discussion

preparedQuery method, Discussion

previousPage() method, Discussion

prod profile, Discuss

prod-kubernetes profile, Discussion

producers, Solution

profiles, configuring, Problem

programmatic transaction control, Problem

programming model, Programming Model-Discussion

about, Programming Model

configuring annotations, Problem

creating custom validations, Problem

creating factories, Problem

creating interceptors, Problem

creating mock objects, Problem

creating mock objects with Mockito, Problem

custom qualifiers, Problem

executing application lifecycle events, Problem

executing code before/after tests, Problem-See Also

executing object life cycle events, Problem

grouping annotations with meta-annotation, Problem

injecting dependencies, Problem

marshalling JSON, Problem-See Also

marshalling XML, Problem

qualifying annotations, Problem

testing native executable, Problem-Discussion

unmarshalling JSON, Problem-See Also

unmarshalling XML, Problem

using named qualifiers, Problem

validating input and output values, Problem-See Also

validating objects programmatically, Problem

writing behavioral tests, Problem-See Also

writing unit tests, Problem

projects

scaffolding with Apache Maven, Problem

scaffolding with Gradle, Problem

scaffolding with Quarkus Start Coding website, Problem

scaffolding with Visual Studio (VS) Code, Problem-See Also

properties, Problem-Discussion, Problem

properties format, Solution

protected-package scope, Solution

Q

Qaurkus Maven plug-in, Solution

qualifier, Solution

Quarkus

about, Quarkus Overview

basic workflow, A Basic Quarkus Workflow

benefits of, Quarkus Overview

extensions, See Also

using Neo4j with, Problem-See Also

Quarkus Bean Validation dependency, Solution

Quarkus Maven plug-in, Solution

Quarkus projects (see projects)

Quarkus Start Coding website

scaffolding projects with, Problem

Quarkus Test Resource extension, Solution, Solution

Quarkus Vault (see Vault)

