

Continuous Delivery
with Docker and Jenkins
Second Edition

Create secure applications by building complete
CI/CD pipelines

Rafał Leszko

BIRMINGHAM - MUMBAI

Continuous Delivery with
Docker and Jenkins
Second Edition
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Karan Sadawana
Acquisition Editor: Shrilekha Inani
Content Development Editor: Abhishek Jadhav
Technical Editor: Swathy Mohan
Copy Editor: Safis Editing
Project Coordinator: Jagdish Prabhu
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Aparna Bhagat

First published: August 2017
Second edition: May 2019

Production reference: 1300519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83855-218-3

www.packtpub.com

http://www.packtpub.com

To my wonderful wife, Maria, for all of her love, her wisdom, and her smile.

– Rafał Leszko

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Rafał Leszko is a passionate software developer, trainer, and conference speaker living in
Krakow, Poland. He has spent his career writing code, designing architecture, and leading
on tech in a number of companies and organizations, including Hazelcast, Google, and
CERN. Always open to new challenges, he has given talks and conducted workshops at
numerous international conferences, including Devoxx and Voxxed Days.

About the reviewer
Hai Dam is currently working as a DevOps Engineer for Tomochain, a blockchain company
and the most efficient platform for the token economy. He possesses a master's degree in
information technology and is an AWS Certified Solutions Architect-Professional, holding
two certifications. He has expertise in technologies such as operating systems, source code
management, build and release tools, continuous integration/deployment/delivery tools,
containers, configuration management tools, monitoring, logging tools, and public/private
clouds.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Setting Up the Environment
Chapter 1: Introducing Continuous Delivery 7

Understanding CD 7
The traditional delivery process 8

Introducing the traditional delivery process 8
Shortcomings of the traditional delivery process 10

Benefits of CD 11
Success stories 12

The automated deployment pipeline 13
Continuous Integration (CI) 15
Automated acceptance testing 15

The Agile testing matrix 16
The testing pyramid 17

Configuration management 18
Prerequisites to CD 19

Organizational prerequisites 19
DevOps culture 20
Client in the process 21
Business decisions 21

Technical and development prerequisites 22
Building the CD process 22

Introducing tools 23
Docker ecosystem 23
Jenkins 24
Ansible 24
GitHub 24
Java/Spring Boot/Gradle 24
The other tools 25

Creating a complete CD system 25
Introducing Docker 26

Configuring Jenkins 26
The CI pipeline 27
Automated acceptance testing 28
Clustering with Kubernetes 29
Configuration management with Ansible 30
The CD pipeline/advanced CD 31

Summary 32
Questions 32

Table of Contents

[ii]

Further reading 33

Chapter 2: Introducing Docker 34
Technical requirements 34
What is Docker? 35

Containerization versus virtualization 35
The need for Docker 37

Environment 37
Isolation 38
Organizing applications 38
Portability 38

Kittens and cattle 39
Alternative containerization technologies 39

Installing Docker 39
Prerequisites for Docker 40
Installing on a local machine 40

Docker for Ubuntu 41
Docker for Windows, macOS, and Linux 41
Testing the Docker installation 42

Installing on a server 42
Dedicated server 42

Running Docker hello world 43
Docker components 44

Docker client and server 45
Docker images and containers 46

Docker applications 47
Building images 49

Docker commit 49
Dockerfile 51
Completing the Docker application 52

Writing the application 52
Preparing the environment 52
Building the image 53
Running the application 53

Environment variables 53
Docker container states 54
Docker networking 56

Running services 56
Container networks 58
Exposing container ports 60
Automatic port assignment 60

Using Docker volumes 61
Using names in Docker 63

Naming containers 63
Tagging images 64

Docker cleanup 64

Table of Contents

[iii]

Cleaning up containers 65
Cleaning up images 66

Docker commands overview 67
Summary 68
Exercises 69
Questions 70
Further reading 70

Chapter 3: Configuring Jenkins 71
Technical requirements 71
What is Jenkins? 72
Installing Jenkins 73

Requirements for installation 73
Installing Jenkins on Docker 74
Installing without Docker 75
Initial configuration 76
Jenkins in the cloud 77

Jenkins Hello World 78
Jenkins architecture 80

Master and slaves 80
Scalability 82

Vertical scaling 82
Horizontal scaling 83

Test and production instances 83
Sample architecture 83

Configuring agents 84
Communication protocols 85
Setting agents 85

Permanent agents 86
Configuring permanent agents 86
Understanding permanent agents 88

Permanent Docker agents 88
Configuring permanent Docker agents 88
Understanding permanent Docker agents 89

Jenkins Swarm agents 89
Configuring Jenkins Swarm agents 90
Understanding Jenkins Swarm agents 91

Dynamically provisioned Docker agents 91
Configuring dynamically provisioned Docker agents 91
Understanding dynamically provisioned Docker agents 94

Testing agents 95
Custom Jenkins images 97

Building the Jenkins slave 97
Building the Jenkins master 99

Configuration and management 100
Plugins 101
Security 101

Table of Contents

[iv]

Backup 102
The Blue Ocean UI 102

Summary 103
Exercises 104
Questions 105
Further reading 105

Section 2: Architecting and Testing an Application
Chapter 4: Continuous Integration Pipeline 107

Technical requirements 107
Introducing pipelines 108

The pipeline structure 108
Multi-stage Hello World 109
The pipeline syntax 110

Sections 112
Directives 112
Steps 113

The commit pipeline 113
Checkout 114

Creating a GitHub repository 114
Creating a checkout stage 115

Compile 115
Creating a Java Spring Boot project 115
Pushing code to GitHub 117
Creating a compile stage 118

Unit tests 118
Creating business logic 119
Writing a unit test 120
Creating a unit test stage 120

Jenkinsfile 121
Creating the Jenkinsfile 122
Running the pipeline from Jenkinsfile 122

Code-quality stages 124
Code coverage 124

Adding JaCoCo to Gradle 124
Adding a code coverage stage 125
Publishing the code coverage report 126

Static code analysis 127
Adding the Checkstyle configuration 127
Adding a static code analysis stage 129
Publishing static code analysis reports 129

SonarQube 129
Triggers and notifications 131

Triggers 131
External 131
Polling SCM 132

Table of Contents

[v]

Scheduled builds 133
Notifications 134

Email 134
Group chats 135
Team spaces 135

Team development strategies 136
Development workflows 136

The trunk-based workflow 137
The branching workflow 137
The forking workflow 138

Adopting Continuous Integration 139
Branching strategies 139
Feature toggles 140

Jenkins multi-branch 140
Non-technical requirements 142

Summary 143
Exercises 144
Questions 144
Further reading 145

Chapter 5: Automated Acceptance Testing 146
Technical requirements 146
Introducing acceptance testing 147
Docker registry 148

The artifact repository 148
Installing Docker registry 150

Docker Hub 150
Private Docker registry 150

Installing the Docker registry application 151
Adding a domain certificate 151
Adding an access restriction 152

Other Docker registries 153
Using Docker registry 154

Building an image 154
Pushing the image 154
Pulling the image 155

Acceptance tests in the pipeline 156
The Docker build stage 157

Adding Dockerfile 157
Adding the Docker build to the pipeline 158

The Docker push stage 159
The acceptance testing stage 159

Adding a staging deployment to the pipeline 160
Adding an acceptance test to the pipeline 160
Adding a cleaning stage environment 161

Writing acceptance tests 161
Writing user-facing tests 161

Table of Contents

[vi]

Using the acceptance testing framework 163
Creating acceptance criteria 163
Creating step definitions 164
Running an automated acceptance test 165

Acceptance test-driven development 166
Summary 167
Exercises 168
Questions 169
Further reading 170

Chapter 6: Clustering with Kubernetes 171
Technical requirements 171
Server clustering 172

Introducing server clustering 172
Introducing Kubernetes 173

Kubernetes features overview 174
Kubernetes installation 175

The Kubernetes client 175
The Kubernetes server 176

The local environment 176
Minikube 176
Docker Desktop 177
Cloud platforms 178
On-premise 180

Verifying the Kubernetes setup 180
Using Kubernetes 181

Deploying an application 181
Deploying Kubernetes Service 182
Exposing an application 184

Advanced Kubernetes 186
Scaling an application 186
Updating an application 187
Rolling updates 188
Kubernetes objects and workloads 191

Application dependencies 192
The Kubernetes DNS resolution 192
Multi-application system overview 194
Multi-application system implementation 195

Adding the Hazelcast client library to Gradle 195
Adding the Hazelcast cache configuration 195
Adding Spring Boot caching 196
Building a Docker image 197

Multi-application system testing 197
Scaling Jenkins 198

Dynamic slave provisioning 199
Jenkins Swarm 199
Comparing dynamic slave provisioning and Jenkins Swarm 200

Table of Contents

[vii]

Alternative cluster management systems 201
Docker Swarm 201
Apache Mesos 203
Comparing features 204

Summary 205
Exercises 206
Questions 206
Further reading 207

Section 3: Deploying an Application
Chapter 7: Configuration Management with Ansible 209

Technical requirements 209
Introducing configuration management 210

Traits of good configuration management 211
Overview of configuration management tools 212

Installing Ansible 213
Ansible server requirements 213
Ansible installation 213
The Docker-based Ansible client 214

Using Ansible 214
Creating an inventory 214
Ad hoc commands 216
Playbooks 217

Defining a playbook 217
Executing the playbook 219
The playbook's idempotency 219
Handlers 220
Variables 222

Roles 224
Understanding roles 224
Ansible Galaxy 225

Deployment with Ansible 226
Installing Hazelcast 226
Deploying a web service 228

Changing the Hazelcast host address 228
Adding calculator deployment to the playbook 228

Running the deployment 230
Ansible with Docker and Kubernetes 230

Benefits of Ansible 231
The Ansible Docker playbook 233

Installing Docker 233
Running Docker containers 234

The Ansible Kubernetes playbook 235
Summary 236
Exercises 236

Table of Contents

[viii]

Questions 237
Further reading 237

Chapter 8: Continuous Delivery Pipeline 238
Technical requirements 238
Environments and infrastructure 239

Types of environment 239
Production 239
Staging 240
QA 241
Development 242

Environments in Continuous Delivery 242
Securing environments 243

Nonfunctional testing 244
Types of nonfunctional test 245

Performance testing 245
Load testing 245
Stress testing 246
Scalability testing 246
Endurance testing 246
Security testing 247
Maintainability testing 247
Recovery testing 247

Nonfunctional challenges 248
Application versioning 250

Versioning strategies 250
Versioning in the Jenkins pipeline 251

Completing the Continuous Delivery pipeline 252
Inventory 252
Versioning 254
Remote staging environment 254
Acceptance testing environment 255
Release 255
Smoke testing 256
Complete Jenkinsfile 257

Summary 258
Exercises 259
Questions 260
Further reading 260

Chapter 9: Advanced Continuous Delivery 261
Technical requirements 261
Managing database changes 262

Understanding schema updates 262
Introducing database migrations 263
Using Flyway 264

Configuring Flyway 265

Table of Contents

[ix]

Defining the SQL migration script 266
Accessing database 266

Changing database in Continuous Delivery 268
Backwards-compatible changes 269
Non-backwards-compatible changes 270

Adding a new column to the database 272
Changing the code to use both columns 272
Merging the data in both columns 273
Removing the old column from the code 273
Dropping the old column from the database 274
Separating database updates from code changes 274

Avoiding shared database 275
Preparing test data 277

Unit testing 278
Integration/acceptance testing 278
Performance testing 278

Pipeline patterns 279
Parallelizing pipelines 279
Reusing pipeline components 281

Build parameters 281
Shared libraries 282

Creating a shared library project 282
Configure the shared library in Jenkins 283
Using the shared library in Jenkinsfile 284

Rolling back deployments 285
Adding manual steps 286

Release patterns 287
Blue-green deployment 288
Canary release 289

Working with legacy systems 290
Automating build and deployment 291
Automating tests 292
Refactoring and introducing new features 292
Understanding the human element 293

Summary 294
Exercises 294
Questions 295
Further reading 296

Appendix A: Best practices 297
Practice 1 – own process within the team! 297
Practice 2 – automate everything! 298
Practice 3 – version everything! 298
Practice 4 – use business language for acceptance tests 299
Practice 5 – be ready to roll back 299
Practice 6 – don't underestimate the impact of people 300
Practice 7 – build in traceability 300

Table of Contents

[x]

Practice 8 – integrate often 301
Practice 9 – only build binaries once 301
Practice 10 – release often 302

Assessment 303

Other Books You May Enjoy 308

Index 311

Preface
Continuous Delivery with Docker and Jenkins – Second Edition will explain the advantages of
combining Jenkins and Docker to improve the continuous integration and delivery process
of app development. It will start with setting up a Docker server and configuring Jenkins
on it. It will then outline the steps to build applications on Docker files and integrate them
with Jenkins using continuous delivery processes such as continuous integration,
automated acceptance testing, and configuration management.

Moving on, you will learn how to ensure quick application deployment with Docker
containers, along with scaling Jenkins, and using Kubernetes. Next, you will get to know
how to deploy applications using Docker images and test them with Jenkins. Toward the
end, the book will touch base with missing parts of the CD pipeline, which are the
environments and infrastructure, application versioning, and non-functional testing.

By the end of the book, you will be enhancing the DevOps workflow by integrating the
functionalities of Docker and Jenkins.

Who this book is for
The book targets DevOps engineers, system administrators, Docker professionals or any
stakeholders who would like to explore the power of working with Docker and Jenkins
together.

What this book covers
Chapter 1, Introducing Continuous Delivery, demonstrates the pitfalls of the traditional
delivery process and describes success stories including Amazon and Yahoo.

Chapter 2, Introducing Docker, provides a brief introduction to Docker, the concept of
containerization, and looks at the benefits in terms of running applications and services
using this platform. In addition, we will also describe, step by step, how to set up Docker
Community Edition on a local machine or a server running Linux and check to see whether
Docker is running properly.

Preface

[2]

Chapter 3, Configuring Jenkins, introduces the Jenkins tool, their architecture, and
procedures to install master/slave instances on a Docker server, without Docker, and using
cloud environments. Then, we'll see how to scale slaves. Finally, readers will get a working
Jenkins instance ready to build applications integrated with their source code repository
service.

Chapter 4, Continuous Integration Pipeline, describes how the classic continuous integration
pipeline entails three steps: checkout, building, and unit tests. In this chapter, readers will
learn how to build it using Jenkins and what other steps should be considered (such as code
coverage and static code analysis).

Chapter 5, Automated Acceptance Testing, explains how, before releasing an application, you
need to make sure that the whole system works as expected by running automated
acceptance tests. Ordinarily, applications connect with databases, cache, messaging, and
other tools that require other servers to run these services. This is why the whole
environment has to be set up and kept ready before the test suite is started. In this chapter,
readers will learn Docker registry hub concepts and how to build a system made of
different components running as Docker containers.

Chapter 6, Clustering with Kubernetes, explains how to scale to multiple teams and projects
using Docker tools. In this chapter, readers will be introduced to Kubernetes and learn how
to use it in the Continuous Delivery process.

Chapter 7, Configuration Management with Ansible, describes how, once you have scaled
your servers, to deploy your application in production. In this chapter, readers will learn
how to release an application on a Docker production server using configuration
management tools such as Chef and Ansible.

Chapter 8, Continuous Delivery Pipeline, focuses on the missing parts of the final pipeline,
which are the environments and infrastructure, application versioning, and non-functional
testing. Once this chapter has been concluded, the complete continuous delivery pipeline
will be ready.

Chapter 9, Advanced Continuous Delivery, explains how, after building a complete pipeline,
the reader can address more difficult real-life scenarios. Beginning with parallelizing the
pipeline tasks, we will then show how to roll back to the previous version, how to run
performance tests, what to do with the database changes, and how to proceed with legacy
systems and manual tests.

Appendix A, Best Practices, this includes best practices to be followed throughout the book.

Preface

[3]

To get the most out of this book
Docker requires a 64-bit Linux operating system. All examples in this book have been
developed using Ubuntu 18.04, but any other Linux system with the kernel version 3.10 or
above is sufficient.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/​/​github.​com/
PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github.​com/​PacktPublishing/​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/​/​www.​packtpub.​com/​sites/​default/​files/
downloads/​9781838552183_​ColorImages.​pdf.

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838552183_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This means that the sudo keyword must precede every Docker command."

A block of code is set as follows:

ExecStart=/usr/bin/dockerd -H <server_ip>:2375

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import os
print "Hello World from %s !" % os.environ['NAME']

Any command-line input or output is written as follows:

$ docker run -i -t ubuntu_with_git /bin/bash
root@6ee6401ed8b8:/# apt-get install -y openjdk-8-jdk
root@6ee6401ed8b8:/# exit
$ docker commit 6ee6401ed8b8 ubuntu_with_git_and_jdk

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"You should see the friendly Hello World from Python! message."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Setting Up the

Environment
In this section, you will be introduced to Docker,and we will cover concepts such as
Continuous Delivery and its benefits, as well as containerization. Furthermore, we will also
be introduced to the Jenkins tool, and the architecture and procedures required to install
master/slave instances on a Docker server, without Docker, and using cloud environments.

The following chapters are covered in this section:

Chapter 1, Introducing Continuous Delivery
Chapter 2, Introducing Docker
Chapter 3, Configuring Jenkins

1
Introducing Continuous Delivery
A common problem faced by most developers is how to release the implemented code
quickly and safely. The delivery process used traditionally is a source of pitfalls and usually
leads to the disappointment of both developers and clients. This chapter presents the idea
of the Continuous Delivery (CD) approach and provides the context for the rest of the
book.

This chapter covers the following points:

Understanding CD
The automated deployment pipeline
Prerequisites to CD
Building the CD process
Creating a complete CD system

Understanding CD
The most accurate definition of the CD is stated by Jez Humble and reads as follows:

"Continuous Delivery is the ability to get changes of all types—including new features,
configuration changes, bug fixes, and experiments—into production, or into the hands of
users, safely and quickly, in a sustainable way."

This definition covers the key points.

To understand it better, let's imagine a scenario. You are responsible for a product, let's say,
the email client application. Users come to you with a new requirement: they want to sort
emails by size. You decide that the development will take around one week. When can the
user expect to use the feature? Usually, after the development is done, you hand over the
completed feature first to the QA team and then to the operations team, which takes
additional time, ranging from days to months.

Introducing Continuous Delivery Chapter 1

[8]

Therefore, even though the development took only one week, the user receives it in a
couple of months! The CD approach addresses that issue by automating manual tasks so
that the user could receive a new feature as soon as it's implemented.

To help you to understand what to automate and how, let's start by describing the delivery
process that is currently used for most software systems.

The traditional delivery process
The traditional delivery process, as the name suggests, has been in place for many years
and is implemented in most IT companies. Let's define how it works and comment on its
shortcomings.

Introducing the traditional delivery process
Any delivery process begins with the requirements defined by a customer and ends up
with release on production. The differences are in-between. Traditionally, it looks as
presented in the following release cycle diagram:

Introducing Continuous Delivery Chapter 1

[9]

The release cycle starts with the requirements provided by the Product Owner, who
represents the Customer (stakeholders). Then there are three phases, during which the
work is passed between different teams:

Development: The developers (sometimes together with business analysts) work
on the product. They often use Agile techniques (Scrum or Kanban) to increase
the development velocity and to improve communication with the client. Demo
sessions are organized to obtain a customer's quick feedback. All good
development techniques (such as test-driven development or extreme
programming practices) are welcome. Once implementation is complete, the
code is passed to the QA team.
Quality Assurance: This phase is usually called User Acceptance Testing (UAT)
and it requires a code freeze on the trunk code base, so that no new development
would break the tests. The QA team performs a suite of Integration Testing,
Acceptance Testing, and Non-functional analysis (performance, recovery,
security, and so on). Any bug that is detected goes back to the development
team, so developers usually have their hands full. After the UAT phase is
completed, the QA team approves the features that are planned for the next
release.
Operations: The final phase, usually the shortest one, means passing the code to
the operations team, so that they can perform the release and monitor
production. If anything goes wrong, they contact developers to help with the
production system.

The length of the release cycle depends on the system and the organization, but it usually
ranges from a week to a few months. The longest I've heard about was one year. The
longest I worked with was quarterly-based, and each part took as follows:
development—1.5 months, UAT—1 month and 3 weeks, release (and strict production
monitoring)—1 week.

The traditional delivery process is widely used in the IT industry and it's probably not the
first time you've read about such an approach. Nevertheless, it has a number of drawbacks.
Let's look at them explicitly to understand why we need to strive for something better.

Introducing Continuous Delivery Chapter 1

[10]

Shortcomings of the traditional delivery process
The most significant shortcomings of the traditional delivery process include the following:

Slow delivery: The customer receives the product long after the requirements
were specified. This results in unsatisfactory time to market and delays customer
feedback.
Long feedback cycle: The feedback cycle is not only related to customers, but
also to developers. Imagine that you accidentally created a bug and you learn
about it during the UAT phase. How long does it take to fix something you worked on
two months ago? Even dealing with minor bugs can take weeks.
Lack of automation: Rare releases don't encourage automation, which leads to
unpredictable releases.
Risky hotfixes: Hotfixes can't usually wait for the full UAT phase, so they tend
to be tested differently (the UAT phase is shortened) or not tested at all.
Stress: Unpredictable releases are stressful for the operations team. What's more,
the release cycle is usually tightly scheduled, which imposes an additional stress
on developers and testers.
Poor communication: Work passed from one team to another represents the
waterfall approach, in which people start to care only about their part, rather
than the complete product. In case anything goes wrong, that usually leads to the
blame game instead of cooperation.
Shared responsibility: No team takes responsibility for the product from A to Z:

For developers: done means that requirements are implemented
For testers: done means that the code is tested
For operations: done means that the code is released

Lower job satisfaction: Each phase is interesting for a different team, but other
teams need to support the process. For example, the development phase is
interesting for developers but, during the other two phases, they still need to fix
bugs and support the release, which usually is not interesting for them at all.

These drawbacks represent just a tip of the iceberg of the challenges related to the
traditional delivery process. You may already feel that there must be a better way to
develop the software and this better way is, obviously, the CD approach.

Introducing Continuous Delivery Chapter 1

[11]

Benefits of CD
How long would it take your organization to deploy a change that involves just a single line of code?
Do you do this on a repeatable, reliable basis? These are the famous questions from Mary and
Tom Poppendieck (authors of Implementing Lean Software Development), which have been
quoted many times by Jez Humble and others. Actually, the answer to these questions is the
only valid measurement of the health of your delivery process.

To be able to deliver continuously, and not spend a fortune on the army of operations,
teams working 24/7, we need automation. That is why, in short, CD is all about changing
each phase of the traditional delivery process into a sequence of scripts, called the automated
deployment pipeline, or the CD pipeline. Then, if no manual steps are required, we can run the
process after every code change and, therefore, deliver the product continuously to users.

CD lets us get rid of the tedious release cycle and, therefore, brings the following benefits:

Fast delivery: Time to market is significantly reduced as customers can use the
product as soon as development is completed. Remember that the software
delivers no revenue until it is in the hands of its users.
Fast feedback cycle: Imagine you created a bug in the code, which goes into
production the same day. How much time does it take to fix something you worked on
the same day? Probably not much. This, together with the quick rollback strategy,
is the best way to keep the production stable.
Low-risk releases: If you release on a daily basis, the process becomes repeatable
and therefore much safer. As the saying goes, if it hurts, do it more often.
Flexible release options: In case you need to release immediately, everything is
already prepared, so there is no additional time/cost associated with the release
decision.

Needless to say, we could achieve all these benefits simply by eliminating all delivery
phases and proceeding with development directly on production. It would, however, result
in a reduction in the quality. Actually, the whole difficulty of introducing CD is the concern
that the quality would decrease together with eliminating manual steps. In this book, we
will show you how to approach CD in a safe manner and explain why, contrary to common
beliefs, products delivered continuously have fewer bugs and are better adjusted to the
customer's needs.

Introducing Continuous Delivery Chapter 1

[12]

Success stories
My favorite story on CD was told by Rolf Russell at one of his talks. It goes as follows. In
2005, Yahoo acquired Flickr, and it was a clash of two cultures in the developer's world.
Flickr, by that time, was a company with the start-up approach in mind. Yahoo, on the
contrary, was a huge corporation with strict rules and a safety-first attitude. Their release
processes differed a lot. While Yahoo used the traditional delivery process, Flickr released
many times a day. Every change implemented by developers went into production the
same day. They even had a footer at the bottom of their page showing the time of the last
release and the avatars of the developers who did the changes.

Yahoo deployed rarely, and each release brought a lot of changes that were well-tested and
prepared. Flickr worked in very small chunks; each feature was divided into small
incremental parts, and each part was deployed to production quickly. The difference is
presented in the following diagram:

You can imagine what happened when the developers from the two companies met. Yahoo
obviously treated Flickr's colleagues as junior irresponsible developers, a bunch of software
cowboys who didn't know what they were doing. So, the first thing they wanted to change
was to add a QA team and the UAT phase to Flickr's delivery process. Before they applied
the change, however, Flickr's developers had only one wish. They asked to evaluate the
most reliable products throughout Yahoo as a whole. What a surprise when it happened
that of all the software in Yahoo, Flickr had the lowest downtime. The Yahoo team didn't
understand it at first, but let Flickr stay with their current process anyway. After all, they
were engineers, so the evaluation result was conclusive. Only after some time had passed
did the Yahoo developers realize that the CD process could be beneficial for all products in
Yahoo and they started to gradually introduce it everywhere.

Introducing Continuous Delivery Chapter 1

[13]

The most important question of the story remains: how was it possible that Flickr was the most
reliable system? Actually, the reason behind that fact was what we already mentioned in the
previous sections. A release is less risky if the following is true:

The delta of code changes is small
The process is repeatable

That is why, even though the release itself is a difficult activity, it is much safer when done
frequently.

The story of Yahoo and Flickr is only one example of many successful companies for which
the CD process proved to be the correct choice. Some of them even proudly share details
from their systems, as follows:

Amazon: In 2011, they announced reaching 11.6 seconds (on average) between
deployments
Facebook: In 2013, they announced deployment of code changes twice a day
HubSpot: In 2013, they announced deployment 300 times a day
Atlassian: In 2016, they published a survey stating that 65% of their customers
practice CD

You can read more about the research on the CD process and individual
case studies at https:/​/​continuousdelivery.​com/​evidence-​case-
studies/​.

Keep in mind that the statistics get better every day. However, even without any numbers,
just imagine a world in which every line of code you implement goes safely into
production. Clients can react quickly and adjust their requirements, developers are happy
because they don't have to solve that many bugs, and managers are satisfied because they
always know the current state of work. After all, remember that the only true measure of
progress is the software released.

The automated deployment pipeline
We already know what the CD process is and why we use it. In this section, we describe
how to implement it.

https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/
https://continuousdelivery.com/evidence-case-studies/

Introducing Continuous Delivery Chapter 1

[14]

Let's start by emphasizing that each phase in the traditional delivery process is important.
Otherwise, it would never have been created in the first place. No one wants to deliver
software without testing it first! The role of the UAT phase is to detect bugs and to ensure
that what developers created is what the customer wanted. The same applies to the
operations team—the software must be configured, deployed to production, and
monitored. That's out of the question. So, how do we automate the process so that we preserve all
the phases? That is the role of the automated deployment pipeline, which consists of three
stages, as presented in the following diagram:

The automated deployment pipeline is a sequence of scripts that is executed after every
code change committed to the repository. If the process is successful, it ends up with
deployment to the production environment.

Each step corresponds to a phase in the traditional delivery process, as follows:

Continuous Integration: This checks to make sure that the code written by
different developers is integrated
Automated Acceptance Testing: This checks if the client's requirements are met
by the developers implementing the features. This testing also replaces the
manual QA phase.
Configuration Management: This replaces the manual operations phase; it
configures the environment and deploys the software

Let's take a deeper look at each phase to understand its responsibility and what steps it
includes.

Introducing Continuous Delivery Chapter 1

[15]

Continuous Integration (CI)
The CI phase provides the first feedback to developers. It checks out the code from the
repository, compiles it, runs unit tests, and verifies the code quality. If any step fails, the
pipeline execution is stopped and the first thing the developers should do is fix the CI
build. The essential aspect of this phase is time; it must be executed in a timely manner. For
example, if this phase took an hour to complete, developers would commit the code faster,
which would result in the constantly failing pipeline.

The CI pipeline is usually the starting point. Setting it up is simple because everything is
done within the development team, and no agreement with the QA and operations teams is
necessary.

Automated acceptance testing
The automated acceptance testing phase is a suite of tests written together with the client
(and QAs) that is supposed to replace the manual UAT stage. It acts as a quality gate to
decide whether a product is ready for release. If any of the acceptance tests fail, pipeline
execution is stopped and no further steps are run. It prevents movement to the
configuration management phase and, hence, the release.

The whole idea of automating the acceptance phase is to build the quality into the product
instead of verifying it later. In other words, when a developer completes the
implementation, the software is already delivered together with acceptance tests that verify
that the software is what the client wanted. That is a large shift in thinking in relation to
testing software. There is no longer a single person (or team) who approves the release, but
everything depends on passing the acceptance test suite. That is why creating this phase is
usually the most difficult part of the CD process. It requires close cooperation with the
client and creating tests at the beginning (not at the end) of the process.

Introducing automated acceptance tests is especially challenging in the
case of legacy systems. We discuss this topic in greater detail in Chapter
9, Advanced Continuous Delivery.

There is usually a lot of confusion about the types of tests and their place in the CD process.
It's also often unclear as to how to automate each type, what the coverage should be, and
what the role of the QA team should be in the development process. Let's clarify it using
the Agile testing matrix and the testing pyramid.

Introducing Continuous Delivery Chapter 1

[16]

The Agile testing matrix
Brian Marick, in a series of his blog posts, made a classification of software tests in the form
of the agile testing matrix. It places tests in two dimensions—business or technology-facing,
and support programmers or a critique of the product. Let's have a look at that
classification:

Let's comment briefly on each type of test:

Acceptance Testing (automated): These are tests that represent functional
requirements seen from the business perspective. They are written in the form of
stories or examples by clients and developers to agree on how the software
should work.
Unit Testing (automated): These are tests that help developers to provide high-
quality software and minimize the number of bugs.
Exploratory Testing (manual): This is the manual black-box testing, which tries
to break or improve the system.
Non-functional Testing (automated): These are tests that represent system
properties related to performance, scalability, security, and so on.

This classification answers one of the most important questions about the CD process: what
is the role of a QA in the process?

Introducing Continuous Delivery Chapter 1

[17]

Manual QAs perform the exploratory testing, so they play with the system, try to break it,
ask questions, and think about improvements. Automation QAs help with non-functional
and acceptance testing; for example, they write code to support load testing. In general,
QAs don't have their special place in the delivery process, but rather a role in the
development team.

In the automated CD process, there is no longer a place for manual QAs
who perform repetitive tasks.

You may look at the classification and wonder why you see no integration tests there.
Where are they up to Brian Marick, and where to put them in the CD pipeline?

To explain it well, we first need to mention that the meaning of an integration test differs
depending on the context. For (micro) service architectures, they usually mean exactly the
same as acceptance testing, as services are small and need nothing more than unit and
acceptance tests. If you build a modular application, then integration tests usually mean
component tests that bind multiple modules (but not the whole application) and test them
together. In that case, integration tests place themselves somewhere between acceptance
and unit tests. They are written in a similar way to acceptance tests, but are usually more
technical and require mocking not only external services, but also internal modules.
Integration tests, similar to unit tests, represent the code point of view, while acceptance
tests represent the user point of view. As regards the CD pipeline, integration tests are
simply implemented as a separate phase in the process.

The testing pyramid
The previous section explained what each test type represents in the process, but
mentioned nothing about how many tests we should develop. So, what should the code
coverage be in the case of unit testing? What about acceptance testing?

Introducing Continuous Delivery Chapter 1

[18]

To answer these questions, Mike Cohn, in his book, created a so-called testing pyramid.
Let's look at the diagram to develop a better understanding of this:

When we move up the pyramid, the tests become slower and more expensive to create.
They often require user interfaces to be touched and a separate test automation team to be
hired. That is why acceptance tests should not target 100% coverage. On the contrary, they
should be feature-oriented and verify only selected test scenarios. Otherwise, we would
spend a fortune on test development and maintenance, and our CD pipeline build would
take ages to execute.

The case is different at the bottom of the pyramid. Unit tests are cheap and fast, so we
should strive for 100% code coverage. They are written by developers, and providing them
should be a standard procedure for any mature team.

I hope that the agile testing matrix and the testing pyramid clarified the role and the
importance of acceptance testing.

Let's now move to the last phase of the CD process, configuration management.

Configuration management
The configuration management phase is responsible for tracking and controlling changes in
the software and its environment. It involves taking care of preparing and installing the
necessary tools, scaling the number of service instances and their distribution,
infrastructure inventory, and all tasks related to application deployment.

Introducing Continuous Delivery Chapter 1

[19]

Configuration management is a solution to the problems posed by manually deploying and
configuring applications on the production. This common practice results in an issue
whereby we no longer know where each service is running and with what properties.
Configuration management tools (such as Ansible, Chef, or Puppet) enable us to store
configuration files in the version control system and track every change that was made on
the production servers.

An additional effort to replace manual tasks of the operation's team is to take care of
application monitoring. That is usually done by streaming logs and metrics of the running
systems to a common dashboard, which is monitored by developers (or the DevOps team,
as explained in the next section).

Prerequisites to CD
The rest of this book is dedicated to technical details on how to implement a successful CD
pipeline. The success of the process, however, depends not only on the tools we present
throughout this book. In this section, we take a holistic look at the whole process and define
the CD requirements in three areas:

Your organization's structure and its impact on the development process
Your products and their technical details
Your development team and the practices you adopt

Organizational prerequisites
The way your organization works has a high impact on the success of introducing the CD
process. It's a bit similar to introducing Scrum. Many organizations would like to use the
Agile process, but they don't change their culture. You can't use Scrum in your
development team unless the organization's structure is adjusted for that. For example, you
need a product owner, stakeholders, and management that understands that no
requirement changes are possible during the sprint. Otherwise, even with good intentions,
you won't make it. The same applies to the CD process; it requires an adjustment of how
the organization is structured. Let's have a look at three aspects: the DevOps culture, a
client in the process, and business decisions.

Introducing Continuous Delivery Chapter 1

[20]

DevOps culture
A long time ago, when software was written by individuals or microteams, there was no
clear separation between development, quality assurance, and operations. A person
developed the code, tested it, and then put it into production. If anything went wrong, the
same person investigated the issue, fixed it, and redeployed it to production. The way the
development is organized now changed gradually, when systems became larger and
development teams grew. Then, engineers started to become specialized in one area. That
made perfect sense, because specialization caused a boost in productivity. However, the
side-effect was the communication overhead. It is especially visible if developers, QAs, and
operations are in separate departments in the organization, sit in different buildings, or are
outsourced to different countries. This organizational structure is no good for the CD
process. We need something better; we need to adapt the DevOps culture.

DevOps culture means, in a sense, coming back to the roots. A single person or a team is
responsible for all three areas, as presented in the following diagram:

The reason it's possible to move to the DevOps model without losing productivity is
automation. Most of the tasks related to quality assurance and operations are moved to the
automated delivery pipeline and can therefore be managed by the development team.

A DevOps team doesn't necessarily need to consist only of developers. A
very common scenario in many organizations under transformation is to
create teams with four developers, one QA, and one person from
operations. They need, however, to work closely together (sit in one area,
have stand-ups together, work on the same product).

Introducing Continuous Delivery Chapter 1

[21]

The culture of small DevOps teams affects the software architecture. Functional
requirements have to be separated into (micro) services or modules, so that each team can
take care of an independent part.

The impact of the organization's structure on the software architecture
was observed in 1967 and formulated as Conway's law: Any organization
that designs a system (defined broadly) will produce a design whose structure is a
copy of the organization's communication structure.

Client in the process
The role of a client (or a product owner) changes slightly during CD adoption.
Traditionally, clients are involved in defining requirements, answering questions from
developers, attending demos, and taking part in the UAT phase to determine whether what
was built is what they had in mind.

In CD, there is no UAT, and a client is essential in the process of writing acceptance tests.
For some clients, who already wrote their requirements in a testable manner, it is not a big
shift. For others, it means a change in their way of thinking to make requirements more
technical-oriented.

In the Agile environment, some teams don't even accept user stories
(requirements) without acceptance tests attached. These techniques, even
though they may sound too strict, often lead to better development
productivity.

Business decisions
In most companies, the business has an impact on the release schedule. After all, the
decision of what features are delivered, and when, is related to different departments
within the company (for example, marketing) and can be strategic for the enterprise. That is
why the release scheduling has to be re-approached and discussed between the business
and the development teams.

Obviously, there are techniques, such as feature toggles or manual pipeline steps, that help
with releasing features at the specified time. We will describe them later in the book. To be
precise, the term Continuous Delivery is not the same as Continuous Deployment. The latter
means that each commit to the repository is automatically released to production.
Continuous Delivery is less strict and means that each commit ends up with a release
candidate, so it allows the last step (release to production) to be manual.

Introducing Continuous Delivery Chapter 1

[22]

Throughout the remainder of this book, we will use the terms Continuous
Delivery and Continuous Deployment interchangeably.

Technical and development prerequisites
From the technical side, there are a few requirements to keep in mind. We will discuss them
throughout this book, so let's only mention them here without going into detail:

Automated build, test, package, and deploy operations: All operations need to
be able to be automated. If we deal with a system that is non-automatable, for
example, due to security reasons or its complexity, it's impossible to create a fully
automated delivery pipeline.
Quick pipeline execution: The pipeline must be executed in a timely manner,
preferably in 5-15 minutes. If our pipeline execution takes hours or days, it won't
be possible to run it after every commit to the repository.
Quick failure recovery: The possibility of a quick rollback or system recovery is
a must. Otherwise, we risk production health due to frequent releases.
Zero-downtime deployment: The deployment cannot have any downtime since
we release many times a day.
Trunk-based development: Developers must check in regularly into one master
branch. Otherwise, if everyone develops in their own branches, integration is
rare and therefore the releases are rare, which is exactly the opposite of what we
want to achieve.

We will write more on these prerequisites and how to address them throughout the book.
Keeping that in mind, let's move to the last section of this chapter and introduce what
system we plan to build in this book and what tools we will use for that purpose.

Building the CD process
We introduced the idea, benefits, and prerequisites with regard to the CD process. In this
section, we will describe the tools that will be used throughout this book and their place in
the system as a whole.

Introducing Continuous Delivery Chapter 1

[23]

If you're interested more in the idea of the CD process, have a look at an
excellent book by Jez Humble and David Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment Automation.

Introducing tools
First of all, the specific tool is always less important than understanding its role in the
process. In other words, any tool can be replaced with another one that plays the same role.
For example, Jenkins can be replaced with Atlassian Bamboo, and Chef can be used instead
of Ansible. This is why each chapter begins with the general description of why such a tool
is necessary and its role in the whole process. Then, the exact tool is described in
comparison to its substitutes. That form gives you the flexibility to choose the right one for
your environment.

Another approach could be to describe the CD process on the level of ideas; however, I
strongly believe that giving an exact example with the code extract, something that readers
can run by themselves, results in a much better understanding of the concept.

There are two ways to read this book. The first is to read and understand
the concepts of the CD process. The second is to create your own
environment and execute all scripts while reading to understand the
details.

Let's have a quick look at the tools we will use throughout this book. This section, however,
is only a brief introduction to each technology—much more detail will be presented as this
book proceeds.

Docker ecosystem
Docker, as the clear leader of the containerization movement, has dominated the software
industry in recent years. It allows us to package an application in the environment-agnostic
image and therefore treats servers as a farm of resources, rather than machines that must be
configured for each application. Docker was a clear choice for this book because it perfectly
fits the (micro) service world and the CD process.

Docker entails a number of additional technologies, which are as follows:

Docker Hub: This is a registry for Docker images
Kubernetes: This is a container orchestrator

Introducing Continuous Delivery Chapter 1

[24]

In the first edition of this book, Docker Compose and Docker Swarm were
presented as tools for clustering and scheduling multi-container
applications. Since that time, however, Kubernetes has become the market
leader and is therefore used instead.

Jenkins
Jenkins is by far the most popular automation server on the market. It helps to create CI
and CD pipelines and, in general, any other automated sequence of scripts. Highly plugin-
oriented, it has a great community that constantly extends it with new features. What's
more, it allows us to write the pipeline as code and supports distributed build
environments.

Ansible
Ansible is an automation tool that helps with software provisioning, configuration
management, and application deployment. It is trending faster than any other
configuration management engine and will soon overtake its two main competitors: Chef
and Puppet. It uses agentless architecture and integrates smoothly with Docker.

GitHub
GitHub is definitely the best of all hosted version control systems. It provides a very stable
system, a great web-based UI, and a free service for public repositories. Having said that,
any source control management service or tool will work with CD, irrespective of whether
it's in the cloud or self-hosted, and whether it's based on Git, SVN, Mercurial, or any other
tool.

Java/Spring Boot/Gradle
Java has been the most popular programming language for years. That is why it is being
used for most code examples in this book. Together with Java, most companies develop
with the Spring framework, so we used it to create a simple web service needed to explain
some concepts. Gradle is used as a build tool. It's still less popular than Maven, but is,
trending much faster. As always, any programming language, framework, or build tool can
be exchanged and the CD process would stay the same, so don't worry if your technology
stack is different.

Introducing Continuous Delivery Chapter 1

[25]

The other tools
Cucumber was chosen arbitrarily as the acceptance testing framework. Other similar
solutions are FitNesse and JBehave. For the database migration, we use Flyway, but any
other tool would do, for example, Liquibase.

Creating a complete CD system
You can look at how this book is organized from two perspectives.

The first one is based on the steps of the automated deployment pipeline. Each chapter
takes you closer to the complete CD process. If you look at the names of the chapters, some
of them are even named like the pipeline phases:

The CI pipeline
Automated acceptance testing
Configuration management with Ansible

The rest of the chapters give the introduction, summary, or additional information
complementary to the process.

There is also a second perspective to the content of this book. Each chapter describes one
piece of the environment, which, in turn, is well prepared for the CD process. In other
words, the book presents, step by step, technology by technology, how to build a complete
system. To help you get the feeling of what we plan to build throughout the book, let's now
have a look at how the system will evolve in each chapter.

Don't worry if you don't understand the concepts and terminology at this
point. We will be learning everything from scratch in the corresponding
chapters.

Introducing Continuous Delivery Chapter 1

[26]

Introducing Docker
In Chapter 2, Introducing Docker, we start from the center of our system and build a
working application packaged as a Docker image. The output of this chapter is presented in
the following diagram:

A dockerized application (web service) is run as a container on a Docker Host and is
reachable as it would run directly on the host machine. That is possible thanks to port
forwarding (port publishing in Docker's terminology).

Configuring Jenkins
In Chapter 3, Configuring Jenkins, we prepare the Jenkins environment. Thanks to the
support of multiple agent (slave) nodes, it is able to handle the heavy concurrent load. The
result is presented in the following diagram:

The Jenkins master accepts a build request, but execution is started at one of the Jenkins
Slave (agent) machines. Such an approach provides horizontal scaling of the Jenkins
environment.

Introducing Continuous Delivery Chapter 1

[27]

The CI pipeline
In Chapter 4, Continuous Integration Pipeline, we'll show how to create the first phase of the
CD pipeline, the commit stage. The output of this chapter is the system presented in the
following diagram:

The application is a simple web service written in Java with the Spring Boot framework.
Gradle is used as a build tool and GitHub as the source code repository. Every commit to
GitHub automatically triggers the Jenkins build, which uses Gradle to compile Java code,
run unit tests, and perform additional checks (code coverage, static code analysis, and so
on). Once the Jenkins build is complete, a notification is sent to the developers.

After this chapter, you will be able to create a complete CI pipeline.

Introducing Continuous Delivery Chapter 1

[28]

Automated acceptance testing
In Chapter 5, Automated Acceptance Testing, we'll finally merge the two technologies from
the book title, Docker and Jenkins. This results in the system presented in the following
diagram:

The additional elements in the diagram are related to the automated acceptance testing
stage:

Docker Registry: After the CI phase, the application is packaged first into a JAR
file and then as a Docker image. That image is then pushed to the Docker
Registry, which acts as storage for dockerized applications.
Docker Host: Before performing the acceptance test suite, the application has to
be started. Jenkins triggers a Docker Host machine to pull the dockerized
application from the Docker Registry and starts it.
Cucumber: After the application is started on the Docker Host, Jenkins runs a
suite of acceptance tests written in the Cucumber framework.

Introducing Continuous Delivery Chapter 1

[29]

Clustering with Kubernetes
In Chapter 6, Clustering with Kubernetes, we replace a single Docker host with a Kubernetes
cluster and a single standalone application with two dependent containerized applications.
The output is the environment presented in the following diagram:

Kubernetes provides an abstraction layer for a set of Docker hosts and allows a simple
communication between dependent applications. We no longer have to think about which
exact machine our applications are deployed on. All we care about is the number of their
instances.

Introducing Continuous Delivery Chapter 1

[30]

Configuration management with Ansible
In Chapter 7, Configuration Management with Ansible, we create multiple environments
using Ansible. The output is presented in the following diagram:

Ansible takes care of the environments and enables the deployment of the same
applications on multiple machines. As a result, we have the mirrored environment for
testing and for production.

Introducing Continuous Delivery Chapter 1

[31]

The CD pipeline/advanced CD
In the last two chapters, that is, Chapter 8, Continuous Delivery Pipeline, and Chapter 9,
Advanced Continuous Delivery, we deploy the application to the staging environment, run
the acceptance testing suite, and finally release the application to the production
environment, usually in many instances. The final improvement is the automatic
management of the database schemas using Flyway migrations integrated into the delivery
process. The final environment created in this book is presented in the following diagram:

I hope you are already excited by what we plan to build throughout this book. We will
approach it step by step, explaining every detail and all the possible options in order to
help you understand the procedures and tools. After reading this book, you will be able to
introduce or improve the CD process in your projects.

Introducing Continuous Delivery Chapter 1

[32]

Summary
In this chapter, we introduced the CD process starting from the idea, and discussed the
prerequisites, to end up with tools that are used in the rest of this book. The key takeaway
from this chapter is as follows: the delivery process currently used in most companies has
significant shortcomings and can be improved using modern automation tools. The CD
approach provides a number of benefits, of which the most significant ones are fast
delivery, fast feedback cycle, and low-risk releases. The CD pipeline consists of three stages:
CI, automated acceptance testing, and configuration management. Introducing CD usually
requires a change in the organization's culture and structure. The most important tools in
the context of CD are Docker, Jenkins, and Ansible.

In the next chapter, we'll introduce Docker and show you how to build a dockerized
application.

Questions
To verify the knowledge acquired from this chapter, please answer the following questions:

What are the three phases of the traditional delivery process?1.
What are the three main stages of the CD pipeline?2.
Name at least three benefits of using CD.3.
What are the types of tests that should be automated as part of the CD pipeline?4.
Should we have more integration or unit tests? Explain why.5.
What does the term DevOps mean?6.
What are the software tools that will be used throughout this book? Name at7.
least four.

Introducing Continuous Delivery Chapter 1

[33]

Further reading
To learn more about the concept of CD and its background, please refer to the following
resources:

Continuous Delivery by Jez Humble and David Farley: https:/​/
continuousdelivery.​com/​

TestPyramid by Martin Fowler: https:/​/​martinfowler.​com/​bliki/
TestPyramid.​html

Succeeding with Agile: Software Development Using Scrum by Mike Cohn

https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html

2
Introducing Docker

In this chapter, we will discuss how the modern Continuous Delivery (CD) process should
look by introducing Docker, the technology that changed the IT industry and the way the
servers are used.

This chapter covers the following topics:

What is Docker?
Installing Docker
Running Docker hello world
Docker applications
Building images
Docker container states
Docker networking
Using Docker volumes
Using names in Docker
Docker cleanup
Docker commands overview

Technical requirements
To complete this chapter, you'll need the following hardware/software requirements:

At least 4 GB of RAM
macOS (10.12 Sierra+), Windows (64-bit Windows 10 Pro), Ubuntu (18.04+), or
other Linux operating systems
Docker Community Edition (we'll walk-through the installation process)

Introducing Docker Chapter 2

[35]

All the examples and solutions to the exercises can be found here at https:/​/​github.​com/
PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter02.

What is Docker?
Docker is an open source project designed to help with application deployment using
software containers. This approach means running applications together with the complete
environment (files, code libraries, tools, and so on). Docker, therefore—similar to
virtualization—allows an application to be packaged into an image that can be run
everywhere.

Containerization versus virtualization
Without Docker, isolation and other benefits can be achieved with the use of hardware
virtualization, often called virtual machines. The most popular solutions are VirtualBox,
VMware, and parallels. A virtual machine emulates a computer architecture and provides
the functionality of a physical computer. We can achieve complete isolation of applications
if each of them is delivered and run as a separate virtual machine image.

The following diagram presents the concept of virtualization:

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter02

Introducing Docker Chapter 2

[36]

Each application is launched as a separate image with all dependencies and a guest
operating system. Images are run by the Hypervisor, which emulates the physical
computer architecture. This method of deployment is widely supported by many tools
(such as Vagrant) and dedicated to development and testing environments. Virtualization,
however, has three significant drawbacks:

Low performance: The virtual machine emulates the whole computer
architecture to run the guest operating system, so there is a significant overhead
associated with executing each operation.
High resource consumption: Emulation requires a lot of resources and has to be
done separately for each application. This is why, on a standard desktop
machine, only a few applications can be run simultaneously.
Large image size: Each application is delivered with a full operating system, so
deployment on a server implies sending and storing a large amount of data.

The concept of containerization presents a different solution:

Each application is delivered together with its dependencies, but without the operating
system. Applications interface directly with the host operating system, so there is no
additional layer of the guest operating system. It results in better performance and no
wasted resources. Moreover, shipped Docker images are significantly smaller.

Introducing Docker Chapter 2

[37]

Notice that, in the case of containerization, isolation happens at the level of the host
operating system's processes. This doesn't mean, however, that the containers share their
dependencies. Each of them has their own libraries in the right version, and if any of them
is updated, it has no impact on the others. To achieve this, Docker Engine creates a set of
Linux namespaces and control groups for the container. This is why Docker security is
based on the Linux kernel process isolation. This solution, although mature enough, could
be considered slightly less secure than the complete operating system-based isolation
offered by virtual machines.

The need for Docker
Docker containerization solves a number of problems seen in traditional software delivery.
Let's take a closer look.

Environment
Installing and running software is complex. You need to make decisions about the
operating system, resources, libraries, services, permissions, other software, and everything
your application depends on. Then, you need to know how to install it. What's more, there
may be some conflicting dependencies. What do you do then? What if your software needs an
upgrade of a library, but the other does not? In some companies, such issues are solved by
having classes of applications, and each class is served by a dedicated server, such as a server
for web services with Java 7, and another one for batch jobs with Java 8. This solution,
however, is not balanced in terms of resources and requires an army of IT operations teams
to take care of all production and test servers.

Another problem with the environment's complexity is that it often requires a specialist to
run an application. A less technical person may have a hard time setting up MySQL, ODBC,
or any other slightly more sophisticated tool. This is particularly true for applications not
delivered as an operating system-specific binary, but which require source code
compilation or any other environment-specific configuration.

Introducing Docker Chapter 2

[38]

Isolation
Keep the workspace tidy. One application can change the behavior of another one. Imagine
what can happen. Applications share one filesystem, so if application A writes something
to the wrong directory, application B reads the incorrect data. They share resources, so if
there is a memory leak in application A, it can freeze not only itself but also application B.
They share network interfaces, so if applications A and B both use port 8080, one of them
will crash. Isolation concerns the security aspects, too. Running a buggy application or
malicious software can cause damage to other applications. This is why it is a much safer
approach to keep each application inside a separate sandbox, which limits the scope of
possible damage to the application itself.

Organizing applications
Servers often end up looking messy, with a ton of running applications nobody knows
anything about. How will you check what applications are running on the server and what
dependencies each of them is using? They could depend on libraries, other applications, or
tools. Without the exhaustive documentation, all we can do is look at the running processes
and start guessing. Docker keeps things organized by having each application as a separate
container that can be listed, searched, and monitored.