quarkus-agroal extension, Solution

quarkus-hibernate-orm extension, Solution

quarkus-narayana-jta extension, Solution

quarkus-resteasy-jackson extension, Solution

quarkus-resteasy-jsonb extension, Solution

quarkus-resteasy-mutiny extension, Solution

quarkus-smallrye-context-propagation extension, Solution

quarkus-smallrye-health extension, Solution

quarkus:dev command, Discussion

Quartz, Solution

query, using Reactive SQL, Problem

Qute

changing location for templates, Problem

creating templates with, Problem

extending data classes, Problem

rending HTML using, Problem

R

RBAC (role-based access control), Quarkus Security Basics,
Solution

Reactive MongoDB client, Problem

Reactive Neo4j client, Problem

reactive programming model, Working with a Reactive
Programming Model-Solution

about, Working with a Reactive Programming Model

creating async HTTP endpoints, Problem

inserting using Reactive SQL, Problem

marshalling POJOs into/out of Kafka, Problem

query using Reactive SQL, Problem

reacting to Apache Kafka messages, Problem

sending messages to Apache Kafka, Problem

streaming data asynchronously, Problem

using AMQP with Quarkus, Problem

using Apache Kafka Streams API, Problem-See Also

using messaging to decouple components, Problem

using MQTT, Problem

using Reactive MongoDB client, Problem

using Reactive Neo4j client, Problem

reactive routes, Problem

readiness health check, Discussion, Discussion

ReadInterceptor, Discussion

redirects, Discussion

RegisterClientHeaders annotation, Solution

repository pattern, Problem

request parameters, extracting, Problem

resources, Problem-See Also

response time, Memory and First Response Time

ResponseExceptionMapper, Discussion

REST APIs, Developing RESTful Services-See Also

binding HTTP methods, Problem

creating endpoints, Solution

creating simple endpoints, Problem

enabling cross-origin resource sharing (CORS), Problem

extracting request parameters, Problem

intercepting HTTP requests, Problem-See Also

reactive routes, Problem

secure connections with SSL, Problem

semantic HTTP response status codes, Problem

REST-Assured, Solution, See Also

RESTEasy, Discussion, Solution

resteasy-qute extension, Solution

RESTful services, Quarkus REST Clients-See Also

about, Quarkus REST Clients

implementing CRUD clients, Problem

manipulating headers, Problem-Discussion

using JAX-RS Client, Problem-See Also

using MicroProfile REST Client, Problem-See Also

using REST Client for multipart messages, Problem

using REST Client to configure SSL, Problem-Discussion

RFC-4918, Solution

rollback() method, Solution

running

development mode in Gradle projects, Discussion

in command mode, Problem

S

S2I, Solution, Discussion

scaffolding, Scaffolding-Solution

in basic workflow, A Basic Quarkus Workflow

live reloading with development mode, Problem

projects with Apache Maven, Problem

projects with Gradle, Problem

projects with Quarkus Start Coding website, Problem

projects with Visual Studio (VS) Code, Problem-See Also

serving static resources, Problem

scheduled jobs, creating, Problem

secrets, Application Secrets Management-See Also

about, Discussion

authenticating services using Vault Kubernetes Auth method,
Problem-See Also

cryptography-as-a-service, Problem-See Also

generating database passwords, Problem-See Also

storing data using, Problem-Discussion

storing securely with Vault, Problem-See Also

website, Solution

secure connections, with SSL, Problem

Sells, Chris

Essential.NET, Vol. 1: The Common Language Runtime, See
Also

semantic HTTP response status codes, Problem

server errors, Discussion

serverless worloads, deploying/managing with Knative,
Problem-Discussion

service-to-service authentication, Solution

services

authenticating using Vault Kubernetes Auth method,
Problem-See Also

deploying on Kubernetes, Problem

serving static resources, Problem

setRollbackOnly() method, Solution

setTransactionTimeout() method, Solution

ShutdownEvent, Solution

siege tool, Solution

signature, Solution

SLF4J, Solution

SmallRye JWT, Authentication

SmallRye Mutiny, Working with a Reactive Programming
Model, See Also

(see also reactive programming model)

SmallRye OpenAPI, Problem-See Also

span, Solution

span context, Solution

Spring, Discussion

Spring Boot API, Problem

Spring Data JPA, Problem

Spring Dependency Injection API, Problem-Discussion

Spring Framework, Developing Quarkus Applications Using
Spring APIs-Solution

Spring Boot API, Problem

using Spring Data JPA, Problem

using Spring Dependency Injection API, Problem-Discussion

using Spring Security API, Problem

using Spring Web API, Problem

Spring Security API, Problem

Spring Web API, Problem

SSE (server-side events), Solution

SSL

building/dockerizing native, Problem

secure connections with, Problem

using REST Client to configure, Problem-Discussion

startup, using Flyway at, Problem

StartupEvent, Solution

static resources, Problem

status codes, Problem

stream() method, Problem

streamAll() method, Solution

streaming data asynchronously, Problem

successful responses, Discussion

Syslog format, Discussion

T

tags, Solution

target directory, Solution

template extension methods, Solution

templates, Solution, Problem

test profile, Discuss

test, in basic workflow, A Basic Quarkus Workflow

Testcontainers, Discussion, See Also

testing

Kubernetes client interactions, Problem

native executable files, Problem-Discussion

Panache entities, Problem

timed metric, Timed

timeouts, implementing, Problem

token authentication method, Solution

transaction boundaries, defining declaratively, Problem

transaction context, setting, Problem

transaction timeouts, setting/modifying, Problem

TransactionalQuarkusTest annotation, Solution

TransactionManager, Discussion

trustStore, Solution

trustStorePassword, Solution

trustStoreType, Solution

U

uber-JAR, creating, Problem

unified configuration model, Solution

unit tests, writing, Problem

unmarshalling

JSON, Problem-See Also

XML, Problem

URLConnection HTTP client, Solution

user/password authentication method, Solution

UserTransaction class, Solution

V

validating

input/output values, Problem-See Also

objects programmatically, Problem

values

grouping configuration, Problem

overwriting externally, Problem

validating configuration, Problem

Vault

about, Discussion, Solution

deploying, Discussion

extension, Discussion

storing secrets with, Problem-See Also

website, Solution, See Also

Vault Kubernetes Auth method, Problem-See Also

vendor category, Discussion

Vert.x, Discussion, Solution

Vert.x Reactive SQL, Solution, Problem

VS (Visual Studio) Code, Problem-See Also

W

web resources, protecting with OpenID Connect, Problem

withHtml method, Solution

withText method, Solution

worker thread, Discussion

World Clock API, Solution, Solution

WriteInterceptor, Discussion

X

XML, marshalling/unmarshalling, Problem

Y

YAML files, Integration with Kubernetes, Solution

About the Authors

Alex Soto Bueno is a Java Champion and director of
developer experience at Red Hat. He first found joy with the
Java world when he started coding in Java version 1.2 when
swing.jar was an external library. Alex began programming with
ZX Spectrum (in the good old days, using the POKE command)
and had several different computers, such as an 80286. (He is
grateful to his parents, Ramon and Mili, for buying them.) He is
an international speaker, and he teaches at La Salle Universitat
Ramon Llull. You can even listen to him on the radio.