Portability
Write once, run anywhere, said the slogan while advertising the earliest versions of Java.
Indeed, Java addresses the portability issue quite well. However, I can still think of a few
cases where it fails; for example, the incompatible native dependencies or the older version
of Java runtime. Moreover, not all software is written in Java.

Docker moves the concept of portability one level higher; if the Docker version is
compatible, the shipped software works correctly, regardless of the programming
language, operating system, or environment configuration. Docker, then, can be expressed
by the slogan ship the entire environment instead of just code.

Introducing Docker Chapter 2

[39]

Kittens and cattle
The difference between traditional software deployment and Docker-based deployment is
often expressed with an analogy of kittens and cattle. Everybody likes kittens. Kittens are
unique. Each has its own name and needs special treatment. Kittens are treated with
emotion. We cry when they die. On the contrary, cattle exists only to satisfy our needs.
Even the form cattle is singular, since it's just a pack of animals treated together. No
naming, no uniqueness. Surely they are unique (the same as each server is unique), but it is
irrelevant. This is why the most straightforward explanation of the idea behind Docker is
treat your servers like cattle, not pets.

Alternative containerization technologies
Docker is not the only containerization system available on the market. Actually, the first
versions of Docker were based on the open source Linux Containers (LXC) system, which
is an alternative platform for containers. Other known solutions are FreeBSD Jails,
OpenVZ, and Solaris Containers. Docker, however, overtook all other systems because of
its simplicity, good marketing, and start-up approach. It works under most operating
systems, allows you to do something useful in less than 15 minutes, has a lot of simple-to-
use features, good tutorials, a great community, and probably the best logo in the IT
industry!

We already understand the idea of Docker, so let's move to the practical part and start from
the beginning: the Docker installation.

Installing Docker
Docker's installation process is quick and simple. Currently, it's supported on most Linux
operating systems, and a wide range of them have dedicated binaries provided. macOS and
Windows are also well-supported with native applications. However, it's important to
understand that Docker is internally based on the Linux kernel and its specifics, and this is
why, in the case of macOS and Windows, it uses virtual machines (HyperKit for macOS
and Hyper-V for Windows) to run the Docker Engine environment.

Introducing Docker Chapter 2

[40]

Prerequisites for Docker
The Docker Community Edition requirements are specific for each operating system:

macOS:
2010 or newer model, with Intel’s hardware support for memory
management unit (MMU) virtualization
macOS 10.12 Sierra or newer
At least 4 GB of RAM
No VirtualBox prior to version 4.3.30 installed

Windows:
64-bit Windows 10 Pro
The Hyper-V package enabled
At least 4 GB of RAM
CPU Second Level Address Translation (SLAT)-capable feature

Linux:
64-bit architecture
Linux kernel 3.10 or later

If your machine does not meet these requirements, the solution is to use VirtualBox with
the Ubuntu operating system installed. This workaround, even though it sounds
complicated, is not necessarily the worst method, especially considering that the Docker
Engine environment is virtualized anyway in the case of macOS and Windows.
Furthermore, Ubuntu is one of the best-supported systems for using Docker.

All examples in this book have been tested on the Ubuntu 18.04 operating
system.

Installing on a local machine
The Docker installation process is straightforward and described in detail on its official
pages.

All the following installation instructions are related to Docker
Community Edition; for Docker Enterprise Edition, please refer to
https:/​/​docs.​docker.​com/​ee/​.

https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/
https://docs.docker.com/ee/

Introducing Docker Chapter 2

[41]

Docker for Ubuntu
Visit https:/​/​docs.​docker.​com/​install/​linux/​docker-​ce/​ubuntu/​ to find a guide on
how to install Docker on an Ubuntu machine.

In the case of Ubuntu 18.04, I've executed the following commands:

$ sudo apt-get update
$ sudo apt-get install apt-transport-https ca-certificates curl gnupg-agent
software-properties-common
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key
add -
$ sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"
$ sudo apt-get update
$ sudo apt-get install docker-ce docker-ce-cli containerd.io

After all operations are completed, Docker should be installed. However, at the moment,
the only user allowed to use Docker commands is root. This means that the sudo keyword
must precede every Docker command.

We can enable other users to use Docker by adding them to the docker group:

$ sudo usermod -aG docker <username>

After a successful logout, everything is set up. With the latest command, however, we need
to take some precautions not to give the Docker permissions to an unwanted user, and
therefore create a vulnerability in the Docker Engine. This is particularly important in the
case of installation on the server machine.

Docker for Windows, macOS, and Linux
You can check out https:/​/​docs.​docker.​com/​install/​ for installation guides for
Windows, macOS, and most Linux distributions.

https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/
https://docs.docker.com/install/

Introducing Docker Chapter 2

[42]

Testing the Docker installation
No matter which installation you've chosen (macOS, Windows, Ubuntu, Linux, or other),
Docker should be set up and ready. The best way to test it is to run the docker info
command. The output message should be similar to the following:

$ docker info
Containers: 0
 Running: 0
 Paused: 0
 Stopped: 0
 Images: 0
...

Installing on a server
In order to use Docker over the network, it is possible to either take advantage of cloud
platform providers or to manually install Docker on a dedicated server.

In the first case, the Docker configuration differs from one platform to another, but it is
always very well described in dedicated tutorials. Most cloud platforms enable Docker
hosts to be created through user-friendly web interfaces or describe exact commands to
execute on their servers.

The second case (installing Docker manually)does require a few words, however.

Dedicated server
Installing Docker manually on a server does not differ much from the local installation.

Two additional steps are required, which include setting the Docker daemon to listen on
the network socket and setting security certificates:

By default, due to security reasons, Docker runs through a non-networked Unix1.
socket that only allows local communication. It's necessary to add listening on
the chosen network interface socket so that the external clients can connect. In the
case of Ubuntu, the Docker daemon is configured by systemd, so, in order to
change the configuration of how it's started, we need to modify one line in the
/lib/systemd/system/docker.service file:

ExecStart=/usr/bin/dockerd -H <server_ip>:2375

Introducing Docker Chapter 2

[43]

By changing this line, we enabled access to the Docker daemon through the
specified IP address. All the details on the systemd configuration can be found at
https:/​/​docs.​docker.​com/​config/​daemon/​systemd/​.

This step of server configuration concerns the Docker security certificates. This2.
enables only clients authenticated by a certificate to access the server. The
comprehensive description of the Docker certificates configuration can be found
at https:/​/​docs.​docker.​com/​engine/​security/​https/​. This step isn't strictly
required; however, unless your Docker daemon server is inside the firewalled
network, it is essential.

If your Docker daemon is run inside the corporate network, you have to
configure the HTTP proxy. The detailed description can be found at
https:/​/​docs.​docker.​com/​config/​daemon/​systemd/​.

The Docker environment is set up and ready, so we can start the first example.

Running Docker hello world
Enter the following command in your console:

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest:
sha256:2557e3c07ed1e38f26e389462d03ed943586f744621577a99efb77324b0fe535
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.
...

https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/engine/security/https/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/
https://docs.docker.com/config/daemon/systemd/

Introducing Docker Chapter 2

[44]

Congratulations! You've just run your first Docker container. I hope you can already see
how simple Docker is. Let's examine what happened under the hood:

You ran the Docker client with the run command1.
The Docker client contacted the Docker daemon and asked to create a container2.
from the image called hello-world
The Docker daemon checked whether it contained the hello-world image3.
locally and, since it didn't, requested the hello-world image from the remote
Docker Hub registry
The Docker Hub registry contained the hello-world image, so it was pulled4.
into the Docker daemon
The Docker daemon created a new container from the hello-world image that5.
started the executable producing the output
The Docker daemon streamed this output to the Docker client6.
The Docker client sent it to your Terminal7.

The projected flow is represented in the following diagram:

Let's now look at each Docker component that was illustrated in this section.

Docker components
Docker is actually an ecosystem that includes a number of components. Let's describe all of
them, starting with a closer look at the Docker client/server architecture.

Introducing Docker Chapter 2

[45]

Docker client and server
Let's look at a diagram that presents the Docker Engine architecture:

Docker Engine consists of three components:

Docker Daemon (server) running in the background
Docker Client running as a command tool
The REST API

Installing Docker means installing all the components so that the Docker daemon runs on
our computer all the time as a service. In the case of the hello-world example, we used
the Docker client to interact with the Docker daemon; however, we could do exactly the
same thing using the REST API. Also, in the case of the hello-world example, we
connected to the local Docker daemon. However, we could use the same client to interact
with the Docker daemon running on a remote machine.

To run the Docker container on a remote machine, you can use the -H
option: docker -H <server_ip>:2375 run hello-world.

Introducing Docker Chapter 2

[46]

Docker images and containers
An image is a stateless building block in the Docker world. You can imagine an image as a
collection of all the files necessary to run your application together with the recipe on how
to run it. The image is stateless, so you can send it over the network, store it in the registry,
name it, version it, and save it as a file. Images are layered, which means that you can build
an image on top of another image.

A container is a running instance of an image. We can create many containers from the
same image if we want to have many instances of the same application. Since containers are
stateful, this means we can interact with them and make changes to their states.

Let's look at an example of a Container and Image layers structure:

At the bottom, there is always the base image. In most cases, it represents an operating
system, and we build our images on top of the existing base images. It's technically possible
to create your own base images. However, this is rarely needed.

In our example, the ubuntu base image provides all the capabilities of the Ubuntu
operating system. The add git image adds the Git toolkit. Then, there is an image that adds
the JDK environment. Finally, on the top, there is a container created from the add JDK
image. Such a container is able, for example, to download a Java project from the GitHub
repository and compile it to a JAR file. As a result, we can use this container to compile and
run Java projects without installing any tools on our operating system.

Introducing Docker Chapter 2

[47]

It is important to note that layering is a very smart mechanism to save bandwidth and
storage. Imagine that we have an application that is also based on Ubuntu:

This time, we will use the Python interpreter. While installing the add python image, the
Docker daemon will note that the ubuntu image is already installed, and what it needs to
do is only to add the Python layer, which is very small. So, the ubuntu image is a
dependency that is reused. The same applies if we would like to deploy our image in the
network. When we deploy the Git and JDK application, we need to send the whole ubuntu
image. However, while subsequently deploying the Python application, we need to send
just the small add Python layer.

Now that we understand what the Docker ecosystem consists of, let's describe how we can
run applications packaged as Docker images.

Docker applications
A lot of applications are provided in the form of Docker images that can be downloaded
from the internet. If we know the image name, it would be enough to run it in the same
way we did with the hello world example. How can we find the desired application image on the
Docker Hub? Let's take MongoDB as an example:

If we want to find it on the Docker Hub, we have two options:1.
Search on the Docker Hub explore page (https:/​/​hub.​docker.​com/
search/​)
Use the docker search command

In the second case, we can perform the following operation:

$ docker search mongo
NAME DESCRIPTION STARS

https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/
https://hub.docker.com/search/

Introducing Docker Chapter 2

[48]

OFFICIAL AUTOMATED
mongo MongoDB document databases provide high avai…
5554 [OK]
mongo-express Web-based MongoDB admin interface, written w…
374 [OK]
tutum/mongodb MongoDB Docker image – listens in port 27017…
224 [OK]
mvertes/alpine-mongo light MongoDB container 92
[OK]
...

There are many interesting options. How do we choose the best image? Usually, the2.
most appealing one is the one without any prefix, since it means that it's an
official Docker Hub image and should therefore be stable and maintained. The
images with prefixes are unofficial, usually maintained as open source projects.
In our case, the best choice seems to be mongo, so in order to run the MongoDB
server, we can run the following command:

$ docker run mongo
Unable to find image 'mongo:latest' locally
latest: Pulling from library/mongo
7b722c1070cd: Pull complete
5fbf74db61f1: Pull complete
ed41cb72e5c9: Pull complete
7ea47a67709e: Pull complete
778aebe6fb26: Pull complete
3b4b1e0b80ed: Pull complete
844ccc42fe76: Pull complete
eab01fe8ebf8: Pull complete
e5758d5381b1: Pull complete
a795f1f35522: Pull complete
67bc6388d1cd: Pull complete
89b55f4f3473: Pull complete
10886b20b4fc: Pull complete
Digest:
sha256:a7c1784c83536a3c686ec6f0a1c570ad5756b94a1183af88c07df82c
5b64663c
Status: Downloaded newer image for mongo:latest
2019-02-02T16:05:28.605+0000 I CONTROL [main] Automatically
disabling TLS 1.0, to force-enable TLS 1.0 specify --
sslDisabledProtocols 'none'
2019-02-02T16:05:28.608+0000 I CONTROL [initandlisten] MongoDB
starting : pid=1 port=27017 dbpath=/data/db 64-bit
host=96da518bc694
...

Introducing Docker Chapter 2

[49]

That's all. MongoDB has started. Running applications as Docker containers is that simple
because we don't need to think of any dependencies; they are all delivered together with
the image. Docker can be treated as a useful tool to run applications; however, the real
power lies in building your own Docker images that wrap the programs together with the
environment.

On the Docker Hub service, you can find a lot of applications; they store
more than 100,000 different images.

Building images
In this section, we will see how to do this using two different methods: the Docker commit
command and the Dockerfile automated build.

Docker commit
Let's start with an example and prepare an image with the Git and JDK toolkit. We will use
Ubuntu 18.04 as a base image. There is no need to create it; most base images are available
in the Docker Hub registry:

Run a container from ubuntu:18.04 and connect it to its command line:1.

 $ docker run -i -t ubuntu:18.04 /bin/bash

We've pulled the ubuntu:18.04 image, run it as a container, and then called the
/bin/bash command in an interactive way (-i flag). You should see the
Terminal of the container. Since containers are stateful and writable, we can do
anything we want in its Terminal.

Install the Git toolkit:2.

 root@dee2cb192c6c:/# apt-get update
 root@dee2cb192c6c:/# apt-get install -y git

Check whether the Git toolkit is installed:3.

 root@dee2cb192c6c:/# which git
 /usr/bin/git

Introducing Docker Chapter 2

[50]

Exit the container:4.

 root@dee2cb192c6c:/# exit

Check what has changed in the container by comparing it to the ubuntu image:5.

 $ docker diff dee2cb192c6c

The command should print a list of all files changed in the container.

Commit the container to the image:6.

 $ docker commit dee2cb192c6c ubuntu_with_git

We've just created our first Docker image. Let's list all the images of our Docker host to see
whether the image is present:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
ubuntu_with_git latest f3d674114fe2 About a minute ago 205 MB
ubuntu 18.04 20bb25d32758 7 days ago 87.5 MB
mongo latest 4a3b93a299a7 10 days ago 394 MB
hello-world latest fce289e99eb9 2 weeks ago 1.84 kB

As expected, we see hello-world, mongo (installed before), ubuntu (base image pulled
from Docker Hub), and the freshly built ubuntu_with_git. By the way, we can observe
the size of each image that corresponds to what we've installed on the image.

Now, if we create a container from the image, it will have the Git tool installed:

$ docker run -i -t ubuntu_with_git /bin/bash
root@3b0d1ff457d4:/# which git
/usr/bin/git
root@3b0d1ff457d4:/# exit

Using the exact same method, we can build ubuntu_with_git_and_jdk on top of the
ubuntu_with_git image:

$ docker run -i -t ubuntu_with_git /bin/bash
root@6ee6401ed8b8:/# apt-get install -y openjdk-8-jdk
root@6ee6401ed8b8:/# exit
$ docker commit 6ee6401ed8b8 ubuntu_with_git_and_jdk

Introducing Docker Chapter 2

[51]

Dockerfile
Creating each Docker image manually with the commit command could be laborious,
especially, in the case of build automation and the Continuous Delivery process. Luckily,
there is a built-in language to specify all the instructions that should be executed to build
the Docker image.

Let's start with an example similar to the one with Git and JDK. This time, we will prepare
the ubuntu_with_python image:

Create a new directory and a file called Dockerfile with the following content:1.

 FROM ubuntu:18.04
 RUN apt-get update && \
 apt-get install -y python

Run the following command to create the ubuntu_with_python image:2.

 $ docker build -t ubuntu_with_python .

Check that the image was created:3.

$
REPOSITORY TAG IMAGE ID CREATED
SIZE
ubuntu_with_python latest d6e85f39f5b7 About a minute ago
147 MB
ubuntu_with_git_and_jdk latest 8464dc10abbb 3 minutes ago
580 MB
ubuntu_with_git latest f3d674114fe2 9 minutes ago
205 MB
ubuntu 18.04 20bb25d32758 7 days ago
87.5 MB
mongo latest 4a3b93a299a7 10 days ago
394 MB
hello-world latest fce289e99eb9 2 weeks ago
1.84 kB

We can now create a container from the image and check that the Python interpreter exists
in exactly the same way we did after executing the docker commit command. Note that
the ubuntu image is listed only once even though it's the base image for both
ubuntu_with_git and ubuntu_with_python.

Introducing Docker Chapter 2

[52]

In this example, we used the first two Dockerfile instructions:

FROM defines the image on top of which the new image will be built
RUN specifies the commands to run inside the container

The other widely used instructions are as follows:

COPY copies a file or a directory into the filesystem of the image
ENTRYPOINT defines which application should be run in the executable container

A complete guide of all Dockerfile instructions can be found on the official
Docker page at https:/​/​docs.​docker.​com/​engine/​reference/​builder/​.

Completing the Docker application
We already have all the information necessary to build a fully working application as a
Docker image. As an example, we will prepare, step by step, a simple Python hello world
program. The steps are always the same, no matter what environment or programming
language we use.

Writing the application
Create a new directory and, inside this directory, a hello.py file with the following
content:

print "Hello World from Python!"

Close the file. This is the source code of our application.

Preparing the environment
Our environment will be expressed in the Dockerfile. We need the instructions to define the
following:

What base image should be used
How to install the Python interpreter
How to include hello.py in the image
How to start the application

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/

Introducing Docker Chapter 2

[53]

In the same directory, create the Dockerfile:

FROM ubuntu:18.04
RUN apt-get update && \
 apt-get install -y python
COPY hello.py .
ENTRYPOINT ["python", "hello.py"]

Building the image
Now, we can build the image exactly the same way we did before:

$ docker build -t hello_world_python .

Running the application
We run the application by running the container:

$ docker run hello_world_python

You should see the friendly Hello World from Python! message. The most interesting thing
in this example is that we are able to run the application written in Python without having
the Python interpreter installed in our host system. This is possible because the application
packed as an image has the environment already included.

An image with the Python interpreter already exists in the Docker Hub
service, so, in the real-life scenario, it would be enough to use it.

Environment variables
We've run our first homemade Docker application. However, what if the execution of the
application depends on some conditions?

For example, in the case of the production server, we would like to print Hello to the logs,
not to the console, or we may want to have different dependent services during the testing
phase and the production phase. One solution would be to prepare a separate Dockerfile
for each case; however, there is a better way: environment variables.

Introducing Docker Chapter 2

[54]

Let's change our hello world application to print Hello World from
<name_passed_as_environment_variable> !. In order to do this, we need to proceed
with the following steps:

Change the hello.py Python script to use the environment variable:1.

 import os
 print "Hello World from %s !" % os.environ['NAME']

Build the image:2.

 $ docker build -t hello_world_python_name .

Run the container passing the environment variable:3.

 $ docker run -e NAME=Rafal hello_world_python_name
 Hello World from Rafal !

Alternatively, we can define the environment variable value in Dockerfile, for4.
example:

 ENV NAME Rafal

Run the container without specifying the -e option.5.

 $ docker build -t hello_world_python_name_default .
 $ docker run hello_world_python_name_default
 Hello World from Rafal !

Environment variables are especially useful when we need to have different versions of the
Docker container depending on its purpose; for example, to have separate profiles for
production and testing servers.

If the environment variable is defined both in Dockerfile and as a flag,
then the command flag takes precedence.

Docker container states
Every application we've run so far was supposed to do some work and stop. For example,
we've printed Hello from Docker! and exited. There are, however, applications that
should run continuously, such as services.

Introducing Docker Chapter 2

[55]

To run a container in the background, we can use the -d (--detach) option. Let's try it
with the ubuntu image:

$ docker run -d -t ubuntu:18.04

This command started the Ubuntu container but did not attach the console to it. We can see
that it's running by using the following command:

$ docker ps
CONTAINER ID IMAGE COMMAND STATUS PORTS
NAMES
95f29bfbaadc ubuntu:18.04 "/bin/bash" Up 5 seconds
kickass_stonebraker

This command prints all containers that are in the running state. What about our old, already-
exited containers? We can find them by printing all containers:

$ docker ps -a
CONTAINER ID IMAGE COMMAND STATUS PORTS
NAMES
95f29bfbaadc ubuntu:18.04 "/bin/bash" Up 33 seconds
kickass_stonebraker
34080d914613 hello_world_python_name_default "python hello.py" Exited
lonely_newton
7ba49e8ee677 hello_world_python_name "python hello.py" Exited mad_turing
dd5eb1ed81c3 hello_world_python "python hello.py" Exited thirsty_bardeen
...

Note that all the old containers are in the exited state. There are two more states we haven't
observed yet: paused and restarting.

All of the states and the transitions between them are presented in the following diagram:

Introducing Docker Chapter 2

[56]

Pausing Docker containers is very rare, and technically, it's done by freezing the processes
using the SIGSTOP signal. Restarting is a temporary state when the container is run with
the --restart option to define the restarting strategy (the Docker daemon is able to
automatically restart the container in case of failure).

The diagram also shows the Docker commands used to change the Docker container state
from one to another.
For example, we can stop running the Ubuntu container, as shown here:

$ docker stop 95f29bfbaadc
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

We've always used the docker run command to create and start the
container. However, it's possible to just create the container without
starting it (with docker create).

Having grasped the details of Docker states, let's describe the networking basics within the
Docker world.

Docker networking
Most applications these days do not run in isolation; they need to communicate with other
systems over the network. If we want to run a website, web service, database, or a cache
server inside a Docker container, we need to first understand how to run a service and
expose its port to other applications.

Running services
Let's start with a simple example, and run a Tomcat server directly from Docker Hub:

$ docker run -d tomcat

Tomcat is a web application server whose user interface can be accessed by port 8080.
Therefore, if we installed Tomcat on our machine, we could browse it at
http://localhost:8080. In our case, however, Tomcat is running inside the Docker
container.

Introducing Docker Chapter 2

[57]

We started it the same way we did with the first Hello World example. We can see that
it's running:

$ docker ps
CONTAINER ID IMAGE COMMAND STATUS PORTS NAMES
d51ad8634fac tomcat "catalina.sh run" Up About a minute 8080/tcp
jovial_kare

Since it's run as a daemon (with the -d option), we don't see the logs in the console right
away. We can, however, access it by executing the following code:

$ docker logs d51ad8634fac

If there are no errors, we should see a lot of logs, which indicates that Tomcat has been
started and is accessible through port 8080. We can try going to
http://localhost:8080, but we won't be able to connect. This is because Tomcat has
been started inside the container and we're trying to reach it from the outside. In other
words, we can reach it only if we connect with the command to the console in the container
and check it there. How do we make running Tomcat accessible from outside?

We need to start the container, specifying the port mapping with the -p (--publish) flag:

-p, --publish <host_port>:<container_port>

So, let's first stop the running container and start a new one:

$ docker stop d51ad8634fac
$ docker run -d -p 8080:8080 tomcat

After waiting a few seconds, Tomcat should have started and we should be able to open its
page—http://localhost:8080:

Introducing Docker Chapter 2

[58]

Such a simple port mapping command is sufficient in most common Docker use cases. We
are able to deploy (micro) services as Docker containers and expose their ports to facilitate
communication. However, let's dive a little deeper into what happened under the hood.

Docker also allows us to publish to the specific host network interface with -
p <ip>:<host_port>:<container_port>.

Container networks
We have connected to the application that is running inside the container. In fact, the
connection is two-way because, if you remember our previous examples, we executed the
apt-get install commands from inside and the packages were downloaded from the
internet. How is this possible?

If you check the network interfaces on your machine, you can see that one of the interfaces
is called docker0:

$ ifconfig docker0
docker0 Link encap:Ethernet HWaddr 02:42:db:d0:47:db
 inet addr:172.17.0.1 Bcast:0.0.0.0 Mask:255.255.0.0
...

The docker0 interface is created by the Docker daemon in order to connect with the
Docker container. Now, we can see what interfaces are created inside the Tomcat Docker
container created with the docker inspect command:

$ docker inspect 03d1e6dc4d9e

This prints all the information about the container configuration in JSON format. Among
others, we can find the part related to the network settings:

"NetworkSettings": {
 "Bridge": "",
 "Ports": {
 "8080/tcp": [
 {
 "HostIp": "0.0.0.0",
 "HostPort": "8080"
 }
]
 },
 "Gateway": "172.17.0.1",

Introducing Docker Chapter 2

[59]

 "IPAddress": "172.17.0.2",
 "IPPrefixLen": 16,
}

In order to filter the docker inspect response, we can use the --format
option, for example, docker inspect --format '{{
.NetworkSettings.IPAddress }}' <container_id>.

We can observe that the Docker container has an IP address of 172.17.0.2 and it
communicates with the Docker host with an IP address of 172.17.0.1. This means that in
our previous example, we could access the Tomcat server even without the port
forwarding, using http://172.17.0.2:8080. Nevertheless, in most cases, we run the
Docker container on a server machine and want to expose it outside, so we need to use the
-p option.

Note that, by default, the containers don't open any routes from external systems. We can
change this default behavior by playing with the --network flag and setting it as follows:

bridge (default): Network through the default Docker bridge
none: No network
container: Network joined with the other (specified) container
host: Host's network stack
NETWORK: User-created network (using the docker network create
command)

The different networks can be listed and managed by the docker network command:

$ docker network ls
NETWORK ID NAME DRIVER SCOPE
b3326cb44121 bridge bridge local
84136027df04 host host local
80c26af0351c none null local

If we specify none as the network, we will not be able to connect to the container, and vice
versa; the container has no network access to the external world. The host option makes
the container network interfaces identical to the host. They share the same IP addresses, so
everything started on the container is visible outside. The most popular option is the
default one (bridge), because it lets us define explicitly which ports should be published. It
is both secure and accessible.

Introducing Docker Chapter 2

[60]

Exposing container ports
We mentioned a few times that the container exposes the port. In fact, if we dig deeper into
the Tomcat image on GitHub (https:/​/​github.​com/​docker-​library/​tomcat), we can see
the following line in the Dockerfile:

EXPOSE 8080

This Dockerfile instruction stipulates that port 8080 should be exposed from the container.
However, as we have already seen, this doesn't mean that the port is automatically
published. The EXPOSE instruction only informs users which ports they should publish.

Automatic port assignment
Let's try to run the second Tomcat container without stopping the first one:

$ docker run -d -p 8080:8080 tomcat
0835c95538aeca79e0305b5f19a5f96cb00c5d1c50bed87584cfca8ec790f241
docker: Error response from daemon: driver failed programming external
connectivity on endpoint distracted_heyrovsky
(1b1cee9896ed99b9b804e4c944a3d9544adf72f1ef3f9c9f37bc985e9c30f452): Bind
for 0.0.0.0:8080 failed: po rt is already allocated.

This error may be common. In such cases, we have to either take care of the uniqueness of
the ports on our own, or let Docker assign the ports automatically using one of the
following versions of the publish command:

-p <container_port>: Publishes the container port to the unused host port
-p (--publish-all): Publishes all ports exposed by the container to the unused
host ports:

$ docker run -d -P tomcat
078e9d12a1c8724f8aa27510a6390473c1789aa49e7f8b14ddfaaa328c8f737b
$ docker port 078e9d12a1c8
8080/tcp -> 0.0.0.0:32772

We can see that the second Tomcat has been published to port 32772, so it can be browsed
at http://localhost:32772.

After understanding Docker network basics, let's see how to provide the persistence layer
for Docker containers using Docker volumes.

https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat
https://github.com/docker-library/tomcat

Introducing Docker Chapter 2

[61]

Using Docker volumes
Imagine that you would like to run the database as a container. You can start such a
container and enter the data. Where is it stored? What happens when you stop the container or
remove it? You can start the new one, but the database will be empty again. Unless it's your
testing environment, you'd expect to have your data persisted permanently.

Docker volume is the Docker host's directory mounted inside the container. It allows the
container to write to the host's filesystem as if it was writing to its own. The mechanism is
presented in the following diagram:

Docker volume enables the persistence and sharing of the container's data. Volumes also
clearly separate the processing from the data. Let's start with an example:

Specify the volume with the -v <host_path>:<container_path> option and1.
then connect to the container:

$ docker run -i -t -v ~/docker_ubuntu:/host_directory
ubuntu:18.04 /bin/bash

Create an empty file in host_directory in the container:2.

root@01bf73826624:/# touch /host_directory/file.txt

Check whether the file was created in the Docker host's filesystem:3.

root@01bf73826624:/# exit
exit
$ ls ~/docker_ubuntu/
file.txt

Introducing Docker Chapter 2

[62]

We can see that the filesystem was shared and the data was therefore persisted4.
permanently. Stop the container and run a new one to see that our file will still be
there:

$ docker stop 01bf73826624
$ docker run -i -t -v ~/docker_ubuntu:/host_directory
ubuntu:18.04 /bin/bash
root@a9e0df194f1f:/# ls /host_directory/
file.txt
root@a9e0df194f1f:/# exit

Instead of specifying the volume with the -v flag, it's possible to specify the5.
volume as an instruction in the Dockerfile, for example:

VOLUME /host_directory

In this case, if we run the Docker container without the -v flag, the container's
/host_directory will be mapped into the host's default directory for volumes,
/var/lib/docker/vfs/. This is a good solution if you deliver an application as
an image and you know it requires permanent storage for some reason (for
example, storing application logs).

If the volume is defined both in Dockerfile and as a flag, the command
flag takes precedence.

Docker volumes can be much more complicated, especially in the case of databases. More
complex use cases of the Docker volume are, however, outside the scope of this book.

A very common approach to data management with Docker is to
introduce an additional layer, in the form of data volume containers. A
data volume container is a Docker container whose only purpose is to
declare the volume. Then, other containers can use it (with the --
volumes-from <container> option) instead of declaring the volume
directly. Read more at https:/​/​docs.​docker.​com/​storage/​volumes/​.

After understanding Docker volumes, let's see how we can use names to make working
with Docker images/containers more convenient.

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

Introducing Docker Chapter 2

[63]

Using names in Docker
So far, when we've operated on the containers, we've always used auto-generated names.
This approach has some advantages, such as the names being unique (no naming conflicts)
and automatic (no need to do anything). In many cases, however, it's better to give a user-
friendly name to the container or the image.

Naming containers
There are two good reasons to name the container: convenience and the possibility of
automation. Let's look at why:

Convenience: It's simpler to make any operations on the container when
addressing it by name than by checking the hashes or the auto-generated name
Automation: Sometimes, we would like to depend on the specific naming of the
container

For example, we would like to have containers that depend on each other and to have one
linked to another. Therefore, we need to know their names.

To name a container, we use the --name parameter:

$ docker run -d --name tomcat tomcat

We can check (with docker ps) that the container has a meaningful name. Also, as a
result, any operation can be performed using the container's name, for example:

$ docker logs tomcat

Please note that when the container is named, it does not lose its identity. We can still
address the container by its auto-generated hash ID , just as we did before.

The container always has both an ID and a name. It can be addressed by
either of them, and both are unique.

Introducing Docker Chapter 2

[64]

Tagging images
Images can be tagged. We already did this when creating our own images, for example, in
the case of building the hello_world_python image:

$ docker build -t hello_world_python .

The -t flag describes the tag of the image. If we don't use it, the image will be built without
any tags and, as a result, we would have to address it by its ID (hash) in order to run the
container.

The image can have multiple tags, and they should follow the naming convention:

<registry_address>/<image_name>:<version>

The tag consists of the following parts:

registry_address: IP and port of the registry or the alias name
image_name: Name of the image that is built, for example, ubuntu
version: A version of the image in any form, for example, 18.04, 20170310

We will cover Docker registries in Chapter 5, Automated Acceptance Testing. If the image is
kept on the official Docker Hub registry, we can skip the registry address. This is why
we've run the tomcat image without any prefix. The last version is always tagged as the
latest and it can also be skipped, so we've run the tomcat image without any suffix.

Images usually have multiple tags; for example, all three tags are the same
image: ubuntu:18.04, ubuntu:bionic-20190122, ubuntu:bionic.

Last but not least, we need to learn how to clean up after playing with Docker.

Docker cleanup
Throughout this chapter, we have created a number of containers and images. This is,
however, only a small part of what you will see in real-life scenarios. Even when the
containers are not running, they need to be stored on the Docker host. This can quickly
result in exceeding the storage space and stopping the machine. How can we approach this
concern?

Introducing Docker Chapter 2

[65]

Cleaning up containers
First, let's look at the containers that are stored on our machine:

To print all the containers (irrespective of their state), we can use the docker ps
-a command:

$ docker ps -a
CONTAINER ID IMAGE COMMAND STATUS PORTS NAMES
95c2d6c4424e tomcat "catalina.sh run" Up 5 minutes 8080/tcp
tomcat
a9e0df194f1f ubuntu:18.04 "/bin/bash" Exited
jolly_archimedes
01bf73826624 ubuntu:18.04 "/bin/bash" Exited
suspicious_feynman
078e9d12a1c8 tomcat "catalina.sh run" Up 14 minutes
0.0.0.0:32772->8080/tcp nauseous_fermi
0835c95538ae tomcat "catalina.sh run" Created
distracted_heyrovsky
03d1e6dc4d9e tomcat "catalina.sh run" Up 50 minutes
0.0.0.0:8080->8080/tcp drunk_ritchie
d51ad8634fac tomcat "catalina.sh run" Exited
jovial_kare
95f29bfbaadc ubuntu:18.04 "/bin/bash" Exited
kickass_stonebraker
34080d914613 hello_world_python_name_default "python hello.py"
Exited lonely_newton
7ba49e8ee677 hello_world_python_name "python hello.py" Exited
mad_turing
dd5eb1ed81c3 hello_world_python "python hello.py" Exited
thirsty_bardeen
6ee6401ed8b8 ubuntu_with_git "/bin/bash" Exited
grave_nobel
3b0d1ff457d4 ubuntu_with_git "/bin/bash" Exited
desperate_williams
dee2cb192c6c ubuntu:18.04 "/bin/bash" Exited
small_dubinsky
0f05d9df0dc2 mongo "/entrypoint.sh mongo" Exited
trusting_easley
47ba1c0ba90e hello-world "/hello" Exited
tender_bell

Introducing Docker Chapter 2

[66]

In order to delete a stopped container, we can use the docker rm command (if
the container is running, we need to stop it first):

$ docker rm 47ba1c0ba90e

If we want to remove all stopped containers, we can use the following command:

$ docker rm $(docker ps --no-trunc -aq)

The -aq option specifies to pass only IDs (no additional data) for all containers.
Additionally, --no-trunc asks Docker not to truncate the output.

We can also adopt a different approach and ask the container to remove itself as
soon as it has stopped using the --rm flag, for example:

$ docker run --rm hello-world

In most real-life scenarios, we don't use the stopped containers, and they are left only for
debugging purposes.

Cleaning up images
Cleaning up images is just as important as cleaning up containers. They can occupy a lot of
space, especially in the case of the CD process, when each build ends up in a new Docker
image. This can quickly result in the no space left on device error.

To check all the images in the Docker container, we can use the docker images
command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED
SIZE
hello_world_python_name_default latest 9a056ca92841 2 hours ago
202.6 MB
hello_world_python_name latest 72c8c50ffa89 2 hours ago
202.6 MB
hello_world_python latest 3e1fa5c29b44 2 hours ago
202.6 MB
ubuntu_with_python latest d6e85f39f5b7 2 hours ago
202.6 MB
ubuntu_with_git_and_jdk latest 8464dc10abbb 2 hours ago
610.9 MB
ubuntu_with_git latest f3d674114fe2 3 hours ago
259.7 MB
tomcat latest 7ee26c09afb3 2 days ago

Introducing Docker Chapter 2

[67]

355.3 MB
ubuntu 18.04 20bb25d32758 7 days ago
129.5 MB
mongo latest 4a3b93a299a7 11 days ago
402 MB
hello-world latest fce289e99eb9 2 weeks ago
1.84 kB

To remove an image, we can call the following command:

$ docker rmi 48b5124b2768

In the case of images, the automatic cleanup process is slightly more complex.
Images don't have states, so we cannot ask them to remove themselves when not
used. The common strategy would be to set up the cron cleanup job, which
removes all old and unused images. We could do this using the following
command:

$ docker rmi $(docker images -q)

In order to prevent the removal of images with tags (for example, so as not to
remove all the latest images), it's very common to use the dangling parameter:

$ docker rmi $(docker images -f "dangling=true" -q)

If we have containers that use volumes, then, in addition to images and
containers, it's worth thinking about cleaning up volumes. The easiest
way to do this is to use the docker volume ls -qf dangling=true |
xargs -r docker volume rm command.

With the cleaning up section, we've come to the end of the main Docker description. Now,
let's do a short wrap-up and walk though the most important Docker commands.

Docker commands overview
All Docker commands can be found by executing the following help command:

$ docker help

To see all the options of any particular Docker command, we can use docker help
<command>, for example:

$ docker help run

Introducing Docker Chapter 2

[68]

There is also a very good explanation of all Docker commands on the official Docker page
at https:/​/​docs.​docker.​com/​engine/​reference/​commandline/​docker/​. It's worth reading,
or at least skimming through.

In this chapter, we've covered the most useful commands and their options. As a quick
reminder, let's walk-through them:

Command Explanation
docker build Build an image from a Dockerfile
docker commit Create an image from the container
docker diff Show changes in the container
docker images List images
docker info Display Docker information

docker inspect
Show the configuration of the Docker
image/container

docker logs Show logs of the container
docker network Manage networks
docker port Show all ports exposed by the container
docker ps List containers
docker rm Remove a container
docker rmi Remove an image
docker run Run a container from the image
docker search Search for the Docker image in Docker Hub
docker start/stop/pause/unpause Manage the container's state

Summary
In this chapter, we covered the Docker basics, which is enough to build images and run
applications as containers. Here are the key takeaways:

The containerization technology addresses the issues of isolation and environment
dependencies using the Linux kernel features. This is based on the process separation
mechanism, so therefore, no real performance drop is observed. Docker can be installed on
most of the systems, but is supported natively only on Linux. Docker allows us to run
applications from the images available on the internet and to build our own images. An
image is an application packed together with all the dependencies.

https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/
https://docs.docker.com/engine/reference/commandline/docker/

Introducing Docker Chapter 2

[69]

Docker provides two methods for building the images—Dockerfile or committing the
container. In most cases, the first option is used. Docker containers can communicate over
the network by publishing the ports they expose. Docker containers can share the persistent
storage using volumes. For the purpose of convenience, Docker containers should be
named, and Docker images should be tagged. In the Docker world, there is a specific
convention for how to tag images. Docker images and containers should be cleaned from
time to time in order to save the server space and avoid the no space left on device error.

In the next chapter, we will look at the Jenkins configuration and how Jenkins can be used
in conjunction with Docker.

Exercises
We've covered a lot of material in this chapter. To consolidate what we have learned, we
recommend two exercises:

Run CouchDB as a Docker container and publish its port:1.

You can use the docker search command to find the CouchDB image.

Run the container1.
Publish the CouchDB port2.
Open the browser and check that CouchDB is available3.

Create a Docker image with the REST service replying Hello World! to2.
localhost:8080/hello. Use any language and framework you prefer:

The easiest way to create a REST service is to use Python with the Flask
framework (http:/​/​flask.​pocoo.​org/​). Note that a lot of web
frameworks, by default, start the application only on the localhost
interface. In order to publish a port, it's necessary to start it on all
interfaces (app.run(host='0.0.0.0' in the case of a Flask framework).

Create a web service application1.
Create a Dockerfile to install dependencies and libraries2.
Build the image3.
Run the container that is publishing the port4.

http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/
http://flask.pocoo.org/

Introducing Docker Chapter 2

[70]

Check that it's running correctly using the browser (or curl)5.

Questions
To verify the knowledge acquired from this chapter, please answer the following questions:

What is the main difference between containerization (such as Docker) and1.
virtualization (such as VirtualBox)?
What are the benefits of providing an application as a Docker image? Name at2.
least two.
Can Docker Daemon be run natively on Windows and macOS?3.
What is the difference between Docker image and Docker container?4.
What does it mean that Docker images have layers?5.
What are the two methods of creating a Docker image?6.
What is the command used to create a Docker image from Dockerfile?7.
What is the command used to run a Docker container from a Docker image?8.
In Docker's terminology, what does it mean to publish a port?9.
What is a Docker volume?10.

Further reading
If you're interested in getting a deeper understanding of Docker and related technologies,
please have a look at the following resources:

Docker Get Started: https:/​/​docs.​docker.​com/​get-​started/​

James Turnbull – The Docker Book: https:/​/​dockerbook.​com/​

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/
https://dockerbook.com/

3
Configuring Jenkins

To start with any Continuous Delivery process, we need an automation server like Jenkins.
Configuring Jenkins can be however difficult, especially when the amount of tasks assigned
to it increases over time. What's more, since Docker allows dynamic provisioning of Jenkins
agents, it's worth to spend some time to configure everything correctly upfront, with the
scalability in mind.

In this chapter, we'll present Jenkins, which can be used separately or together with Docker.
We will show that the combination of these two tools produces surprisingly good results:
automated configuration and flexible scalability.

This chapter will cover the following topics:

What is Jenkins?
Jenkins installation
Jenkins Hello World
Jenkins architecture
Configuring agents
Custom Jenkins images
Configuration and management

Technical requirements
To follow along with the instructions in this chapter, you'll need the following
hardware/software:

Java 8
At least 4 GB of RAM
At least 1 GB free disk space
The Docker Engine installed

Configuring Jenkins Chapter 3

[72]

All the examples and solutions to the exercises can be found on GitHub at https:/​/​github.
com/​PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter03.

What is Jenkins?
Jenkins is an open source automation server written in Java. With very active community-
based support and a huge number of plugins, it is the most popular tool for implementing
Continuous Integration and Continuous Delivery processes. Formerly known as Hudson, it
was renamed after Oracle bought Hudson and decided to develop it as proprietary
software. Jenkins was forked from Hudson, but remained open-source under the MIT
license. It is highly valued for its simplicity, flexibility, and versatility.

Jenkins outshines other Continuous Integration tools and is the most widely used software
of its kind. That's all possible because of its features and capabilities.

Let's walk-through the most interesting parts of Jenkins' characteristics:

Language agnostic: Jenkins has a lot of plugins, which support most
programming languages and frameworks. Moreover, since it can use any shell
command and any software, it is suitable for every automation process
imaginable.
Extensible by plugins: Jenkins has a great community and a lot of available
plugins (over a thousand). It allows you to write your own plugins in order to
customize Jenkins for your needs, as well.
Portable: Jenkins is written in Java, so it can be run on any operating system. For
convenience, it is also delivered in a lot of versions—web application archive
(WAR), Docker image, Windows binary, macOS binary, and Linux binaries.
Supports most SCM: Jenkins integrates with virtually every source code
management or build tool that exists. Again, because of its large community and
number of plugins, there is no other continuous integration tool that supports so
many external systems.
Distributed: Jenkins has a built-in mechanism for the master/slave mode, which
distributes its execution across multiple nodes, located on multiple machines. It
can also use heterogeneous environments; for example, different nodes can have
different operating systems installed.
Simplicity: The installation and configuration process is simple. There is no need
to configure any additional software, nor the database. It can be configured
completely through GUI, XML, or Groovy scripts.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter03

Configuring Jenkins Chapter 3

[73]

Code-oriented: Jenkins pipelines are defined as code. Also, Jenkins itself can be
configured using XML files or Groovy scripts. That allows for keeping the
configuration in the source code repository and helps in the automation of the
Jenkins configuration.

Now that you have a basic understanding of Jenkins, let's move on to installing it.

Installing Jenkins
The Jenkins installation process is quick and simple. There are different methods to do it,
but since we're already familiar with the Docker tool and its benefits, we'll start with the
Docker-based solution. This is also the easiest, most predictable, and smartest way to go.

This Docker-based installation has two major advantages:

Failure recovery: If Jenkins crashes, then it's enough to run a new container with
the same volume specified.
Custom images: You can configure Jenkins as per your needs and store it as the
Jenkins image. Then, it can be shared within your organization or team, and
there is no need to repeat the same configuration steps all the time, many times.

Before we begin the installation process, let's look at its requirements.

Requirements for installation
Before installing Jenkins, we need to go over its system requirements to ensure that it
functions smoothly. The minimum system requirements are relatively low:

Java 8
256 MB free memory
1 GB+ free disk space

However, it's essential to understand that the requirements strictly depend on what you
plan to do with Jenkins. If Jenkins is used to serve the whole team as the Continuous
Integration server, then even in the case of a small team, you should have at least 1 GB of
free memory and at least 50 GB free disk space. Needless to say, Jenkins also performs some
computations and transfers a lot of data across the network, so CPU and bandwidth are
crucial.

Configuring Jenkins Chapter 3

[74]

To get a feeling of what the requirements might be in the case of a big
company, a Netflix example is presented in the Jenkins architecture section.

Installing Jenkins on Docker
Now that you understand the requirements, let's install Jenkins using Docker.

The Jenkins image is available in the Docker Hub registry, so in order to install it, we
should execute the following command:

$ docker run -p <host_port>:8080 -v <host_volume>:/var/jenkins_home
jenkins/jenkins:2.150.3

We need to specify the following parameters:

First host_port parameter: The port under which Jenkins is visible outside of
the container.
Second host_volume parameter: This specifies the directory where the Jenkins
home is mapped. It needs to be specified as a volume, and therefore persisted
permanently, because it contains the configuration, pipeline builds, and logs.

As an example, let's see what the installation steps would look like in the case of the Docker
host on Linux/Ubuntu:

Prepare the volume directory: We need a separate directory with admin1.
ownership to keep the Jenkins home. Let's prepare one with the following
commands:

 $ mkdir $HOME/jenkins_home
 $ chown 1000 $HOME/jenkins_home

Run the Jenkins container: Let's run the container as a daemon and give it a2.
proper name with the following command:

 $ docker run -d -p 49001:8080 \
 -v $HOME/jenkins_home:/var/jenkins_home \
 --name jenkins jenkins/jenkins:2.150.3

Configuring Jenkins Chapter 3

[75]

Check whether Jenkins is running: After a moment, we can check whether3.
Jenkins has started correctly by printing the logs:

 $ docker logs jenkins
 Running from: /usr/share/jenkins/jenkins.war
 webroot: EnvVars.masterEnvVars.get("JENKINS_HOME")
 Feb 04, 2017 9:01:32 AM Main deleteWinstoneTempContents
 WARNING: Failed to delete the temporary Winstone file
 /tmp/winstone/jenkins.war
 Feb 04, 2017 9:01:32 AM org.eclipse.jetty.util.log.JavaUtilLog
 info
 INFO: Logging initialized @888ms
 Feb 04, 2017 9:01:32 AM winstone.Logger logInternal
 ...

In the production environment, you may also want to set up the reverse
proxy in order to hide the Jenkins infrastructure behind the proxy server.
A short description of how to do it using the NGINX server can be found
at https:/​/​wiki.​jenkins-​ci.​org/​display/​JENKINS/
Installing+Jenkins+with+Docker.

After performing these steps, Jenkins will be ready to use.

Installing without Docker
While Docker installation is recommended, using it may not always be possible. In such a
situation, the installation process with Docker is almost as simple.

As an example, in the case of Ubuntu, assuming that you have Java 8 installed, it's enough
to run the following commands:

$ wget -q -O - https://pkg.jenkins.io/debian/jenkins.io.key | sudo apt-key
add -
$ sudo sh -c 'echo deb http://pkg.jenkins.io/debian-stable binary/ >
/etc/apt/sources.list.d/jenkins.list'
$ sudo apt-get update
$ sudo apt-get install jenkins

https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins+with+Docker

Configuring Jenkins Chapter 3

[76]

All of the installation guides (Ubuntu, macOS, Windows, and others) can
be found on the official Jenkins page, at https:/​/​jenkins.​io/​doc/​book/
installing/​.

Initial configuration
No matter which installation you choose, the starting Jenkins requires a few configuration
steps. Let's walk-through them step by step:

Open Jenkins in the browser, at http://localhost:49001 (for binary1.
installations, the default port is 8080).
Jenkins should ask for the administrator password. It can be found in the Jenkins2.
logs:

 $ docker logs jenkins
 ...
 Jenkins initial setup is required. An admin user has been
 created
 and a password generated.
 Please use the following password to proceed to installation:

 c50508effc6843a1a7b06f6491ed0ca6

 ...

After accepting the initial password, Jenkins asks whether to install the3.
suggested plugins, which are adjusted to the most common use cases. Your
answer depends on your needs, of course. However, as the first Jenkins
installation, it's reasonable to let Jenkins install all the recommended plugins.
After the plugin installation, Jenkins asks you to set up a username, password,4.
and other basic information. If you skip it, the token from step 2 will be used as
the admin password.

https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/
https://jenkins.io/doc/book/installing/

Configuring Jenkins Chapter 3

[77]

The installation is then complete, and you should see the Jenkins dashboard:

Now, let's look at how to come to the same point by using Jenkins in the cloud.

Jenkins in the cloud
If you don't want to install Jenkins by yourself, you can use Jenkins as a cloud service. The
most popular provider is CloudBees, which can be found at https:/​/​www.​cloudbees.​com/​.
They offer free trial Jenkins deployments, which are ready in a few minutes. The advantage
of such an approach is that you don't have to maintain Jenkins instances, which may be a
perfect solution for small companies.

CloudBees offers the modern Jenkins UI Blue Ocean, by default. In addition, it provides
simple team management, which lets you configure permission access for each of your
organization members. It also provides automatic Jenkins upgrades and 24/7 technical
support.

When we have access to the Jenkins instance, we will finally be ready to create our first
pipeline.

https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/
https://www.cloudbees.com/

Configuring Jenkins Chapter 3

[78]

Jenkins Hello World
Everything in the entire IT world starts with the Hello World example, to show that the
basics work fine. Let's follow this rule and use it to create the first Jenkins pipeline:

Click on New Item:1.

Enter hello world as the item name, choose Pipeline, and click on OK:2.

Configuring Jenkins Chapter 3

[79]

There are a lot of options. We will skip them for now and go directly to the3.
Pipeline section:

Then, in the Script text-box, we can enter the pipeline script:4.

pipeline {
 agent any
 stages {
 stage("Hello") {
 steps {
 echo 'Hello World'
 }
 }
 }
}

Click on Save.5.
Click on Build Now:6.

Configuring Jenkins Chapter 3

[80]

We should see #1 under the Build History. If we click on it, and then on Console Output,
we will see the log from the pipeline build:

You have just seen the first example, and its successful output means that Jenkins is
installed correctly. Now, let's see the possible Jenkins architecture.

We will describe more on the pipeline syntax in Chapter 4, Continuous
Integration Pipeline.

Jenkins architecture
Hello World executed in almost no time at all. However, the pipelines are usually more
complex, and time is spent on tasks such as downloading files from the internet, compiling
the source code, or running tests. One build can take from minutes to hours.

In common scenarios, there are also many concurrent pipelines. Usually, the whole team, or
even the whole organization, uses the same Jenkins instance. How can we ensure that the
builds will run quickly and smoothly?

Master and slaves
Jenkins becomes overloaded sooner than it seems. Even in the case of a small (micro)
service, the build can take a few minutes. That means that one team committing frequently
can easily kill the Jenkins instance.

Configuring Jenkins Chapter 3

[81]

For that reason, unless the project is really small, Jenkins should not execute builds at all,
but delegate them to the slave (agent) instances. To be precise, the Jenkins we're currently
running is called the Jenkins master, and it can delegate execution tasks to the Jenkins
agents.

Let's look at a diagram presenting the master-slave interaction:

In a distributed builds environment, the Jenkins master is responsible for the following:

Receiving build triggers (for example, after a commit to GitHub)
Sending notifications (for example, email or HipChat messages sent after a build
failure)
Handling HTTP requests (interaction with clients)
Managing the build environment (orchestrating the job executions on slaves)

The build agent is a machine that takes care of everything that happens after the build is
started.