Jason Porter has been excited about software since the early
1990s, when his family bought their first computer. It all began
with QBasic’s Gorillas and Nibbles. After discovering the
source code for those games, he was hooked and knew
exactly what he wanted to do when he grew up! Shortly after
learning BASIC, he picked up Teach Yourself Java in 21 Days.
High school and university improved upon the foundation with
more Java and C/C++. After starting work after the dotcom
burst, Jason eventually ended up at Red Hat, a dream job for
him. He has worked on many software projects, mostly Java
based, and has also done his share of web work over the
years. He’s very happy helping others learn and be productive.
You can see him on stage at various conferences around the
globe, or at the local JUG in Utah.

Colophon

The animal on the cover of Quarkus Cookbook is a purple-
throated carib hummingbird (Eulampis jugularis). Named for its
distinctive coloring, the purple-throated carib is found on most
islands of the Lesser Antilles off the coast of Venezuela.

The purple-throated carib is a large hummingbird with
shimmering green wings, a black body, and the eponymous
purple throat. It also has a distinctly down-curved bill that,
along with its purple throat, distinguishes it from many of its
close cousins, although the bill of the female purple-throated
carib is both longer and more curved than the male’s bill.

These birds are found primarily in the depths of tropical forests
and occasionally at the forests’ edges. In the low light of their
forest habitat, the birds often appear mostly black, save for
some shimmer off their wings. This hummingbird emmits
sharp, high-pitched calls in a variety of patterns. They also
have a distinct relationship with two species of flowering
Heliconia plants, which has been pointed to as evidence of co-
evolution.

Though the purple-throated carib’s conservation status is
“Least Concern” at the time of writing, many of the animals on
O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a
black and white engraving from Encyclopedie D’Histoire
Naturelle. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.

	Foreword
	Preface
	Who Should Read This Book
	Why We Wrote This Book
	Navigating This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Quarkus Overview
	Developer-Friendly
	Integration with Kubernetes
	Memory and First Response Time
	A Basic Quarkus Workflow

	2. Scaffolding
	2.1. Scaffolding a Quarkus Project with Maven
	2.2. Scaffolding a Quarkus Project with Gradle
	2.3. Scaffolding a Quarkus Project with the Quarkus Start Coding Website
	2.4. Scaffolding a Quarkus Project with Visual Studio Code
	2.5. Live Reloading with Dev Mode
	2.6. Serving Static Resources

	3. Developing RESTful Services
	3.1. Creating a Simple REST API Endpoint
	3.2. Extracting Request Parameters
	3.3. Using Semantic HTTP Response Status Codes
	3.4. Binding HTTP Methods
	3.5. Enabling Cross-Origin Resource Sharing (CORS)
	3.6. Using Reactive Routes
	3.7. Intercepting HTTP Requests
	3.8. Secure Connections with SSL

	4. Configuration
	4.1. Configuring the Application with Custom Properties
	4.2. Accessing Configuration Properties Programmatically
	4.3. Overwriting Configuration Values Externally
	4.4. Configuring with Profiles
	4.5. Changing Logger Configuration
	4.6. Adding Application Logs
	4.7. Advanced Logging
	4.8. Configuring with Custom Profiles
	4.9. Creating Custom Sources
	4.10. Creating Custom Converters
	4.11. Grouping Configuration Values
	4.12. Validating Configuration Values

	5. Programming Model
	5.1. Marshalling/Unmarshalling JSON
	5.2. Marshalling/Unmarshalling XML
	5.3. Validating Input and Output Values
	5.4. Creating Custom Validations
	5.5. Validating Objects Programmatically
	5.6. Injecting Dependencies
	5.7. Creating Factories
	5.8. Executing Object Life Cycle Events
	5.9. Executing Application Life Cycle Events
	5.10. Using a Named Qualifier
	5.11. Using Custom Qualifiers
	5.12. Qualifying and Configuring Annotations
	5.13. Creating Interceptors
	5.14. Writing Behavioral Tests
	5.15. Writing Unit Tests
	5.16. Creating Mock Objects
	5.17. Creating Mock Objects with Mockito
	5.18. Grouping Several Annotations into One with a Meta-Annotation
	5.19. Executing Code Before or After a Test
	5.20. Testing the Native Executable

	6. Packaging Quarkus Applications
	6.1. Running in Command Mode
	6.2. Creating a Runnable JAR File
	6.3. Über-JAR Packaging
	6.4. Building a Native Executable
	6.5. Building a Docker Container for JAR File
	6.6. Building a Docker Container for Native File
	6.7. Build and Dockerize a Native SSL Application