Configuring Jenkins Chapter 3

[82]

Since the responsibilities of the master and the slaves are different, they have different
environmental requirements:

Master: This is usually (unless the project is really small) a dedicated machine
with RAM ranging from 200 MB for small projects to 70+ GB for huge single-
master projects.
Slave: There are no general requirements (other than the fact that it should be
capable of executing a single build; for example, if the project is a huge monolith
that requires 100 GB of RAM, then the slave machine needs to satisfy these
needs).

Agents should also be as generic as possible. For instance, if we have different
projects—one in Java, one in Python, and one in Ruby—then it would be perfect if each
agent could build any of these projects. In such a case, the agents can be interchanged,
which helps to optimize the usage of resources.

If agents cannot be generic enough to match all projects, then it's possible
to label (tag) agents and projects, so that the given build will be executed
on a given type of agent.

Scalability
As everything in the software world, with the growing usage, Jenkins instance can quickly
become overloaded and unresponsive. That is why we need to think upfront about scaling
it up. There are two possible methods—vertical scaling and horizontal scaling.

Vertical scaling
Vertical scaling means that when the master's load grows, more resources are applied to the
master's machine. So, when new projects appear in our organization, we buy more RAM,
add CPU cores, and extend the HDD drives. This may sound like a no-go solution;
however, used often, even by well-known organizations. Having a single Jenkins master set
on ultra-efficient hardware has one very strong advantage: maintenance. Any upgrades,
scripts, security settings, role assignments, or plugin installations have to be done in one
place only.

Configuring Jenkins Chapter 3

[83]

Horizontal scaling
Horizontal scaling means that when an organization grows, more master instances are
launched. This requires a smart allocation of instances to teams, and, in extreme cases, each
team can have its own Jenkins master. In that case, it might even happen that no slaves are
needed.

The drawbacks are that it may be difficult to automate cross-project integrations, and that a
part of the team's development time is spent on the Jenkins maintenance. However, the
horizontal scaling has some significant advantages:

Master machines don't need to be special, in terms of hardware
Different teams can have different Jenkins settings (for example, different sets of
plugins)
Teams usually feel better and work with Jenkins more efficiently if the instance is
their own
If one master instance is down, it does not impact the whole organization
The infrastructure can be segregated into standard and mission-critical

Test and production instances
Apart from the scaling approach, there is one more issue: how to test the Jenkins upgrades,
new plugins, or pipeline definitions? Jenkins is critical to the whole company. It guarantees the
quality of the software, and in case of Continuous Delivery, deploys to the production
servers. That is why it needs to be highly available, and it is definitely not for the purpose
of testing. It means there should always be two instances of the same Jenkins infrastructure:
test and production.

The test environment should always be as similar as possible to the
production, so it requires a similar number of agents attached.

Sample architecture
We already know that there should be slaves and (possibly multiple) masters, and that
everything should be duplicated into the test and production environments. However, what
would the complete picture look like?

Configuring Jenkins Chapter 3

[84]

Luckily, there are a lot of companies that have published how they used Jenkins and what
kind of architectures they created. It would be difficult to measure whether more of them
preferred vertical or horizontal scaling, but it ranged from having only one master instance
to having one master for each team.

Let's look at the example of Netflix to get a complete picture of Jenkins infrastructure
(Netflix shared it as the planned infrastructure at the Jenkins User Conference in San
Francisco, in 2012):

They have test and production master instances, with each of them owning a pool of slaves
and additional ad-hoc slaves. All together, it serves around 2,000 builds per day. Also, note
that a part of their infrastructure is hosted on AWS, and a part is on their own servers.

You should already have a rough idea of what the Jenkins infrastructure can look like,
depending on the type of organization.

Now, let's focus on the practical aspects of setting the agents.

Configuring agents
You've seen what the agents are and when they can be used. However, how do we set up an
agent and let it communicate with the master? Let's start with the second part of the question
and describe the communication protocols between the master and the agent.

Configuring Jenkins Chapter 3

[85]

Communication protocols
In order for the master and the agent to communicate, the bi-directional connection has to
be established.

There are different options for how it can be initiated:

SSH: The master connects to the slave using the standard SSH protocol. Jenkins
has an SSH client built in, so the only requirement is the SSH daemon (sshd)
server configured on slaves. This is the most convenient and stable method
because it uses standard Unix mechanisms.
Java web start: A Java application is started on each agent machine and the TCP
connection is established between the Jenkins slave application and the master
Java application. This method is often used if the agents are inside the fire-walled
network and the master cannot initiate the connection.

If we know the communication protocols, let's look at how we can use them to set the
agents.

Setting agents
At the low level, agents always communicate with the Jenkins master using one of the
protocols described previously. However, at the higher level, we can attach slaves to the
master in various ways. The differences concern two aspects:

Static versus dynamic: The simplest option is to add slaves permanently in the
Jenkins master. The drawback of such a solution is that we always need to
manually change something if we need more (or fewer) slave nodes. A better
option is to dynamically provision slaves as they are needed.
Specific versus general-purpose: Agents can be specific (for example, different
agents for the projects based on Java 7 and Java 8) or general-purpose (an agent
acts as a Docker host and a pipeline is built inside a Docker container).

These differences resulted in four common strategies for how agents are configured:

Permanent agents
Permanent Docker agents
Jenkins Swarm agents
Dynamically provisioned Docker agents

Let's examine each of the solutions.

Configuring Jenkins Chapter 3

[86]

Permanent agents
We will start with the simplest option, which is to permanently add specific agent nodes. It
can be done entirely via the Jenkins web interface.

Configuring permanent agents
In the Jenkins master, when we open Manage Jenkins and then Manage Nodes, we can
view all the attached agents. Then, by clicking on New Node, giving it a name, and
confirming with the OK button, we should finally see the agent's setup page:

Configuring Jenkins Chapter 3

[87]

Let's walk-through the parameters we need to fill:

Name: This is the unique name of the agent
Description: This is an human-readable description of the agent
of executors: This is the number of concurrent builds that can be run on the
slave
Remote root directory: This is the dedicated directory on the slave machine that
the agent can use to run build jobs (for example, /var/jenkins); the most
important data is transferred back to the master, so the directory is not critical
Labels: This includes the tags to match the specific builds (tagged the same); for
example, only projects based on Java 8
Usage: This is the option to decide whether the agent should only be used for
matched labels (for example, only for Acceptance Testing builds), or for any
builds
Launch method: This includes the following:

Launch agent via Java Web Start: Here, the connection will be
established by the agent; it is possible to download the JAR file and
the instructions on how to run it on the slave machine
Launch agent via execution of command on the master: This is
the custom command run on the master to start the slave; in most
cases, it will send the Java Web Start JAR application and start it on
the slave (for example, ssh <slave_hostname> java -jar
~/bin/slave.jar)
Launch slave agents via SSH: Here, the master will connect to the
slave using the SSH protocol

Availability: This is the option to decide whether the agent should be up all the
time or the master should turn it offline under certain conditions

The Java Web Start agent uses port 50000 for communication with
Jenkins Master; therefore, if you use the Docker-based Jenkins master, you
need to publish that port (-p 50000:50000).

When the agents are set up correctly, it's possible to update the master node configuration
with # of executors set to 0, so that no builds will be executed on it and it will only serve as
the Jenkins UI and the builds' coordinator.

Configuring Jenkins Chapter 3

[88]

Understanding permanent agents
As we've already mentioned, the drawback of such a solution is that we need to maintain
multiple slave types (labels) for different project types. Such a situation is presented in the
following diagram:

In our example, if we have three types of projects (java7, java8, and ruby), then we need to
maintain three separately labeled (sets of) slaves. That is the same issue we had while
maintaining multiple production server types, as described in Chapter 2, Introducing
Docker. We addressed the issue by having the Docker Engine installed on the production
servers. Let's try to do the same with Jenkins slaves.

Permanent Docker agents
The idea behind this solution is to permanently add general-purpose slaves. Each slave is
identically configured (with Docker Engine installed), and each build is defined along with
the Docker image inside which the build is run.

Configuring permanent Docker agents
The configuration is static, so it's done exactly the same way as we did for the permanent
agents. The only difference is that we need to install Docker on each machine that will be
used as a slave. Then, we usually don't need labels, because all the slaves can be the same.
After the slaves are configured, we define the Docker image in each pipeline script:

pipeline {
 agent {
 docker {
 image 'openjdk:8-jdk-alpine'
 }

Configuring Jenkins Chapter 3

[89]

 }
 ...
}

When the build is started, the Jenkins slave starts a container from the Docker image,
openjdk:8-jdk-alpine, and then executes all the pipeline steps inside that container.
This way, we always know the execution environment and don't have to configure each
slave separately, depending on the particular project type.

Understanding permanent Docker agents
Looking at the same scenario we used for the permanent agents, the diagram looks like this:

Each slave is exactly the same, and if we would like to build a project that depends on Java
8, then we would define the appropriate Docker image in the pipeline script (instead of
specifying the slave label).

Jenkins Swarm agents
So far, we have always had to permanently define each of the agents in the Jenkins master.
Such a solution, although good enough in many cases, can be a burden if we need to
frequently scale the number of slave machines. Jenkins Swarm allows you to dynamically
add slaves without the need to configure them in the Jenkins master.

Configuring Jenkins Chapter 3

[90]

Configuring Jenkins Swarm agents
The first step to using Jenkins Swarm is to install the Self-Organizing Swarm Plug-in
Modules plugin in Jenkins. We can do it through the Jenkins web UI, under Manage
Jenkins and Manage Plugins. After this step, the Jenkins master is prepared for Jenkins
slaves to be dynamically attached.

The second step is to run the Jenkins Swarm slave application on every machine that would
act as a Jenkins slave. We can do it using the swarm-client.jar application.

The swarm-client.jar application can be downloaded from the Jenkins
Swarm plugin page, at https:/​/​wiki.​jenkins.​io/​display/​JENKINS/
Swarm+Plugin. On that page, you can also find all the possible options of
its execution.

In order to attach the Jenkins Swarm slave node, it's enough to run the following command:

$ java -jar swarm-client.jar -master <jenkins_master_url> -username
<jenkins_master_user> -password <jenkins_master_password> -name jenkins-
swarm-slave-1

After successful execution, we should notice that a new slave has appeared on the Jenkins
master, as presented in the following screenshot:

Now, when we run a build, it will be started on this agent.

The other possibility to add the Jenkins Swarm agent is to use the Docker
image built from the swarm-client.jar tool. There are a few of them
available on Docker Hub; for example, csanchez/jenkins-swarm-
slave.

https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin
https://wiki.jenkins.io/display/JENKINS/Swarm+Plugin

Configuring Jenkins Chapter 3

[91]

Understanding Jenkins Swarm agents
Jenkins Swarm allows you to dynamically add agents, but it says nothing about whether to
use specific or Docker-based slaves, so we can use it for both. At first glance, Jenkins Swarm
may not seem very useful. After all, we have moved setting agents from the master to the
slave, but we still have to do it manually. However, apparently, with the use of a clustering
system such as Kubernetes or Docker Swarm, Jenkins Swarm enables the dynamic scaling
of slaves on a cluster of servers.

Dynamically provisioned Docker agents
Another option is to set up Jenkins to dynamically create a new agent each time a build is
started. Such a solution is obviously the most flexible one, since the number of slaves
dynamically adjusts to the number of builds. Let's take a look at how to configure Jenkins
this way.

Configuring dynamically provisioned Docker agents
First, we need to install the Docker plugin. As always, with Jenkins plugins, we can do this
in Manage Jenkins and Manage Plugins. After the plugin is installed, we can start the
following configuration steps:

Open the Manage Jenkins page.1.
Click on the Configure System link.2.
At the bottom of the page, there is the Cloud section.3.
Click on Add a new cloud and choose Docker.4.

Configuring Jenkins Chapter 3

[92]

Fill in the Docker agent details, as shown in the following screenshot:5.

Most parameters do not need to be changed; however (apart from selecting6.
Enabled), we need to at least set the Docker host URL (the address of the Docker
host machine where agents will be run).

If you plan to use the same Docker host where the master is running, then
the Docker daemon needs to listen on the docker0 network interface. You
can do it in a similar way as to what's described in the Installing on a server
section of Chapter 2, Introducing Docker, by changing one line in the
/lib/systemd/system/docker.service file to
ExecStart=/usr/bin/dockerd -H 0.0.0.0:2375 -H fd://.

Configuring Jenkins Chapter 3

[93]

Click on Docker Agent templates... and select Add Docker Template.7.
Fill in the details about the Docker slave image:8.

We can use the following parameters:

Docker Image: The most popular slave image from the Jenkins community is
evarga/jenkins-slave

Instance Capacity: This defines the maximum number of agents running at the
same time; for the beginning, it can be set to 10

Configuring Jenkins Chapter 3

[94]

Instead of evarga/jenkins-slave, it's possible to build and use your
own slave images. This may be helpful in the case of specific environment
requirements; for example, if JDK 8 is installed. For Java 8 applications,
you can use the image created while writing this book: leszko/jenkins-
docker-slave.

After saving, everything will be set up. We could run the pipeline to observe that the
execution really takes place on the Docker agent, but first, let's dig a little deeper, in order
to understand how the Docker agents work.

Understanding dynamically provisioned Docker agents
Dynamically provisioned Docker agents can be treated as a layer over the standard agent
mechanism. It changes neither the communication protocol nor how the agent is created.
So, what does Jenkins do with the Docker agent configuration we provided?

The following diagram presents the Docker master-slave architecture we've configured:

Let's describe how the Docker agent mechanism is used, step by step:

When the Jenkins job is started, the master runs a new container from the1.
jenkins-slave image on the slave Docker host.
The jenkins-slave container is actually the Ubuntu image with the sshd server2.
installed.
The Jenkins master automatically adds the created agent to the agent list (the3.
same as what we did manually in the Setting agents section).

Configuring Jenkins Chapter 3

[95]

The agent is accessed, using the SSH communication protocol, to perform the4.
build.
After the build, the master stops and removes the slave container.5.

Running the Jenkins master as a Docker container is independent of
running Jenkins agents as Docker containers. It's reasonable to do both,
but any of them will work separately.

The solution is somehow similar to the permanent Docker agents solution, because as a
result, we run the build inside a Docker container. The difference, however, is in the slave
node configuration. Here, the whole slave is dockerized—not only the build environment.
Therefore, it has two great advantages, as follows:

Automatic agent life cycle: The process of creating, adding, and removing the
agent is automated.
Scalability: Actually, the slave Docker host could be not just a single machine,
but a cluster composed of multiple machines. In such a case, adding more
resources is as simple as adding a new machine to the cluster, and does not
require any changes in Jenkins.

The Jenkins build usually needs to download a lot of project dependencies
(for example, Gradle/Maven dependencies), which may take a lot of time.
If Docker slaves are automatically provisioned for each build, then it may
be worth it to set up a Docker volume for them to enable caching between
the builds.

Testing agents
No matter which agent configuration you have chosen, you can now check whether
everything works correctly.

Let's go back to the Hello World pipeline. Usually, the builds last longer than the Hello
World example, so we can simulate it by adding sleeping to the pipeline script:

pipeline {
 agent any
 stages {
 stage("Hello") {
 steps {
 sleep 300 // 5 minutes
 echo 'Hello World'

Configuring Jenkins Chapter 3

[96]

 }
 }
 }
}

After clicking on Build Now and going to the Jenkins main page, we should see that the
build is executed on an agent. Now, if we click on build many times, different agents
should be executing different builds (as shown in the following screenshot):

To prevent job executions on the master, remember to set # of executors to 0
for the master node in the Manage Nodes configuration.

Having seen that the agents are executing our builds, we've confirmed that they are
configured correctly. Now, let's look at how, and for what reasons, we could create our own
Jenkins images.

Configuring Jenkins Chapter 3

[97]

Custom Jenkins images
So far, we have used the Jenkins images pulled from the internet. We used
jenkins/jenkins for the master container and evarga/jenkins-slave for the slave
container. However, you may want to build your own images to satisfy the specific build
environment requirements. In this section, we will cover how to do it.

Building the Jenkins slave
Let's start from the slave image, because it's more frequently customized. The build
execution is performed on the agent, so it's the agent that needs to have the environment
adjusted to the project we would like to build. For example, it may require the Python
interpreter if our project is written in Python. The same applies to any library, tool, or
testing framework, or anything that is needed by the project.

You can check what is already installed inside the evarga/jenkins-
slave image by looking at its Dockerfile, at https:/​/​github.​com/​evarga/
docker-​images.

There are four steps to building and using the custom image:

Create a Dockerfile1.
Build the image2.
Push the image into a registry3.
Change the agent configuration on the master4.

As an example, let's create a slave that serves the Python project. We can build it on top of
the evarga/jenkins-slave image, for the sake of simplicity. Let's do it using the
following four steps:

Dockerfile: In a new directory, let's create a file named Dockerfile, with the1.
following content:

FROM evarga/jenkins-slave
RUN apt-get update && \
 apt-get install -y python

https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images
https://github.com/evarga/docker-images

Configuring Jenkins Chapter 3

[98]

The base Docker image, evarga/jenkins-slave, is suitable for the
dynamically provisioned Docker agents solution. In the case of permanent
Docker agents, it's enough to use alpine, ubuntu, or any other image,
since it's not the slave that is dockerized, but only the build execution
environment.

Build the image: We can build the image by executing the following command:2.

$ docker build -t leszko/jenkins-slave-python .

Push the image into a registry: To push the image, execute the following3.
command (if you build the image on the Docker Engine that is used by Jenkins
master, you can skip this step):

$ docker push leszko/jenkins-slave-python

This step assumes that you have an account on Docker Hub (change
leszko to your Docker Hub name) and that you have already executed
docker login. We'll cover more on Docker registries in Chapter 5,
Automated Acceptance Testing.

Change the agent configuration on master: The last step, of course, is to set4.
leszko/enkins-slave-python instead of evarga/jenkins-slave in the
Jenkins master's configuration (as described in the Dynamically provisioned Docker
agents section).

If you have pushed your image to the Docker Hub registry, and the
registry is private, then you'll also need to configure the appropriate
credentials in the Jenkins master configuration.

What if we need Jenkins to build two different kinds of projects, for example, one based on Python
and another based on Ruby? In that case, we could prepare an agent that's generic enough to
support both: Python and Ruby. However, in the case of Docker, it's recommended to
create the second slave image (leszko/jenkins-slave-ruby by analogy). Then, in the
Jenkins configuration, we need to create two Docker templates and label them accordingly.

Configuring Jenkins Chapter 3

[99]

Building the Jenkins master
We already have a custom slave image. Why would we also want to build our own master
image? One of the reasons might be that we don't want to use slaves at all, and since the
execution would be done on the master, its environment has to be adjusted to the project's
needs. That is, however, a very rare case. More often, we will want to configure the master
itself.

Imagine the following scenario: your organization scales Jenkins horizontally, and each
team has its own instance. There is, however, some common configuration, for example, a
set of base plugins, backup strategies, or the company logo. Then, repeating the same
configuration for each of the teams is a waste of time. So, we can prepare the shared master
image and let the teams use it.

Jenkins is configured using XML files, and it provides the Groovy-based DSL language to
manipulate over them. That is why we can add the Groovy script to the Dockerfile in order
to manipulate the Jenkins configuration. Furthermore, there are special scripts to help with
the Jenkins configuration if it requires something more than XML changes; for instance,
plugin installation.

All possibilities of the Dockerfile instructions are well described on the
GitHub page, at https:/​/​github.​com/​jenkinsci/​docker.

As an example, let's create a master image with the docker-plugin already installed and a
number of executors set to 5. In order to do it, we need to perform the following:

Create the Groovy script to manipulate on config.xml, and set the number of1.
executors to 5.
Create the Dockerfile to install docker-plugin, and execute the Groovy script.2.
Build the image.3.

Let's use the three steps mentioned and build the Jenkins master image:

Groovy script: Let's create a new directory and the executors.groovy file with1.
the following content:

import jenkins.model.*
Jenkins.instance.setNumExecutors(5)

https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker
https://github.com/jenkinsci/docker

Configuring Jenkins Chapter 3

[100]

The complete Jenkins API can be found on the official page, at http:/​/
javadoc.​jenkins.​io/​.

Dockerfile: In the same directory, let's create a Dockerfile:2.

FROM jenkins/jenkins:2.150.3
COPY executors.groovy
 /usr/share/jenkins/ref/init.groovy.d/executors.groovy
RUN /usr/local/bin/install-plugins.sh docker-plugin

Build the image: We can finally build the image:3.

$ docker build -t jenkins-master .

After the image is created, each team in the organization can use it to launch their own
Jenkins instance.

Similar to the Jenkins slave image, you can build the master image as
leszko/jenkins-master and push it into your Docker Hub account.

Having our own master and slave images lets us provide the configuration and the build
environment for the teams in our organization. In the next section, you'll see what else is
worth being configured in Jenkins.

Configuration and management
We have already covered the most crucial part of the Jenkins configuration—agent
provisioning. Since Jenkins is highly configurable, you can expect many more possibilities
to adjust it to your needs. The good news is that the configuration is intuitive and accessible
via the web interface, so it does not require detailed description. Everything can be changed
under the Manage Jenkins subpage. In this section, we will focus on only a few aspects that
are most likely to be changed: plugins, security, and backup.

http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/
http://javadoc.jenkins.io/

Configuring Jenkins Chapter 3

[101]

Plugins
Jenkins is highly plugin-oriented, which means that a lot of features are delivered by the
use of plugins. They can extend Jenkins in an almost unlimited way, which, taking into
consideration the large community, is one of the reasons why Jenkins is such a successful
tool. With Jenkins' openness comes risk, and it's better to download only plugins from a
reliable source, or check their source code.

There are literally tons of plugins to choose from. Some of them were already installed
automatically, during the initial configuration. Another one (Docker plugin) was installed
while setting the Docker agents. There are plugins for cloud integration, source control
tools, code coverage, and much more. You can also write your own plugin, but it's better to
check if the one you need is already available.

There is an official Jenkins page to browse plugins at https:/​/​plugins.
jenkins.​io/​.

Security
The way you should approach Jenkins security depends on the Jenkins architecture you
have chosen within your organization. If you have a Jenkins master for every small team,
then you may not need it at all (under the assumption that the corporate network is
firewalled). However, if you have a single Jenkins master instance for the whole
organization, then you'd better be sure you've secured it well.

Jenkins comes with its own user database; we already created a user during the initial
configuration process. You can create, delete, and modify users by opening the Manage
Users setting page. The built-in database can be a solution in the case of small
organizations; however, for a large group of users, you will probably want to use LDAP,
instead. You can choose it on the Configure Global Security page. There, you can also
assign roles, groups, and users. By default, the Logged-in users can do anything option is
set, but in a large-scale organization, you should probably think of more detailed
granularity.

https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/
https://plugins.jenkins.io/

Configuring Jenkins Chapter 3

[102]

Backup
As the old saying goes, There are two types of people: those who back up, and those who will back
up. Believe it or not, the backup is something you probably want to configure. What files
should be backed up, and from which machines? Luckily, agents automatically send all the
relevant data back to the master, so we don't need to bother with them. If you run Jenkins
in the container, then the container itself is also not interesting, since it does not hold
persistent state. The only place we are interested in is the Jenkins home directory.

We can either install a Jenkins plugin (which will help us to set periodic backups) or simply
set a cron job to archive the directory into a safe place. To reduce the size, we can exclude
the subfolders that are not interesting (that will depend on your needs; however, almost
certainly, you don't need to copy the following: war, cache, tools, and workspace).

There are quite a few plugins that can help with the backup process; the
most common one is called Backup Plugin.

The Blue Ocean UI
The first version of Hudson (the former Jenkins) was released in 2005. It's been on the
market for more than 10 years now. However, its look and feel hasn't changed much. We've
already used it for a while, and it's hard to deny that it looks outdated. Blue Ocean is the
plugin that has redefined the user experience of Jenkins. If Jenkins is aesthetically
displeasing to you, then it's definitely worth giving Blue Ocean a try.

You can read more on the Blue Ocean page at https:/​/​jenkins.​io/
projects/​blueocean/​.

https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/
https://jenkins.io/projects/blueocean/

Configuring Jenkins Chapter 3

[103]

Summary
In this chapter, we covered the Jenkins environment and its configuration. The knowledge
that was gained is sufficient to set up the complete Docker-based Jenkins infrastructure.
The key takeaway points from the chapter are as follows:

Jenkins is a general-purpose automation tool that can be used with any language
or framework.
Jenkins is highly extensible by plugins, which can be written or found on the
internet.
Jenkins is written in Java, so it can be installed on any operating system. It's also
officially delivered as a Docker image.
Jenkins can be scaled using the master-slave architecture. The master instances
can be scaled horizontally or vertically, depending on the organization's needs.

Configuring Jenkins Chapter 3

[104]

Jenkins agents can be implemented with the use of Docker, which helps in
automatic configuration and dynamic slave allocation.
Custom Docker images can be created for both the Jenkins master and Jenkins
slave.
Jenkins is highly configurable, and some aspects that should always be
considered are: security and backups.

In the next chapter, we will focus on something that we already touched on with the Hello
World example: pipelines. We will describe the idea behind, and the method for building, a
complete Continuous Integration pipeline.

Exercises
You learned a lot about Jenkins configuration throughout this chapter. To consolidate your
knowledge, we recommend two exercises for preparing the Jenkins images and testing the
Jenkins environment:

Create Jenkins master and slave Docker images, and use them to run a Jenkins1.
infrastructure capable of building Ruby projects:

Create the Jenkins master Dockerfile, which automatically installs the1.
Docker plugin
Build the master image and run the Jenkins instance2.
Create the slave Dockerfile (suitable for the dynamic slave3.
provisioning), which installs the Ruby interpreter
Build the slave image4.
Change the configuration in the Jenkins instance to use the slave image5.

Create a pipeline that runs a Ruby script printing Hello World from Ruby:2.
Create a new pipeline1.
Use the following shell command to create the hello.rb script on the2.
fly:

 sh "echo \"puts 'Hello World from Ruby'\" > hello.rb"

Add the command to run hello.rb, using the Ruby interpreter3.
Run the build and observe the console's output4.

Configuring Jenkins Chapter 3

[105]

Questions
To verify the knowledge from this chapter, please answer the following questions:

Is Jenkins provided in the form of a Docker image?1.
What is the difference between Jenkins master and Jenkins agent (slave)?2.
What is the difference between vertical and horizontal scaling?3.
What are the two main options for master-slave communication when starting a4.
Jenkins agent?
What is the difference between setting up a Permanent Agent and Permanent5.
Docker Agent?
When would you need to build a custom Docker image for the Jenkins agent?6.
When would you need to build a custom Docker image for a Jenkins master?7.
What is Jenkins Blue Ocean?8.

Further reading
To read more about Jenkins, please refer to the following resources:

Soni Mitesh, Jenkins Essentials: https:/​/​www.​packtpub.​com/​virtualization-
and-​cloud/​jenkins-​essentials-​second-​edition

John Ferguson Smart, Jenkins: The Definitive Guide: https:/​/​www.​oreilly.
com/​library/​view/​jenkins-​the-​definitive/​9781449311155/​

Jenkins Getting Started: https:/​/​jenkins.​io/​doc/​book/​getting-​started/​

https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.packtpub.com/virtualization-and-cloud/jenkins-essentials-second-edition
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://www.oreilly.com/library/view/jenkins-the-definitive/9781449311155/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/
https://jenkins.io/doc/book/getting-started/

2
Section 2: Architecting and

Testing an Application
In this section, we will cover continuous integration pipeline steps and Docker registry hub
concepts. Kubernetes will also be introduced, and you will learn how to scale a pool of
Docker servers.

The following chapters are covered in this section:

Chapter 4, Continuous Integration Pipeline
Chapter 5, Automated Acceptance Testing
Chapter 6, Clustering with Kubernetes

4
Continuous Integration Pipeline

We already know how to configure Jenkins. In this chapter, you will see how to use it
effectively, focusing on the feature that lies at the heart of Jenkins: pipelines. By building a
complete Continuous Integration process from scratch, we will describe all aspects of
modern team-oriented code development.

This chapter covers the following topics:

Introducing pipelines
The commit pipeline
Code-quality stages
Triggers and notifications
Team development strategies

Technical requirements
To complete this chapter, you'll need the following software:

Java JDK 8
Jenkins

All the examples and solutions to the exercises can be found at https:/​/​github.​com/
PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter04.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter04

Continuous Integration Pipeline Chapter 4

[108]

Introducing pipelines
A pipeline is a sequence of automated operations that usually represents a part of the
software delivery and quality assurance process. It can be seen as a chain of scripts that
provide the following additional benefits:

Operation grouping: Operations are grouped together into stages (also known as
gates or quality gates) that introduce a structure into the process and clearly
define the rule—if one stage fails, no further stages are executed
Visibility: All aspects of the process are visualized, which helps in quick failure
analysis and promotes team collaboration
Feedback: Team members learn about problems as soon as they occur, so that
they can react quickly

The concept of pipelining is similar for most Continuous Integration tools.
However, the naming can differ. In this book, we stick to the Jenkins
terminology.

The pipeline structure
A Jenkins pipeline consists of two kinds of elements—Stage and Step. The following
diagram shows how they are used:

Continuous Integration Pipeline Chapter 4

[109]

The following are the basic pipeline elements:

Step: A single operation that tells Jenkins what to do; for example, check out
code from the repository, execute a script
Stage: A logical separation of steps that groups conceptually distinct sequences
of steps, for example, Build, Test, and Deploy, used to visualize the Jenkins
pipeline progress

Technically, it's possible to create parallel steps; however, it's better to
treat it as an exception when really needed for optimization purposes.

Multi-stage Hello World
As an example, let's extend the Hello World pipeline to contain two stages:

pipeline {
 agent any
 stages {
 stage('First Stage') {
 steps {
 echo 'Step 1. Hello World'
 }
 }
 stage('Second Stage') {
 steps {
 echo 'Step 2. Second time Hello'
 echo 'Step 3. Third time Hello'
 }
 }
 }
}

Continuous Integration Pipeline Chapter 4

[110]

The pipeline has no special requirements in terms of environment (any slave agent), and it
executes three steps inside two stages. When we click on Build Now, we should see the
visual representation:

The pipeline succeeded, and we can see the step execution details by clicking on the
console. If any of the steps failed, processing would stop and no further steps would run.
Actually, the sole reason for a pipeline is to prevent all further steps from execution and
visualize the point of failure.

The pipeline syntax
We've discussed the pipeline elements and already used a few of the pipeline steps, for
example, echo. What other operations can we use inside the pipeline definition?

In this book, we use the declarative syntax that is recommended for all
new projects. The other options are Groovy-based DSL and (prior to
Jenkins 2) XML (created through the web interface).

The declarative syntax was designed to make it as simple as possible to understand the
pipeline, even by the people who do not write code on a daily basis. This is why the syntax
is limited only to the most important keywords.

Continuous Integration Pipeline Chapter 4

[111]

Let's prepare an experiment and, before we describe all the details, read the following
pipeline definition and try to guess what it does:

pipeline {
 agent any
 triggers { cron('* * * * *') }
 options { timeout(time: 5) }
 parameters {
 booleanParam(name: 'DEBUG_BUILD', defaultValue: true,
 description: 'Is it the debug build?')
 }
 stages {
 stage('Example') {
 environment { NAME = 'Rafal' }
 when { expression { return params.DEBUG_BUILD } }
 steps {
 echo "Hello from $NAME"
 script {
 def browsers = ['chrome', 'firefox']
 for (int i = 0; i < browsers.size(); ++i) {
 echo "Testing the ${browsers[i]} browser."
 }
 }
 }
 }
 }
 post { always { echo 'I will always say Hello again!' } }
}

Hopefully, the pipeline didn't scare you. It is quite complex. Actually, it is so complex that
it contains all possible Jenkins instructions. To answer the experiment puzzle, let's see what
the pipeline does instruction by instruction:

Use any available agent1.
Execute automatically every minute2.
Stop if the execution takes more than five minutes3.
Ask for the Boolean input parameter before starting4.
Set Rafal as the NAME environment variable5.
Only in the case of the true input parameter:6.

Print Hello from Rafal
Print Testing the chrome browser
Print Testing the firefox browser

Print I will always say Hello again! regardless of whether there are any7.
errors during the execution

Continuous Integration Pipeline Chapter 4

[112]

Now, let's describe the most important Jenkins keywords. A declarative pipeline is always
specified inside the pipeline block and contains sections, directives, and steps. We will
walk through each of them.

The complete pipeline syntax description can be found on the official
Jenkins page at https:/​/​jenkins.​io/​doc/​book/​pipeline/​syntax/​.

Sections
Sections define the pipeline structure and usually contain one or more directives or steps.
They are defined with the following keywords:

Stages: This defines a series of one or more stage directives
Steps: This defines a series of one or more step instructions
Post: This defines a series of one or more step instructions that are run at the end
of the pipeline build; they are marked with a condition (for example, always,
success, or failure), and usually used to send notifications after the pipeline build
(we will cover this in detail in the Triggers and notifications section)

Directives
Directives express the configuration of a pipeline or its parts:

Agent: This specifies where the execution takes place and can define the label
to match the equally-labeled agents, or docker to specify a container that is
dynamically provisioned to provide an environment for the pipeline execution
Triggers: This defines automated ways to trigger the pipeline and can use cron
to set the time-based scheduling, or pollSCM to check the repository for changes
(we will cover this in detail in the Triggers and notifications section)
Options: This specifies pipeline-specific options, for example, timeout
(maximum time of pipeline run) or retry (number of times the pipeline should
be re-run after failure)
Environment: This defines a set of key values used as environment variables
during the build

https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/

Continuous Integration Pipeline Chapter 4

[113]

Parameters: This defines a list of user-input parameters
Stage: This allows for the logical grouping of steps
When: This determines whether the stage should be executed depending on the
given condition

Steps
Steps are the most fundamental part of the pipeline. They define the operations that are
executed, so they actually tell Jenkins what to do:

sh: This executes the shell command; actually, it's possible to define almost any
operation using sh
custom: Jenkins offers a lot of operations that can be used as steps (for example,
echo); many of them are simply wrappers over the sh command used for
convenience; plugins can also define their own operations
script: This executes a block of the Groovy-based code that can be used for some
non-trivial scenarios where flow control is needed

The complete specification of the available steps can be found at https:/​/
jenkins.​io/​doc/​pipeline/​steps/​.

Notice that the pipeline syntax is very generic and, technically, can be used for almost any
automation process. This is why the pipeline should be treated as a method of structuration
and visualization. The most common use case is, however, to implement the Continuous
Integration server, which we will look at in the following section.

The commit pipeline
The most basic Continuous Integration process is called a commit pipeline. This classic
phase, as its name indicates, starts with a commit (or push in Git) to the main repository
and results in a report about the build success or failure. Since it runs after each change in
the code, the build should take no more than five minutes and should consume a
reasonable amount of resources. The commit phase is always the starting point of the
Continuous Delivery process and provides the most important feedback cycle in the
development process; constant information if the code is in a healthy state.

https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/
https://jenkins.io/doc/pipeline/steps/

Continuous Integration Pipeline Chapter 4

[114]

The commit phase works as follows: a developer checks in the code to the repository, the
Continuous Integration server detects the change, and the build starts. The most
fundamental commit pipeline contains three stages:

Checkout: This stage downloads the source code from the repository
Compile: This stage compiles the source code
Unit test: This stage runs a suite of unit tests

Let's create a sample project and see how to implement the commit pipeline.

This is an example of a pipeline for the project that uses technologies such
as Git, Java, Gradle, and Spring Boot. The same principles apply to any
other technology.

Checkout
Checking out code from the repository is always the first operation in any pipeline. In order
to see this, we need to have a repository. Then, we will be able to create a pipeline.

Creating a GitHub repository
Creating a repository on the GitHub server takes just a few steps:

Go to the https:/​/​github.​com/​ page1.
Create an account if you don't have one yet2.
Click on New repository3.
Give it a name, calculator4.
Tick Initialize this repository with a README5.
Click on Create repository6.

Now, you should see the address of the repository, for example,
https://github.com/leszko/calculator.git.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Continuous Integration Pipeline Chapter 4

[115]

Creating a checkout stage
We can create a new pipeline called calculator and, as Pipeline script, put the code with
a stage called Checkout:

pipeline {
 agent any
 stages {
 stage("Checkout") {
 steps {
 git url: 'https://github.com/leszko/calculator.git'
 }
 }
 }
}

The pipeline can be executed on any of the agents, and its only step does nothing more than
download code from the repository. We can click on Build Now and see whether it was
executed successfully.

The Git toolkit needs to be installed on the node where the build is
executed.

When we have the checkout, we're ready for the second stage.

Compile
In order to compile a project, we need to do the following:

Create a project with the source code1.
Push it to the repository2.
Add the Compile stage to the pipeline3.

Creating a Java Spring Boot project
Let's create a very simple Java project using the Spring Boot framework built by Gradle.

Spring Boot is a Java framework that simplifies building enterprise
applications. Gradle is a build automation system that is based on the
concepts of Apache Maven.

Continuous Integration Pipeline Chapter 4

[116]

The simplest way to create a Spring Boot project is to perform the following steps:

Go to the http:/​/​start.​spring.​io/​ page1.
Select Gradle Project instead of Maven Project (you can choose Maven if you2.
prefer it to Gradle)
Fill Group and Artifact (for example, com.leszko and calculator)3.
Add Web to Dependencies4.
Click on Generate Project5.
The generated skeleton project should be downloaded (the calculator.zip6.
file)

The following screenshot shows the http:/​/​start.​spring.​io/​ page:

http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/

Continuous Integration Pipeline Chapter 4

[117]

Pushing code to GitHub
We will use the Git tool to perform the commit and push operations:

In order to run the git command, you need to have the Git toolkit
installed (it can be downloaded from https:/​/​git-​scm.​com/​downloads).

Let's first clone the repository to the filesystem:

$ git clone https://github.com/leszko/calculator.git

Extract the project downloaded from http:/​/​start.​spring.​io/​ into the directory created
by Git.

If you prefer, you can import the project into IntelliJ, Eclipse, or your
favorite IDE tool.

As a result, the calculator directory should have the following files:

$ ls -a
. .. build.gradle .git .gitignore gradle gradlew gradlew.bat HELP.md
README.md settings.gradle src

In order to perform the Gradle operations locally, you need to have Java
JDK installed (in Ubuntu, you can do it by executing sudo apt-get
install -y default-jdk).

We can compile the project locally using the following code:

$./gradlew compileJava

In the case of Maven, you can run ./mvnw compile. Both Gradle and Maven compile the
Java classes located in the src directory.

You can find all possible Gradle instructions (for the Java project) at
https:/​/​docs.​gradle.​org/​current/​userguide/​java_​plugin.​html.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
http://start.spring.io/
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html

Continuous Integration Pipeline Chapter 4

[118]

Now, we can commit and push to the GitHub repository:

$ git add .
$ git commit -m "Add Spring Boot skeleton"
$ git push -u origin master

After running the git push command, you will be prompted to enter the
GitHub credentials (username and password).

The code is already in the GitHub repository. If you want to check it, you can go to the
GitHub page and see the files.

Creating a compile stage
We can add a Compile stage to the pipeline using the following code:

stage("Compile") {
 steps {
 sh "./gradlew compileJava"
 }
}

Note that we used exactly the same command locally and in the Jenkins pipeline, which is a
very good sign because the local development process is consistent with the Continuous
Integration environment. After running the build, you should see two green boxes. You can
also check that the project was compiled correctly in the console log.

Unit tests
It's time to add the last stage, which is the unit test; it checks whether our code does what
we expect it to do. We have to do the following:

Add the source code for the calculator logic
Write a unit test for the code
Add a Jenkins stage to execute the unit test

Continuous Integration Pipeline Chapter 4

[119]

Creating business logic
The first version of the calculator will be able to add two numbers. Let's add the business
logic as a class in the src/main/java/com/leszko/calculator/Calculator.java file:

package com.leszko.calculator;
import org.springframework.stereotype.Service;

@Service
public class Calculator {
 int sum(int a, int b) {
 return a + b;
 }
}

To execute the business logic, we also need to add the web service controller in a separate
file—src/main/java/com/leszko/calculator/CalculatorController.java:

package com.leszko.calculator;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
class CalculatorController {
 @Autowired
 private Calculator calculator;

 @RequestMapping("/sum")
 String sum(@RequestParam("a") Integer a,
 @RequestParam("b") Integer b) {
 return String.valueOf(calculator.sum(a, b));
 }
}

This class exposes the business logic as a web service. We can run the application and see
how it works:

$./gradlew bootRun

This should start our web service and we can check that it works by navigating to the
browser and opening http://localhost:8080/sum?a=1&b=2. This should sum two
numbers (1 and 2) and show 3 in the browser.

Continuous Integration Pipeline Chapter 4

[120]

Writing a unit test
We already have the working application. How can we ensure that the logic works as expected?
We tried it once, but in order to know that it will work consistently, we need a unit test. In
our case, it will be trivial, maybe even unnecessary; however, in real projects, unit tests can
save you from bugs and system failures.

Let's create a unit test in the
src/test/java/com/leszko/calculator/CalculatorTest.java file:

package com.leszko.calculator;
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class CalculatorTest {
 private Calculator calculator = new Calculator();

 @Test
 public void testSum() {
 assertEquals(5, calculator.sum(2, 3));
 }
}

We can run the test locally using the ./gradlew test command. Then, let's commit the
code and push it to the repository:

$ git add .
$ git commit -m "Add sum logic, controller and unit test"
$ git push

Creating a unit test stage
Now, we can add a Unit test stage to the pipeline:

stage("Unit test") {
 steps {
 sh "./gradlew test"
 }
}

In the case of Maven, we would have to use ./mvnw test.

Continuous Integration Pipeline Chapter 4

[121]

When we build the pipeline again, we should see three boxes, which means that we've
completed the Continuous Integration pipeline:

Jenkinsfile
So far, we've created all the pipeline code directly in Jenkins. This is, however, not the only
option. We can also put the pipeline definition inside a file called Jenkinsfile and
commit it to the repository together with the source code. This method is even more
consistent because the way your pipeline looks is strictly related to the project itself.

For example, if you don't need the code compilation because your programming language
is interpreted (and not compiled), you won't have the Compile stage. The tools you use
also differ, depending on the environment. We used Gradle/Maven because we've built the
Java project; however, in the case of a project written in Python, you could use PyBuilder.
This leads to the idea that the pipelines should be created by the same people who write the
code—the developers. Also, the pipeline definition should be put together with the code, in
the repository.

This approach brings immediate benefits, as follows:

In case of Jenkins failure, the pipeline definition is not lost (because it's stored in
the code repository, not in Jenkins)
The history of the pipeline changes is stored
Pipeline changes go through the standard code development process (for
example, they are subjected to code reviews)
Access to the pipeline changes is restricted in exactly the same way as access to
the source code

Continuous Integration Pipeline Chapter 4

[122]

Creating the Jenkinsfile
We can create the Jenkinsfile and push it into our GitHub repository. Its content is
almost the same as the commit pipeline we wrote. The only difference is that the checkout
stage becomes redundant because Jenkins has to first check out the code (together with
Jenkinsfile) and then read the pipeline structure (from Jenkinsfile). This is why
Jenkins needs to know the repository address before it reads Jenkinsfile.

Let's create a file called Jenkinsfile in the root directory of our project:

pipeline {
 agent any
 stages {
 stage("Compile") {
 steps {
 sh "./gradlew compileJava"
 }
 }
 stage("Unit test") {
 steps {
 sh "./gradlew test"
 }
 }
 }
}

We can now commit the added files and push to the GitHub repository:

$ git add Jenkinsfile
$ git commit -m "Add Jenkinsfile"
$ git push

Running the pipeline from Jenkinsfile
When Jenkinsfile is in the repository, all we have to do is to open the pipeline
configuration and do the following in the Pipeline section:

Change Definition from Pipeline script to Pipeline script from SCM
Select Git in SCM

Continuous Integration Pipeline Chapter 4

[123]

Put https://github.com/leszko/calculator.git in Repository URL:

After saving, the build will always run from the current version of Jenkinsfile into the
repository.

We have successfully created the first complete commit pipeline. It can be treated as a
minimum viable product, and actually, in many cases, this suffices as the Continuous
Integration process. In the following sections, we will see what improvements can be done
to make the commit pipeline even better.

Continuous Integration Pipeline Chapter 4

[124]

Code-quality stages
We can extend the three classic steps of Continuous Integration with additional steps. The
most popular are code coverage and static analysis. Let's look at each of them.

Code coverage
Think about the following scenario: you have a well-configured Continuous Integration
process; however, nobody in your project writes unit tests. It passes all the builds, but it
doesn't mean that the code is working as expected. What do we do then? How do we ensure
that the code is tested?

The solution is to add the code coverage tool that runs all tests and verifies which parts of
the code have been executed. Then, it can create a report that shows the untested sections.
Moreover, we can make the build fail when there is too much untested code.

There are a lot of tools available to perform the test coverage analysis; for Java, the most
popular are JaCoCo, Clover, and Cobertura.

Let's use JaCoCo and show how the coverage check works. In order to do this, we need to
perform the following steps:

Add JaCoCo to the Gradle configuration1.
Add the code coverage stage to the pipeline2.
Optionally, publish JaCoCo reports in Jenkins3.

Adding JaCoCo to Gradle
In order to run JaCoCo from Gradle, we need to add the jacoco plugin to the
build.gradle file by inserting the following line:

apply plugin: "jacoco"

Next, if we would like to make Gradle fail in case of low code coverage, we can add the
following configuration to the build.gradle file:

jacocoTestCoverageVerification {
 violationRules {
 rule {
 limit {
 minimum = 0.2
 }

Continuous Integration Pipeline Chapter 4

[125]

 }
 }
}

This configuration sets the minimum code coverage to 20%. We can run it with the
following command:

$./gradlew test jacocoTestCoverageVerification

The command checks whether the code coverage is at least 20%. You can play with the
minimum value to see the level at which the build fails. We can also generate a test-
coverage report using the following command:

$./gradlew test jacocoTestReport

You can check out the full coverage report in the
build/reports/jacoco/test/html/index.html file:

Adding a code coverage stage
Adding a code coverage stage to the pipeline is as simple as the previous stages:

stage("Code coverage") {
 steps {
 sh "./gradlew jacocoTestReport"
 sh "./gradlew jacocoTestCoverageVerification"
 }
}

After adding this stage, if anyone commits code that is not well-covered with tests, the
build will fail.

Continuous Integration Pipeline Chapter 4

[126]

Publishing the code coverage report
When coverage is low and the pipeline fails, it would be useful to look at the code coverage
report and find what parts are not yet covered with tests. We could run Gradle locally and
generate the coverage report; however, it is more convenient if Jenkins shows the report for
us.

In order to publish the code coverage report in Jenkins, we require the following stage
definition:

stage("Code coverage") {
 steps {
 sh "./gradlew jacocoTestReport"
 publishHTML (target: [
 reportDir: 'build/reports/jacoco/test/html',
 reportFiles: 'index.html',
 reportName: "JaCoCo Report"
])
 sh "./gradlew jacocoTestCoverageVerification"
 }
}

This stage copies the generated JaCoCo report to the Jenkins output. When we run the
build again, we should see a link to the code coverage reports (in the menu on the left-hand
side, below Build Now).

To perform the publishHTML step, you need to have the HTML Publisher
plugin installed in Jenkins. You can read more about the plugin at
https:/​/​jenkins.​io/​doc/​pipeline/​steps/​htmlpublisher/
#publishhtml-​publish-​html-​reports.

We have created the code coverage stage, which shows the code that is not tested and
therefore vulnerable to bugs. Let's see what else can be done in order to improve the code
quality.

If you need code coverage that is stricter, you can check the concept of
Mutation Testing and add the PIT framework stage to the pipeline. Read
more at http:/​/​pitest.​org/​.

https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
https://jenkins.io/doc/pipeline/steps/htmlpublisher/#publishhtml-publish-html-reports
http://pitest.org/
http://pitest.org/
http://pitest.org/
http://pitest.org/
http://pitest.org/
http://pitest.org/
http://pitest.org/
http://pitest.org/

Continuous Integration Pipeline Chapter 4

[127]

Static code analysis
Your code coverage may work perfectly fine; however, what about the quality of the code
itself? How do we ensure it is maintainable and written in a good style?

Static code analysis is an automatic process of checking the code without actually executing
it. In most cases, it implies checking a number of rules on the source code. These rules may
apply to a wide range of aspects; for example, all public classes need to have a Javadoc
comment; the maximum length of a line is 120 characters, or, if a class defines the
equals() method, it has to define the hashCode() method as well.

The most popular tools to perform the static analysis on the Java code are Checkstyle,
FindBugs, and PMD. Let's look at an example and add the static code analysis stage using
Checkstyle. We will do this in three steps:

Add the Checkstyle configuration1.
Add the Checkstyle stage2.
Optionally, publish the Checkstyle report in Jenkins3.

Adding the Checkstyle configuration
In order to add the Checkstyle configuration, we need to define the rules against which the
code is checked. We can do this by specifying the config/checkstyle/checkstyle.xml
file:

<?xml version="1.0"?>
<!DOCTYPE module PUBLIC
 "-//Puppy Crawl//DTD Check Configuration 1.2//EN"
 "http://www.puppycrawl.com/dtds/configuration_1_2.dtd">

<module name="Checker">
 <module name="TreeWalker">
 <module name="JavadocType">
 <property name="scope" value="public"/>
 </module>
 </module>
</module>

Continuous Integration Pipeline Chapter 4

[128]

The configuration contains only one rule: checking whether public classes, interfaces, and
enums are documented with Javadoc. If they are not, the build fails.

The complete Checkstyle description can be found at http:/​/​checkstyle.
sourceforge.​net/​config.​html.

We also need to add the checkstyle plugin to the build.gradle file:

apply plugin: 'checkstyle'

To use it only for the source code and not for the tests, you may additionally include the
following lines:

checkstyle {
 checkstyleTest.enabled = false
}

Then, we can run checkstyle with the following command:

$./gradlew checkstyleMain

In the case of our project, this should result in a failure because none of our public classes
(Calculator.java, CalculatorApplication.java, CalculatorTest.java,
CalculatorApplicationTests.java) has a Javadoc comment. We need to fix it by
adding the documentation, for example, in the case of the
src/main/java/com/leszko/calculator/CalculatorApplication.java file:

/**
 * Main Spring Application.
 */
@SpringBootApplication
public class CalculatorApplication {
 public static void main(String[] args) {
 SpringApplication.run(CalculatorApplication.class, args);
 }
}

Now, the build should be successful.

http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html
http://checkstyle.sourceforge.net/config.html

Continuous Integration Pipeline Chapter 4

[129]

Adding a static code analysis stage
We can add a Static code analysis stage to the pipeline:

stage("Static code analysis") {
 steps {
 sh "./gradlew checkstyleMain"
 }
}

Now, if anyone commits a file with a public class without Javadoc, the build will fail.

Publishing static code analysis reports
Very similar to JaCoCo, we can add the Checkstyle report to Jenkins:

publishHTML (target: [
 reportDir: 'build/reports/checkstyle/',
 reportFiles: 'main.html',
 reportName: "Checkstyle Report"
])

This generates a link to the Checkstyle report.

We have now added the static code analysis stage, which can help to find bugs and
standardize the code style inside the team or organization.

SonarQube
SonarQube is the most widespread source code quality management tool. It supports
multiple programming languages and can be treated as an alternative to the code-coverage
and static code analysis steps we looked at. Actually, it is a separate server that aggregates
different code analysis frameworks, such as Checkstyle, FindBugs, and JaCoCo. It has its
own dashboards and integrates well with Jenkins.

Instead of adding code quality steps to the pipeline, we can install SonarQube, add plugins
there, and add a sonar stage to the pipeline. The advantage of this solution is that
SonarQube provides a user-friendly web interface to configure rules and show code
vulnerabilities.