	7. Persistence
	7.1. Defining a Datasource
	7.2. Using Multiple Datasources
	7.3. Adding Datasource Health Check
	7.4. Defining Transaction Boundaries Declaratively
	7.5. Setting a Transaction Context
	7.6. Programmatic Transaction Control
	7.7. Setting and Modifying a Transaction Timeout
	7.8. Setup with Persistence.xml
	7.9. Setup Without persistence.xml
	7.10. Using Entities from a Different JAR
	7.11. Persisting Data with Panache
	7.12. Finding All Entity Instances with Panache listAll Method
	7.13. Finding Individual Entities with Panache findById Method
	7.14. Finding Entities Using Panache Find and List Methods
	7.15. Obtaining a Count of Entities Using the Panache count Method
	7.16. Paginating Through Entity Lists Using the Panache page Method
	7.17. Streaming Results via the Panache Stream Method
	7.18. Testing Panache Entities
	7.19. Using a Data Access Object (DAO) or Repository Pattern
	7.20. Using Amazon DynamoDB
	7.21. Working with MongoDB
	7.22. Using Panache with MongoDB
	7.23. Using Neo4j with Quarkus
	7.24. Flyway at Startup
	7.25. Using Flyway Programmatically

	8. Fault Tolerance
	8.1. Implementing Automatic Retries
	8.2. Implementing Timeouts
	8.3. Avoiding Overloads with the Bulkhead Pattern
	8.4. Avoiding Unnecessary Calls with the Circuit Breaker Pattern
	8.5. Disabling Fault Tolerance

	9. Observability
	9.1. Using Automatic Health Checks
	9.2. Creating Custom Health Checks
	9.3. Exposing Metrics
	9.4. Creating Metrics
	9.5. Using Distributed Tracing
	9.6. Custom Distributed Tracing

	10. Integrating with Kubernetes
	10.1. Building and Pushing Container Images
	10.2. Generating Kubernetes Resources
	10.3. Generating Kubernetes Resources with Health Checks
	10.4. Deploying Services on Kubernetes
	10.5. Deploying Services on OpenShift
	10.6. Building and Deploying a Container Image Automatically
	10.7. Configuring an Application from Kubernetes
	10.8. Configuring an Application from Kubernetes with Config Extension
	10.9. Interacting with a Kubernetes Cluster Programmatically
	10.10. Testing Kubernetes Client Interactions
	10.11. Implementing a Kubernetes Operator
	10.12. Deploying and Managing Serverless Workloads with Knative

	11. Authentication and Authorization
	Quarkus Security Basics
	11.1. Authentication and Authorization with Elytron Properties File Config
	11.2. Authentication and Authorization with Elytron Security JDBC Config
	11.3. Authorization with MicroProfile JWT
	11.4. Authorization and Authentication with OpenId Connect
	11.5. Protecting Web Resources with OpenId Connect

	12. Application Secrets Management
	12.1. Storing Data Using Kubernetes Secrets
	12.2. Store Configuration Secrets Securely with Vault
	12.3. Cryptography as a Service
	12.4. Generate Database Password as Secret
	12.5. Authenticating Services Using Vault Kubernetes Auth

	13. Quarkus REST Clients
	13.1. Using the JAX-RS Web Client
	13.2. Using the MicroProfile REST Client
	13.3. Implementing a CRUD Client
	13.4. Manipulating Headers
	13.5. Using REST Client for Multipart Messages
	13.6. Using REST Client to Configure SSL

	14. Developing Quarkus Applications Using Spring APIs
	14.1. Using Spring Dependency Injection
	14.2. Using Spring Web
	14.3. Using Spring Data JPA
	14.4. Using Spring Security
	14.5. Using Spring Boot Properties

	15. Working with a Reactive Programming Model
	15.1. Creating Async HTTP Endpoints
	15.2. Streaming Data Asynchronously
	15.3. Using Messaging to Decouple Components
	15.4. Reacting to Apache Kafka Messages
	15.5. Sending Messages to Apache Kafka
	15.6. Marshalling POJOs into/out of Kafka
	15.7. Using Kafka Streams API
	15.8. Using AMQP with Quarkus
	15.9. Using MQTT
	15.10. Query Using Reactive SQL
	15.11. Insert Using Reactive SQL Client
	15.12. Using the Reactive MongoDB Client
	15.13. Using the Reactive Neo4j Client

	16. Additional Quarkus Features
	16.1. Creating Templates with the Qute Template Engine
	16.2. Rending HTML Using Qute
	16.3. Changing the Location of Qute Templates
	16.4. Extending Qute Data Classes
	16.5. Describing Endpoints with OpenAPI
	16.6. Customizing OpenAPI Spec
	16.7. Sending Email Synchronously
	16.8. Sending Email Reactively
	16.9. Creating Scheduled Jobs
	16.10. Using Application Data Caching

	Minikube
	Keycloak
	Knative
	Index