Continuous Integration Pipeline Chapter 4

[130]

You can read more about SonarQube on its official page at https:/​/​www.
sonarqube.​org/​.

https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/
https://www.sonarqube.org/

Continuous Integration Pipeline Chapter 4

[131]

Triggers and notifications
So far, we have always built the pipeline manually by clicking on the Build Now button. It
works completely fine, but may not be very convenient in practice. All team members
would have to remember that after committing to the repository, they need to open Jenkins
and start the build. The same applies to pipeline monitoring; so far, we manually opened
Jenkins and checked the build status. In this section, we will see how to improve the
process so that the pipeline would start automatically and, when completed, notify team
members regarding its status.

Triggers
An automatic action to start the build is called the pipeline trigger. In Jenkins, there are
many options to choose from; however, they all boil down to three types:

External
Polling Source Control Management (SCM)
Scheduled build

Let's take a look at each of them.

External
External triggers are easy to understand. They mean that Jenkins starts the build after it's
called by the notifier, which can be the other pipeline build, the SCM system (for example,
GitHub), or any remote script.

The following diagram presents the communication:

GitHub triggers Jenkins after a push to the repository and the build is started.

Continuous Integration Pipeline Chapter 4

[132]

To configure the system this way, we need the following setup steps:

Install the GitHub plugin in Jenkins1.
Generate a secret key for Jenkins2.
Set the GitHub web hook and specify the Jenkins address and key3.

In the case of the most popular SCM providers, dedicated Jenkins plugins are always
provided.

There is also a more generic way to trigger Jenkins via the REST call to the
<jenkins_url>/job/<job_name>/build?token=<token> endpoint. For security
reasons, it requires setting token in Jenkins and then using it in the remote script.

Jenkins must be accessible from the SCM server. In other words, if we use
the public GitHub to trigger Jenkins, our Jenkins server must be public as
well. This also applies to the REST call solution, in which case the
<jenkins_url> address must be accessible from the script that triggers
it.

Polling SCM
Polling the SCM trigger is a little less intuitive. The following diagram presents the
communication:

Jenkins periodically calls GitHub and checks whether there was any push to the repository.
Then, it starts the build. It may sound counter-intuitive, but there are at least two good
cases for using this method:

Jenkins is inside the firewalled network (which GitHub does not have access to)
Commits are frequent and the build takes a long time, so executing a build after
every commit would cause an overload

Continuous Integration Pipeline Chapter 4

[133]

The configuration of poll SCM is also somehow simpler because the way to connect from
Jenkins to GitHub is already set up (Jenkins checks out the code from GitHub, so it knows
how to access it). In the case of our calculator project, we can set up an automatic trigger by
adding the triggers declaration (just after agent) to the pipeline:

triggers {
 pollSCM('* * * * *')
}

After running the pipeline manually for the first time, the automatic trigger is set. Then, it
checks GitHub every minute, and, for new commits, it starts a build. To test that it works as
expected, you can commit and push anything to the GitHub repository and see that the
build starts.

We used the mysterious * * * * * as an argument to pollSCM. It specifies how often
Jenkins should check for new source changes and is expressed in the cron style string
format.

The cron string format is described (together with the cron tool) at https:/​/
en.​wikipedia.​org/​wiki/​Cron.

Scheduled builds
The scheduled trigger means that Jenkins runs the build periodically, regardless of whether
there was any commit to the repository.

As the following screenshot shows, no communication with any system is required:

The implementation of Scheduled build is exactly the same as polling SCM. The only
difference is that the cron keyword is used instead of pollSCM. This trigger method is
rarely used for the commit pipeline, but applies well to nightly builds (for example,
complex integration testing executed at night).

https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron
https://en.wikipedia.org/wiki/Cron

Continuous Integration Pipeline Chapter 4

[134]

Notifications
Jenkins provides a lot of ways to announce its build status. What's more, as with everything
in Jenkins, new notification types can be added using plugins.

Let's walk through the most popular types so that you can choose the one that fits your
needs.

Email
The most classic way to notify users about the Jenkins build status is to send emails. The
advantage of this solution is that everybody has a mailbox, everybody knows how to use
their mailbox, and everybody is used to receiving information in their mailbox. The
drawback is that usually, there are simply too many emails, and the ones from Jenkins
quickly become filtered out and never read.

The configuration of the email notification is very simple:

Have the SMTP server configured
Set its details in Jenkins (in Manage Jenkins | Configure System)
Use the mail to instruction in the pipeline

The pipeline configuration can be as follows:

post {
 always {
 mail to: 'team@company.com',
 subject: "Completed Pipeline: ${currentBuild.fullDisplayName}",
 body: "Your build completed, please check: ${env.BUILD_URL}"
 }
}

Note that all notifications are usually called in the post section of the pipeline, which is
executed after all steps, no matter whether the build succeeded or failed. We used the
always keyword; however, there are different options:

always: Execute regardless of the completion status
changed: Execute only if the pipeline changed its status
failure: Execute only if the pipeline has the failed status
success: Execute only if the pipeline has the success status
unstable: Execute only if the pipeline has the unstable status (usually caused by
test failures or code violations)

Continuous Integration Pipeline Chapter 4

[135]

Group chats
If a group chat (for example, Slack or Hipchat) is the first method of communication in your
team, it's worth considering adding the automatic build notifications there. No matter
which tool you use, the procedure to configure it is always the same:

Find and install the plugin for your group chat tool (for example, the Slack1.
Notification plugin)
Configure the plugin (server URL, channel, authorization token, and so on)2.
Add the sending instruction to the pipeline3.

Let's see a sample pipeline configuration for Slack to send notifications after the build fails:

post {
 failure {
 slackSend channel: '#dragons-team',
 color: 'danger',
 message: "The pipeline ${currentBuild.fullDisplayName} failed."
 }
}

Team spaces
Together with the agile culture came the idea that it's better to have everything happening
in the team space. Instead of writing emails, meet together; instead of online messaging,
come and talk; instead of task tracking tools, have a whiteboard. The same idea came to
Continuous Delivery and Jenkins. Currently, it's very common to install big screens (also
called build radiators) in the team space. Then, when you come to the office, the first thing
you see is the current status of the pipeline. Build radiators are considered one of the most
effective notification strategies. They ensure that everyone is aware of failing builds and, as
a side-effect benefit, they boost team spirit and favor in-person communication.

Since developers are creative beings, they invented a lot of other ideas that play the same
role as the radiators. Some teams hang large speakers that beep when the pipeline fails.
Others have toys that blink when the build is done. One of my favorites is Pipeline State
UFO, which is provided as an open source project on GitHub. On its page, you can find a
description of how to print and configure a UFO that hangs under the ceiling and signals
the pipeline state. You can find more information at https:/​/​github.​com/​Dynatrace/​ufo.

https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo
https://github.com/Dynatrace/ufo

Continuous Integration Pipeline Chapter 4

[136]

Since Jenkins is extensible by plugins, its community wrote a lot of
different ways to inform users about the build statuses. Among them, you
can find RSS feeds, SMS notifications, mobile applications, and desktop
notifiers.

Team development strategies
We have covered everything regarding how the Continuous Integration pipeline should
look. However, when exactly should it be run? Of course, it is triggered after the commit to
the repository, but after the commit to which branch? Only to the trunk or to every branch? Or
maybe it should run before, not after, committing so that the repository would always be healthy?
Or, how about the crazy idea of having no branches at all?

There is no single best answer to these questions. Actually, the way you use the Continuous
Integration process depends on your team development workflow. So, before we go any
further, let's describe the possible workflows.

Development workflows
A development workflow is the way your team puts the code into the repository. It
depends, of course, on many factors, such as the source control management tool, the
project specifics, and the team size.

As a result, each team develops the code in a slightly different manner. We can, however,
classify them into three types: trunk-based workflow, branching workflow, and forking
workflow.

All workflows are described in detail, with examples, at https:/​/​www.
atlassian.​com/​git/​tutorials/​comparing-​workflows.

https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

Continuous Integration Pipeline Chapter 4

[137]

The trunk-based workflow
The trunk-based workflow is the simplest possible strategy. It is presented in the following
diagram:

There is one central repository with a single entry for all changes to the project, which is
called the trunk or master. Every member of the team clones the central repository to have
their own local copies. The changes are committed directly to the central repository.

The branching workflow
The branching workflow, as its name suggests, means that the code is kept in many
different branches. The idea is presented in the following diagram:

Continuous Integration Pipeline Chapter 4

[138]

When developers start to work on a new feature, they create a dedicated branch from the
trunk and commit all feature-related changes there. This makes it easy for multiple
developers to work on a feature without breaking the main code base. This is why, in the
case of the branching workflow, there is no problem in keeping the master healthy. When
the feature is completed, a developer rebases the feature branch from the master and
creates a pull request that contains all feature-related code changes. It opens the code
review discussions and makes space to check whether the changes disturb the master.
When the code is accepted by other developers and automatic system checks, it is merged
into the main code base. The build is run again on the master, but should almost never fail
since it didn't fail on the branch.

The forking workflow
The forking workflow is very popular among open source communities. It is presented in
the following diagram:

Each developer has their own server-side repository. It may or may not be the official
repository, but technically, each repository is exactly the same.

Forking means literally creating a new repository from the other repository. Developers
push to their own repositories and when they want to integrate the code, they create a pull
request to the other repository.

The main advantage of the forking workflow is that the integration is not necessarily via a
central repository. It also helps with ownership because it allows the acceptance of pull
requests from others without giving them write access.

Continuous Integration Pipeline Chapter 4

[139]

In the case of requirement-oriented commercial projects, the team usually works on one
product and therefore has a central repository, so this model boils down to the branching
workflow with good ownership assignment; for example, only project leads can merge pull
requests into the central repository.

Adopting Continuous Integration
We have described different development workflows, but how do they influence the
Continuous Integration configuration?

Branching strategies
Each development workflow implies a different Continuous Integration approach:

Trunk-based workflow: This implies constantly struggling against the broken
pipeline. If everyone commits to the main code base, the pipeline often fails. In
this case, the old Continuous Integration rule says, If the build is broken, the
development team stops whatever they are doing and fixes the problem immediately.
Branching workflow: This solves the broken trunk issue, but introduces another
one: if everyone develops in their own branches, where is the integration? A
feature usually takes weeks or months to develop, and for all this time, the
branch is not integrated into the main code. Therefore, it cannot be really called
Continuous Integration; not to mention that there is a constant need for merging
and resolving conflicts.
Forking workflow: This implies managing the Continuous Integration process
by every repository owner, which isn't usually a problem. It does share, however,
the same issues as the branching workflow.

There is no silver bullet, and different organizations choose different strategies. The
solution that is the closest to perfection is using the technique of the branching workflow
and the philosophy of the trunk-based workflow. In other words, we can create very small
branches and integrate them frequently into the master. This seems to take the best aspects
of both. However, it requires either having tiny features or using feature toggles. Since the
concept of feature toggles fits very well into Continuous Integration and Continuous
Delivery, let's take a moment to explore it.

Continuous Integration Pipeline Chapter 4

[140]

Feature toggles
Feature toggles is a technique that is an alternative to maintaining multiple source code
branches, such that the feature can be tested before it is completed and ready for release. It
is used to disable the feature for users, but enable it for developers while testing. Feature
toggles are essentially variables used in conditional statements.

The simplest implementation of feature toggles are flags and the if statements. A
development using feature toggles, as opposed to feature branching development, appears
as follows:

A new feature has to be implemented1.
Create a new flag or a configuration property, feature_toggle (instead of the2.
feature branch)
Every feature-related code is added inside the if statement (instead of3.
committing to the feature branch), for example:

 if (feature_toggle) {
 // do something
 }

During the feature development, the following takes place:4.
Coding is done in the master with feature_toggle = true (instead
of coding in the feature branch)
The release is done from the master with feature_toggle = false

When the feature development is completed, all if statements are removed and5.
feature_toggle is removed from the configuration (instead of merging
feature to the master and removing the feature branch)

The benefit of feature toggle is that all development is done in the trunk, which facilitates
real Continuous Integration and mitigates problems with merging the code.

Jenkins multi-branch
If you decide to use branches in any form, either the long-feature branches or the
recommended short-lived branches, it is convenient to know that the code is healthy before
merging it into the master. This approach results in always keeping the main code base
green and, luckily, there is an easy way to do it with Jenkins.

Continuous Integration Pipeline Chapter 4

[141]

In order to use multi-branch in our calculator project, let's proceed with the following steps:

Open the main Jenkins page1.
Click on New Item2.
Enter calculator-branches as the item name, select Multibranch Pipeline,3.
and click on OK
In the Branch Sources section, click on Add source, and select Git4.
Enter the repository address into Project Repository:5.

Tick Periodically if not otherwise run and set 1 minute as the Interval6.
Click on Save7.

Every minute, this configuration checks whether there were any branches added (or
removed) and creates (or deletes) the dedicated pipeline defined by Jenkinsfile.

We can create a new branch and see how it works. Let's create a new branch called
feature and push it into the repository:

$ git checkout -b feature
$ git push origin feature

Continuous Integration Pipeline Chapter 4

[142]

After a moment, you should see a new branch pipeline automatically created and run:

Now, before merging the feature branch to the master, we can check whether it's green.
This approach should never break the master build.

In the case of GitHub, there is an even better approach;using the GitHub
Organization Folder plugin. It automatically creates pipelines with
branches and pull requests for all projects.

A very similar approach is to build a pipeline per pull request instead of a pipeline per
branch, which gives the same result; the main code base is always healthy.

Non-technical requirements
Last but not least, Continuous Integration is not all about the technology. On the contrary,
technology comes second. James Shore, in his article Continuous Integration on a Dollar a Day,
described how to set up the Continuous Integration process without any additional
software. All he used was a rubber chicken and a bell. The idea is to make the team work in
one room and set up a separate computer with an empty chair. Put the rubber chicken and
the bell in front of that computer. Now, when you plan to check in the code, take the rubber
chicken, check in the code, go to the empty computer, check out the fresh code, run all tests
there, and if everything passes, put back the rubber chicken and ring the bell so that
everyone knows that something has been added to the repository.

Continuous Integration Pipeline Chapter 4

[143]

Continuous Integration on a Dollar a Day by James Shore can be found at
http:/​/​www.​jamesshore.​com/​Blog/​Continuous-​Integration-​on-​a-
Dollar-​a-​Day.​html.

The idea is a little oversimplified, and automated tools are useful; however, the main
message is that without each team member's engagement, even the best tools won't help. In
his book, Jez Humble outlines the prerequisites for Continuous Integration:

Check in regularly: To quote Mike Roberts, Continuously is more often than you
think, the minimum is once a day
Create comprehensive unit tests: It's not only about the high test coverage, it's
possible to have no assertions and still keep 100% coverage
Keep the process quick: Continuous Integration must take a short time,
preferably under five minutes. 10 minutes is already a lot
Monitor the builds: This can be a shared responsibility, or you can adapt the
build master role that rotates weekly

Summary
In this chapter, we covered all aspects of the Continuous Integration pipeline, which is
always the first step for Continuous Delivery. Here are the key takeaways:

The pipeline provides a general mechanism for organizing any automation processes;
however, the most common use cases are Continuous Integration and Continuous Delivery.
Jenkins accepts different ways of defining pipelines, but the recommended one is the
declarative syntax. The commit pipeline is the most basic Continuous Integration process
and, as its name suggests, it should be run after every commit to the repository.

The pipeline definition should be stored in the repository as a Jenkinsfile. The commit
pipeline can be extended with the code-quality stages. No matter the project build tool,
Jenkins commands should always be consistent with the local development commands.

Jenkins offers a wide range of triggers and notifications. The development workflow should
be carefully chosen inside the team or organization because it affects the Continuous
Integration process and defines the way the code is developed.

In the next chapter, we will focus on the next phase of the Continuous Delivery
process—automated acceptance testing. This can be considered as the most important and,
in many cases, the most difficult step to implement. We will explore the idea of acceptance
testing and a sample implementation using Docker.

http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html

Continuous Integration Pipeline Chapter 4

[144]

Exercises
You've learned a lot about how to configure the Continuous Integration process. Since
practice makes perfect, I recommend doing the following exercises:

Create a Python program that multiplies two numbers passed as the command-1.
line parameters. Add unit tests and publish the project on GitHub:

Create two files: calculator.py and test_calculator.py1.
You can use the unittest library at https:/​/​docs.​python.​org/2.
library/​unittest.​html

Run the program and the unit test3.

Build the Continuous Integration pipeline for the Python calculator project:2.
Use Jenkinsfile to specify the pipeline1.
Configure the trigger so that the pipeline runs automatically in case of2.
any commit to the repository
The pipeline doesn't need the Compile step since Python is an3.
interpretable language
Run the pipeline and observe the results4.
Try to commit the code that breaks each stage of the pipeline and5.
observe how it is visualized in Jenkins

Questions
To verify the knowledge acquired from this chapter, please answer the following questions:

What is a pipeline?1.
What is the difference between stage and step in the pipeline?2.
What is the post section in the Jenkins pipeline?3.
What are the three most fundamental stages of the commit pipeline?4.
What is Jenkinsfile?5.
What is the purpose of the code coverage stage?6.
What is the difference between the following Jenkins triggers—External and7.
Polling SCM?
What are the most common Jenkins notification methods? Name at least three.8.
What are the three most common development workflows?9.
What is a feature toggle?10.

https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html

Continuous Integration Pipeline Chapter 4

[145]

Further reading
To read more about the Continuous Integration topic, please refer to the following
resources:

Jez Humble, David Farley: Continuous Delivery: https:/​/
continuousdelivery.​com/​

Andrew Glover, Steve Matyas, Paul M. Duvall: Continuous Integration:
Improving Software Quality and Reducing Risk

https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/

5
Automated Acceptance Testing

We've configured the commit phase of the continuous delivery process and now it's time to
address the acceptance testing phase, which is usually the most challenging part. By
gradually extending the pipeline, we will see different aspects of a well executed,
acceptance testing automation.

This chapter covers the following topics:

Introducing acceptance testing
Docker registry
Acceptance tests in the pipeline
Writing acceptance tests

Technical requirements
To complete this chapter, you'll need the following software:

Java JDK 8
Docker
Jenkins

All the examples and solutions to the exercises can be found at https:/​/​github.​com/
PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter05.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter05

Automated Acceptance Testing Chapter 5

[147]

Introducing acceptance testing
Acceptance testing is a step performed to determine whether the business requirements or
contracts are met. It involves black box testing against a complete system from a user
perspective and its positive result should imply acceptance for the software delivery.
Sometimes also called User Acceptance Testing (UAT), end user testing, or beta testing, it
is a phase of the development process when software meets the real-world audience.

Many projects rely on manual steps performed by QAs or users to verify the functional and
non-functional requirements, but still, it's way more reasonable to run them as
programmed repeatable operations.

Automated acceptance tests, however, can be considered difficult due to their specifics:

User-facing: They need to be written together with a user, which requires an
understanding between two worlds—technical and non-technical.
Dependencies integration: The tested application should be run together with its
dependencies in order to check that the system as a whole works properly.
Staging environment: The staging (testing) environment needs to be identical to
the production one so as to ensure the same functional and non-functional
behavior.
Application identity: Applications should be built only once and the same
binary should be transferred to production. This eliminates the risk of different
building environments.
Relevance and consequences: If the acceptance test passes, it should be clear that
the application is ready for release from the user perspective.

We address all these difficulties in different sections of this chapter. Application identity
can be achieved by building the Docker image only once and using Docker registry for its
storage and versioning. Creating tests in a user-facing manner is explained in the Writing
acceptance tests section, and the environment identity is addressed by the Docker tool itself
and can also be improved by other tools described in the next chapters.

Acceptance testing can have multiple meanings; in this book, we treat
acceptance testing as a complete integration test suite from a user
perspective, excluding non-functional testing, such as performance, load,
and recovery.

Since we understand the goal and meaning of acceptance testing, let's describe the first
aspect we need—Docker registry.

Automated Acceptance Testing Chapter 5

[148]

Docker registry
Docker registry is a store for Docker images. To be precise, it is a stateless server application
that allows the images to be published (pushed) and later retrieved (pulled). We saw an
example of the registry when running the official Docker images, such as hello-world.
We pulled the images from Docker Hub, which is an official cloud-based Docker registry.
Having a separate server to store, load, and search software packages is a more general
concept, called the software repository or, in even more general terms, the artifact
repository. Let's look closer at this idea.

The artifact repository
While the source control management stores the source code, the artifact repository is
dedicated to storing software binary artifacts, such as compiled libraries or components,
later used to build a complete application. Why do we need to store binaries on a separate server
using a separate tool?

File size: Artifact files can be large, so the systems need to be optimized for their
download and upload.
Versions: Each uploaded artifact needs to have a version that makes it easy to
browse and use. Not all versions, however, have to be stored forever; for
example, if there was a bug detected, we may not be interested in the related
artifact and remove it.
Revision mapping: Each artifact should point to exactly one revision of the
source control and, what's more, the binary creation process should be
repeatable.
Packages: Artifacts are stored in the compiled and compressed form, so that
these time-consuming steps don't need to be repeated.
Access control: Users can be restricted differently to the source code and artifact
binary access.
Clients: Users of the artifact repository can be developers outside the team or
organization who want to use the library via its public API.
Use cases: Artifact binaries are used to guarantee that exactly the same built
version is deployed to every environment to ease the rollback procedure in case
of failure.

Automated Acceptance Testing Chapter 5

[149]

The most popular artifact repositories are JFrog Artifactory and Sonatype
Nexus.

The artifact repository plays a special role in the continuous delivery process because it
guarantees that the same binary is used throughout all pipeline steps.

Let's look at the following diagram to understand how it works:

The Developer pushes a change to the source code repository, which triggers the pipeline
build. As the last step of the Commit Stage, a binary is created and stored in the Artifact
Repository. Afterward, during all other stages of the delivery process, the same binary is
(pulled and) used.

The built binary is often called the release candidate, and the process of
moving the binary to the next stage is called promotion.

Automated Acceptance Testing Chapter 5

[150]

Depending on the programming language and technologies, the binary formats can differ.
For example, in the case of Java, usually JAR files are stored and, in the case of Ruby, Gem
files. We work with Docker, so we will store Docker images as artifacts, and the tool to
store Docker images is called Docker registry.

Some teams maintain two repositories at the same time; the artifact
repository for JAR files and Docker registry for Docker images. While it
may be useful during the first phase of the Docker introduction, there is
no good reason to maintain both forever.

Installing Docker registry
First, we need to install Docker registry. There are a number of options available, but two of
them are more common than others: cloud-based Docker Hub registry, and your own
private Docker registry. Let's dig into them.

Docker Hub
Docker Hub is a cloud-based service that provides Docker registry and other features, such
as building images, testing them, and pulling code directly from the code repository.
Docker Hub is cloud-hosted, so it does not really need any installation process. All you
need to do is create a Docker Hub account:

Open https:/​/​hub.​docker.​com/​ in a browser1.
In Sign Up, fill in the password, email address, and Docker ID2.
After receiving an email and clicking the activation link, the account is created3.

Docker Hub is definitely the simplest option to start with, and it allows the storing of both
private and public images.

Private Docker registry
Docker Hub may not always be acceptable. It is not free for enterprises and, what's even
more important, a lot of companies have policies not to store their software outside their
own network. In this case, the only option is to install a private Docker registry.

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/

Automated Acceptance Testing Chapter 5

[151]

The Docker registry installation process is quick and simple, but making it secure and
available in public requires setting up access restriction and the domain certificate. This is
why we split this section into three parts:

Installing the Docker registry application
Adding a domain certificate
Adding access restriction

Let's have a look at each part.

Installing the Docker registry application
Docker registry is available as a Docker image. To start this, we can run the following
command:

$ docker run -d -p 5000:5000 --restart=always --name registry registry:2

By default, the registry data is stored as a Docker volume in the default
host filesystem's directory. To change it, you can add -v
<host_directory>:/var/lib/registry. Another alternative is to use
a volume container.

The command starts the registry and makes it accessible through port 5000. The registry
container is started from the registry image (version 2). The --restart=always option
causes the container to automatically restart whenever it's down.

Consider setting up a load balancer and starting a few Docker registry
containers in case of a large number of users.

Adding a domain certificate
If the registry is run on the localhost, then everything works fine and no other installation
steps are required. However, in most cases, we want to have a dedicated server for the
registry, so that the images are widely available. In that case, Docker requires securing of
the registry with SSL/TLS. The process is very similar to the public web server
configuration and, similarly, it's highly recommended that you have the certificate signed
by a certificate authority (CA). If obtaining the CA-signed certificate is not an option, we
can self-sign a certificate or use the --insecure-registry flag.

Automated Acceptance Testing Chapter 5

[152]

You can read about creating and using self-signed certificates at https:/​/
docs.​docker.​com/​registry/​insecure/​#using-​self-​signed-
certificates.

Once the certificates are either signed by CA or self-signed, we can move domain.crt and
domain.key to the certs directory and start the registry:

$ docker run -d -p 5000:5000 --restart=always --name registry -v
`pwd`/certs:/certs -e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt -e
REGISTRY_HTTP_TLS_KEY=/certs/domain.key registry:2

In case of a self-signed certificate, clients have to explicitly trust the
certificate. In order to do this, they can copy the domain.crt file to
/etc/docker/certs.d/<docker_host_domain>:5000/ca.crt.

Using the --insecure-registry flag is not recommended since it provides no proper
certificate authenticity verification.

Read more about setting up Docker registries and making them secure in
the official Docker docs: https:/​/​docs.​docker.​com/​registry/
deploying/​.

Adding an access restriction
Unless we use the registry inside a highly secure private network, we should configure the
authentication.

The simplest way to do this is to create a user with a password using the htpasswd tool
from the registry image:

$ mkdir auth
$ docker run --entrypoint htpasswd registry:2 -Bbn <username> <password> >
auth/passwords

https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/insecure/#using-self-signed-certificates
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/

Automated Acceptance Testing Chapter 5

[153]

The command runs the htpasswd tool to create the auth/passwords file (with one user
inside). Then, we can run the registry with that one user authorized to access it:

$ docker run -d -p 5000:5000 --restart=always --name registry -v
`pwd`/auth:/auth -e "REGISTRY_AUTH=htpasswd" -e
"REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm" -e
REGISTRY_AUTH_HTPASSWD_PATH=/auth/passwords -v `pwd`/certs:/certs -e
REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt -e
REGISTRY_HTTP_TLS_KEY=/certs/domain.key registry:2

The command, in addition to setting the certificates, creates the access restriction limited to
the users specified in the auth/passwords file.

As a result, before using the registry, a client needs to specify the username and password.

Access restriction doesn't work in the case of the --insecure-registry
flag.

Other Docker registries
Docker Hub and private registry are not the only possibilities when it comes to Docker-
based artifact repositories.

The other options are as follows:

General-purpose repositories: Widely used, general-purpose repositories, such
as JFrog Artifactory or Sonatype Nexus, implement the Docker registry API.
Their advantage is that one server can store both Docker images and other
artifacts (for example, JAR files). These systems are also mature and provide
enterprise integration.
Cloud-based registries: Docker Hub is not the only cloud provider. Most cloud-
oriented services offer Docker registries in the cloud, for example, Google Cloud
or AWS.
Custom registries: The Docker registry API is open, so it's possible to implement
custom solutions. What's more, images can be exported to files, so it's feasible to
store images simply as files.

Automated Acceptance Testing Chapter 5

[154]

Using Docker registry
When our registry is configured, we can show how to work with it in three stages:

Building an image
Pushing the image into the registry
Pulling the image from the registry

Building an image
Let's use the example from Chapter 2, Introducing Docker, and build an image with Ubuntu
and the Python interpreter installed. In a new directory, we need to create a Dockerfile:

FROM ubuntu:18.04
RUN apt-get update && \
 apt-get install -y python

Now, we can build the image with the following command:

$ docker build -t ubuntu_with_python .

Pushing the image
In order to push the created image, we need to tag it according to the naming convention:

<registry_address>/<image_name>:<tag>

The registry_address can be either of the following:

A username in the case of Docker Hub
A domain name or IP address with a port for a private registry (for example,
localhost:5000)

In most cases, <tag> is in the form of the image/application version.

Let's tag the image to use Docker Hub:

$ docker tag ubuntu_with_python leszko/ubuntu_with_python:1

Automated Acceptance Testing Chapter 5

[155]

We could have also tagged the image in the build command: docker
build -t leszko/ubuntu_with_python:1 .

If the repository has access restriction configured, we need to authorize it first:

$ docker login --username <username> --password <password>

It's possible to use the docker login command without parameters and
Docker would ask interactively for the username and password.

Now, we can store the image in the registry using the push command:

$ docker push leszko/ubuntu_with_python:1

Note that there is no need to specify the registry address because Docker uses the naming
convention to resolve it. The image is stored, and we can check it using the Docker Hub
web interface available at https:/​/​hub.​docker.​com.

Pulling the image
To demonstrate how the registry works, we can remove the image locally and retrieve it
from the registry:

$ docker rmi ubuntu_with_python leszko/ubuntu_with_python:1

We can see that the image has been removed using the docker images command. Then,
let's retrieve the image back from the registry:

$ docker pull leszko/ubuntu_with_python:1

If you use the free Docker Hub account, you may need to change the
ubuntu_with_python repository to public before pulling it.

We can confirm that the image is back with the docker images command.

When we have the registry configured and understand how it works, we can see how to
use it inside the continuous delivery pipeline and build the acceptance testing stage.

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com

Automated Acceptance Testing Chapter 5

[156]

Acceptance tests in the pipeline
We already understand the idea behind acceptance testing and know how to configure the
Docker registry, so we are ready for its first implementation inside the Jenkins pipeline.

Let's look at the following diagram, which presents the process we will use:

The process goes as follows:

The developer pushes a code change to GitHub1.
Jenkins detects the change, triggers the build, and checks out the current code2.
Jenkins executes the commit phase and builds the Docker image3.
Jenkins pushes the image to Docker registry4.
Jenkins runs the Docker container in the staging environment5.
The Docker host on the staging environment needs to pull the image from the6.
Docker registry
Jenkins runs the acceptance test suite against the application running in the7.
staging environment

Automated Acceptance Testing Chapter 5

[157]

For the sake of simplicity, we will run the Docker container locally (and
not on a separate staging server). In order to run it remotely, we need to
use the -H option or to configure the DOCKER_HOST environment variable.
We will cover this part later.

Let's continue the pipeline we started in Chapter 4, Continuous Integration Pipeline and add
three more stages:

Docker build

Docker push

Acceptance test

Keep in mind that you need to have the Docker tool installed on the Jenkins executor (agent
slave or master, in the case of slaveless configuration), so that it can build Docker images.

If you use dynamically provisioned Docker slaves, then there is no mature
Docker image provided yet. You can build it yourself or use the
leszko/jenkins-docker-slave image. You also need to mark the
privileged option in the Docker agent configuration. This solution,
however, has some drawbacks, so before using it in production, read this:
http:/​/​jpetazzo.​github.​io/​2015/​09/​03/​do-​not-​use-​docker-​in-
docker-​for-​ci/​.

The Docker build stage
We would like to run the calculator project as a Docker container, so we need to create
Dockerfile and add the Docker build stage to Jenkinsfile.

Adding Dockerfile
Let's create Dockerfile in the root directory of the calculator project:

FROM openjdk:8-jre
COPY build/libs/calculator-0.0.1-SNAPSHOT.jar app.jar
ENTRYPOINT ["java", "-jar", "app.jar"]

http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
http://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

Automated Acceptance Testing Chapter 5

[158]

The default build directory for Gradle is build/libs/, and
calculator-0.0.1-SNAPSHOT.jar is the complete application
packaged into one JAR file. Note that Gradle automatically versioned the
application using the Maven-style version 0.0.1-SNAPSHOT.

Dockerfile uses a base image that contains JRE 8 (openjdk:8-jre). It also copies the
application JAR (created by Gradle) and runs it. Let's now check whether the application
builds and runs:

$./gradlew build
$ docker build -t calculator .
$ docker run -p 8080:8080 --name calculator calculator

Using the preceding commands, we've built the application, built the Docker image, and
run the Docker container. After a while, we should be able to open the browser at
http://localhost:8080/sum?a=1&b=2 and see 3 as a result.

We can stop the container and push the Dockerfile to the GitHub repository:

$ git add Dockerfile
$ git commit -m "Add Dockerfile"
$ git push

Adding the Docker build to the pipeline
The final step we need to perform is to add the Docker build stage to Jenkinsfile. Usually,
the JAR packaging is also declared as a separate Package stage:

stage("Package") {
 steps {
 sh "./gradlew build"
 }
}

stage("Docker build") {
 steps {
 sh "docker build -t leszko/calculator ."
 }
}

We don't explicitly version the image, but each image has a unique hash
ID. We will cover explicit versioning in the following chapters.

Automated Acceptance Testing Chapter 5

[159]

Note that we used the Docker registry name in the image tag. There is no need to have the
image tagged twice as calculator and leszko/calculator.

When we commit and push Jenkinsfile, the pipeline build should start automatically and
we should see all boxes green. This means that the Docker image has been built
successfully.

There is also a Gradle plugin for Docker that allows execution of the
Docker operations within Gradle scripts. You can see an example at
https:/​/​spring.​io/​guides/​gs/​spring-​boot-​docker/​.

The Docker push stage
When the image is ready, we can store it in the registry. The Docker push stage is very
simple. It's enough to add the following code to Jenkinsfile:

stage("Docker push") {
 steps {
 sh "docker push leszko/calculator"
 }
}

If Docker registry has access restricted, first, we need to log in using the
docker login command. Needless to say, the credentials must be well
secured, for example, using a dedicated credential store as described on
the official Docker page: https:/​/​docs.​docker.​com/​engine/​reference/
commandline/​login/​#credentials-​store.

As always, pushing changes to the GitHub repository triggers Jenkins to start the build
and, after a while, we should have the image automatically stored in the registry.

The acceptance testing stage
To perform acceptance testing, first, we need to deploy the application to the staging
environment and then run the acceptance test suite against it.

https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://spring.io/guides/gs/spring-boot-docker/
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Automated Acceptance Testing Chapter 5

[160]

Adding a staging deployment to the pipeline
Let's add a stage to run the calculator container:

stage("Deploy to staging") {
 steps {
 sh "docker run -d --rm -p 8765:8080 --name calculator
leszko/calculator"
 }
}

After running this stage, the calculator container is running as a daemon, publishing its
port as 8765, and being removed automatically when stopped.

Adding an acceptance test to the pipeline
Acceptance testing usually requires running a dedicated black box test suite that checks the
behavior of the system. We will cover it in the Writing acceptance tests section. At the
moment, for the sake of simplicity, let's perform acceptance testing simply by calling the
web service endpoint with the curl tool and checking the result using the test command.

In the root directory of the project, let's create the acceptance_test.sh file:

#!/bin/bash
test $(curl localhost:8765/sum?a=1\&b=2) -eq 3

We call the sum endpoint with the a=1 and b=2 parameters and expect to receive 3 in
response.

Then, the Acceptance test stage can appear as follows:

stage("Acceptance test") {
 steps {
 sleep 60
 sh "chmod +x acceptance_test.sh && ./acceptance_test.sh"
 }
}

Since the docker run -d command is asynchronous, we need to wait, using the sleep
operation to make sure the service is already running.

Automated Acceptance Testing Chapter 5

[161]

There is no good way to check whether the service is already running. An
alternative to sleeping could be a script checking every second to see
whether the service has already started.

Adding a cleaning stage environment
As the final stage of acceptance testing, we can add the staging environment cleanup. The
best place to do this is in the post section, to make sure it executes even in case of failure:

post {
 always {
 sh "docker stop calculator"
 }
}

This statement makes sure that the calculator container is no longer running on the
Docker host.

Writing acceptance tests
So far, we used the curl command to perform a suite of acceptance tests. That is obviously
a considerable simplification. Technically speaking, if we write a REST web service, we
could write all black box tests as a big script with a number of curl calls. However, this
solution would be very difficult to read, understand, and maintain. What's more, the script
would be completely incomprehensible to non-technical, business-related users. How do we
address this issue and create tests with a good structure that are readable by users and meet its
fundamental goal: automatically checking that the system is as expected? I will answer this
question throughout this section.

Writing user-facing tests
Acceptance tests are written with users and should be comprehensible to users. This is why
the choice of a method for writing them depends on who the customer is.

For example, imagine a purely technical person. If you write a web service that optimizes
database storage, and your system is used only by other systems and read only by other
developers, your tests can be expressed in the same way as unit tests. As a rule, the test is
good if understood by both developers and users.

Automated Acceptance Testing Chapter 5

[162]

In real life, most software is written to deliver a specific business value, and that business
value is defined by non-developers. Therefore, we need a common language to collaborate.
On the one side, there is the business, which understands what is needed, but not how to
do it; on the other side, the development team knows how but doesn't know what. Luckily,
there are a number of frameworks that helps to connect these two worlds, such as
Cucumber, FitNesse, JBehave, and Capybara. They differ from each other, and each of
them may be a subject for a separate book; however, the general idea of writing acceptance
tests is the same and is shown in the following diagram:

The Acceptance Criteria are written by users (or a product owner as their representative)
with the help of developers. They are usually written in the form of the following scenarios:

Given I have two numbers: 1 and 2
When the calculator sums them
Then I receive 3 as a result

Developers write the testing implementation, called Fixtures or Step Definitions, that
integrates the human-friendly domain-specific language (DSL) specification with the
programming language. As a result, we have an automated test that can be easily
integrated into the continuous delivery pipeline.

Automated Acceptance Testing Chapter 5

[163]

Needless to add, writing acceptance tests is a continuous agile process, not a waterfall one.
It requires constant collaboration, during which the test specifications are improved and
maintained by both developers and business.

In the case of an application with a user interface, it can be tempting to
perform the acceptance test directly through the interface (for example, by
recording Selenium scripts). However, this approach, when not done
properly, can lead to tests that are slow and tightly coupled to the
interface layer.

Let's see how writing acceptance tests looks in practice and how to bind them to the
continuous delivery pipeline.

Using the acceptance testing framework
Let's use the Cucumber framework and create an acceptance test for the calculator project.
As previously described, we will do this in three stages:

Creating acceptance criteria
Creating step definitions
Running an automated acceptance test

Creating acceptance criteria
Let's put the business specification in
src/test/resources/feature/calculator.feature:

Feature: Calculator
 Scenario: Sum two numbers
 Given I have two numbers: 1 and 2
 When the calculator sums them
 Then I receive 3 as a result

This file should be created by users with the help of developers. Note that it is written in a
way that non-technical people can understand.

Automated Acceptance Testing Chapter 5

[164]

Creating step definitions
The next step is to create the Java bindings so that the feature specification would be
executable. In order to do this, we create a new file,
src/test/java/acceptance/StepDefinitions.java:

package acceptance;

import cucumber.api.java.en.Given;
import cucumber.api.java.en.Then;
import cucumber.api.java.en.When;
import org.springframework.web.client.RestTemplate;

import static org.junit.Assert.assertEquals;

/** Steps definitions for calculator.feature */
public class StepDefinitions {
 private String server = System.getProperty("calculator.url");

 private RestTemplate restTemplate = new RestTemplate();

 private String a;
 private String b;
 private String result;

 @Given("^I have two numbers: (.*) and (.*)$")
 public void i_have_two_numbers(String a, String b) throws Throwable {
 this.a = a;
 this.b = b;
 }

 @When("^the calculator sums them$")
 public void the_calculator_sums_them() throws Throwable {
 String url = String.format("%s/sum?a=%s&b=%s", server, a, b);
 result = restTemplate.getForObject(url, String.class);
 }

 @Then("^I receive (.*) as a result$")
 public void i_receive_as_a_result(String expectedResult) throws
Throwable {
 assertEquals(expectedResult, result);
 }
}

Automated Acceptance Testing Chapter 5

[165]

Each line (Given, When, and Then) from the feature specification file is matched by regular
expressions with the corresponding method in the Java code. The wildcards (.*) are
passed as parameters. Note that the server address is passed as the Java property,
calculator.url. The method performs the following actions:

i_have_two_numbers: Saves parameters as fields
the_calculator_sums_them: Calls the remote calculator service and stores the
result in a field
i_receive_as_a_result: Asserts that the result is as expected

Running an automated acceptance test
To run an automated test, we need to make a few configurations:

Add the Java cucumber libraries. In the build.gradle file, add the following1.
code to the dependencies section:

 testImplementation("io.cucumber:cucumber-java:4.2.6")
 testImplementation("io.cucumber:cucumber-junit:4.2.6")

Add the Gradle target. In the same file, add the following code:2.

 task acceptanceTest(type: Test) {
 include '**/acceptance/**'
 systemProperties System.getProperties()
 }

 test {
 exclude '**/acceptance/**'
 }

This splits the tests into unit (run with ./gradlew test) and acceptance
(run with ./gradlew acceptanceTest).

Add JUnit runner. Add a new file,3.
src/test/java/acceptance/AcceptanceTest.java:

 package acceptance;

 import cucumber.api.CucumberOptions;
 import cucumber.api.junit.Cucumber;
 import org.junit.runner.RunWith;

 /** Acceptance Test */

Automated Acceptance Testing Chapter 5

[166]

 @RunWith(Cucumber.class)
 @CucumberOptions(features = "classpath:feature")
 public class AcceptanceTest { }

This is the entry point to the acceptance test suite.

After this configuration, if the server is running on the localhost, we can test it by executing
the following code:

$./gradlew acceptanceTest -Dcalculator.url=http://localhost:8765

Obviously, we can add this command instead of acceptance_test.sh. This would make
the Cucumber acceptance test run in the Jenkins pipeline.

Acceptance test-driven development
Acceptance tests, like most aspects of the continuous delivery process, are less about
technology and more about people. The test quality depends, of course, on the engagement
of users and developers, but also, what is maybe less intuitive, the time when the tests are
created.

The last question to ask is, during which phase of the software development life cycle should the
acceptance tests be prepared? Or, to rephrase it: should we create acceptance tests before or after
writing the code?

Technically speaking, the result is the same; the code is well covered with both unit and
acceptance tests. However, it's tempting to consider writing tests first. The idea of test-
driven development (TDD) can be well adapted for acceptance testing. If unit tests are
written before the code, the result code is cleaner and better structured. Analogously, if
acceptance tests are written before the system feature, the resulting feature corresponds
better to the customer's requirements.

Automated Acceptance Testing Chapter 5

[167]

This process, often called acceptance TDD, is presented in the following diagram:

Users (with developers) write the acceptance criteria specification in the human-friendly
DSL format. Developers write the fixtures and the tests fail. Then, feature development
starts using the TDD methodology internally. Once the feature is completed, the acceptance
test should pass, and this is a sign that the feature is completed.

A very good practice is to attach the Cucumber feature specification to the request ticket in
the issue-tracking tool (for example, JIRA) so that the feature would always be requested
together with its acceptance test. Some development teams take an even more radical
approach and refuse to start the development process if no acceptance tests are prepared.
There is a lot of sense in that. After all, how can you develop something that the client can't
test?

Summary
In this chapter, you learned how to build a complete and functional acceptance test stage,
which is an essential part of the continuous delivery process. Here are the key takeaways:

Acceptance tests can be difficult to create because they combine technical challenges
(application dependencies, setting up the environment) with personal challenges
(developers/business collaboration). Acceptance testing frameworks provide a way to write
tests in a human-friendly language that makes them comprehensible to non-technical
people.

Automated Acceptance Testing Chapter 5

[168]

Docker registry is an artifact repository for Docker images. Docker registry fits well with
the continuous delivery process because it provides a way to use exactly the same Docker
image throughout the stages and environments.

In the next chapter, we will cover clustering and service dependencies, which is the next
step toward creating a complete continuous delivery pipeline.

Exercises
We covered a lot of new material throughout this chapter, so to aid understanding, I
recommend doing the following exercises:

Create a Ruby-based web service, book-library, to store books:1.

The acceptance criteria are delivered in the form of the following Cucumber
feature:

Scenario: Store book in the library
 Given Book "The Lord of the Rings" by "J.R.R. Tolkien"
with ISBN number "0395974682"
 When I store the book in library
 Then I am able to retrieve the book by the ISBN number

Write step definitions for the Cucumber test1.
Write the web service (the simplest way is to use the Sinatra2.
framework: http:/​/​www.​sinatrarb.​com/​, but you can also use Ruby
on Rails)
The book should have the following attributes: name, author, and3.
ISBN
The web service should have the following endpoints:4.

POST /books to add a book
GET books/<isbn> to retrieve the book

The data can be stored in the memory5.
At the end, check that the acceptance test is green6.

http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/
http://www.sinatrarb.com/

Automated Acceptance Testing Chapter 5

[169]

Add book-library as a Docker image to the Docker registry:2.
Create an account on Docker Hub1.
Create Dockerfile for the application2.
Build the Docker image and tag it according to the naming convention3.
Push the image to Docker Hub4.

Create the Jenkins pipeline to build the Docker image, push it to the Docker3.
registry, and perform acceptance testing:

Create a Docker build stage1.
Create the Docker login and Docker push stages2.
Add an Acceptance test stage to the pipeline3.
Run the pipeline and observe the result4.

Questions
To verify the knowledge acquired from this chapter, please answer the following questions:

What is Docker registry?1.
What is Docker Hub?2.
What is the convention for naming Docker images (later pushed to Docker3.
registry)?
What is the staging environment?4.
What Docker commands would you use to build an image and push it into5.
Docker Hub?
What is the main purpose of acceptance testing frameworks such as Cucumber6.
and Fitnesse?
What are the three main parts of the Cucumber test?7.
What is acceptance test-driven development?8.

Automated Acceptance Testing Chapter 5

[170]

Further reading
To learn more about Docker registry, acceptance testing, and Cucumber, please refer to the
following resources:

Docker Registry documentation: https:/​/​docs.​docker.​com/​registry/​

Jez Humble, David Farley—Continuous Delivery: https:/​/
continuousdelivery.​com/​

Cucumber Framework: https:/​/​cucumber.​io/​

https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/
https://cucumber.io/

6
Clustering with Kubernetes

So far, in this book, we have covered the fundamental aspects of the acceptance testing
process. In this chapter, we will see how to change the Docker environment from a single
Docker host into a cluster of machines and how to change an independent application into
a system composed of multiple applications.

This chapter covers the following topics:

Server clustering
Introducing Kubernetes
Advanced Kubernetes
Application dependencies
Scaling Jenkins
Alternative cluster management systems

Technical requirements
To follow along with the instructions in this chapter, you'll need the following
hardware/software requirements:

At least 4 GB of RAM
JDK 8
At least 1 GB of free disk space

All the examples and solutions to the exercises in this chapter can be found in this book's
GitHub repository at https:/​/​github.​com/​PacktPublishing/​Continuous-​Delivery-​with-
Docker-​and-​Jenkins-​Second-​Edition/​tree/​master/​Chapter06.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter06

Clustering with Kubernetes Chapter 6

[172]

Server clustering
So far, we have interacted with each of the machines individually. What we did was
connect to the localhost Docker Daemon server. We could have used the -H option in the
docker run command to specify the address of the remote Docker, but that would still
mean deploying our application to a single Docker host machine. In real life, however, if
servers share the same physical location, we are not interested in which particular machine
the service is deployed in. All we need is to have it accessible and replicated in many
instances to support high availability. How can we configure a set of machines to work that way?
This is the role of clustering.

In the following subsections, you will be introduced to the concept of server clustering and
the Kubernetes environment, which is an example of the cluster management software.

Introducing server clustering
A server cluster is a set of connected computers that work together in such a way that they
can be used similarly to a single system. Servers are usually connected through the local
network by a connection that's fast enough to ensure that the services that are being run are
distributed. A simple server cluster is presented in the following diagram:

A user accesses the cluster through a master host, which exposes the cluster API. There are
multiple nodes that act as computing resources, which means that they are responsible for
running applications. The master, on the other hand, is responsible for all other activities,
such as the orchestration process, service discovery, load balancing, node failure detection,
and more.

Clustering with Kubernetes Chapter 6

[173]

Introducing Kubernetes
Kubernetes is an open source cluster management system that was originally designed by
Google. Looking at the popularity charts, it is a clear winner among other competitors such
as Docker Swarm and Apache Mesos. Its popularity has grown so fast that most cloud
platforms provide Kubernetes out of the box. It's not Docker-native, but there are a lot of
additional tools and integrations to make it work smoothly with the whole Docker
ecosystem; for example, kompose can translate Docker Compose files into Kubernetes
configurations.

In the first edition of this book, I recommended Docker Compose and
Docker Swarm for application dependency resolution and server
clustering. While they're both good tools, Kubernetes' popularity grew so
high recently that I decided to use Kubernetes as the recommended
approach and keep Docker-native tooling as an alternative.

Let's take a look at the simplified architecture of Kubernetes:

Clustering with Kubernetes Chapter 6

[174]

The Kubernetes Master, which is actually a set of cluster services, is responsible for
enforcing the desired state of your applications. In other words, you specify your
deployment setup in a declarative manner (four replicas of a web service exposing port
8080), for which the master is responsible for making it happen. A Kubernetes Node, on
the other hand, is a worker. You may see it just as a (Docker) container host with a special
Kubernetes process (called Kubelet) installed.

From the user's perspective, you provide a declarative deployment configuration in the
form of a YAML file and pass it to the Kubernetes Master through its API. Then, the master
reads the configuration and installs the deployment. Kubernetes introduces the concept of a
Pod, which represents a single deployment unit. The Pod contains Docker Containers,
which are scheduled together. While you can put multiple containers into a single Pod, in
real-life scenarios, you will see that most Pods contain just a single Docker container. Pods
are dynamically built and removed depending on the requirement changes that are
expressed in the YAML configuration updates.

You will gain more practical knowledge about Kubernetes in later sections of this chapter,
but first, let's name the features that make Kubernetes such a great environment.

Kubernetes features overview
Kubernetes provides a number of interesting features. Let's walk-through the most
important ones:

Container balancing: Kubernetes takes care of the load balancing of Pods on
nodes; you specify the number of replicas of your application, and Kubernetes
takes care of the rest.
Traffic load balancing: When you have multiple replicas of your application, the
Kubernetes service can load balance the traffic. In other words, you create a
service with a single IP (or DNS) and Kubernetes takes care of load balancing the
traffic to your application replicas.
Dynamic horizontal scaling: Each deployment can be dynamically scaled up or
down; you specify the number of application instances (or the rules for
autoscaling) and Kubernetes starts/stops Pod replicas.
Failure recovery: Pods (and nodes) are constantly monitored and, if any of them
fail, new Pods are started so that the declared number of replicas would be
constant.

Clustering with Kubernetes Chapter 6

[175]

Rolling updates: An update to the configuration can be applied incrementally;
for example, if we have 10 replicas and we would like to make a change, we can
define a delay between the deployment to each replica. In such a case, when
anything goes wrong, we never end up with a scenario where a replica isn't
working correctly.
Storage orchestration: Kubernetes can mount a storage system of your choice to
your applications. Pods are stateless in nature and, therefore, Kubernetes
integrates with a number of storage providers such as Amazon Elastic Block
Storage (EBS), Google Compute Engine (GCE) Persistent Disk, and Azure Data
Disk.
Service discovery: Kubernetes Pods are ephemeral in nature and their IPs are
dynamically assigned, but Kubernetes provides a DNS-based service discovery
for this.
Run everywhere: Kubernetes is an open source tool, and you have a lot of
options of how to run it: on-premise, cloud infrastructure, or hybrid.

Now that we have some background about Kubernetes, let's see what it all looks like in
practice, starting with the installation process.

Kubernetes installation
Kubernetes, just like Docker, consists of two parts: the client and the server. The client is a
command-line tool named kubectl and it connects to the server part using Kubernetes'
master API. The server is much more complex, and is as we described in the previous
section. Obviously, to do anything with Kubernetes, you need both parts, so let's describe
them one by one, starting with the client.

The Kubernetes client
The Kubernetes client, kubectl, is a command-line application that allows you to perform
operations on the Kubernetes cluster. The installation process depends on your operating
system. You can check out the details on the official Kubernetes website: https:/​/
kubernetes.​io/​docs/​tasks/​tools/​install-​kubectl/​.

After you have successfully installed kubectl, you should be able to execute the following
command:

$ kubectl version
Client Version: version.Info{Major:"1", Minor:"13", GitVersion:"v1.13.4",
GitCommit:"c27b913fddd1a6c480c229191a087698aa92f0b1", GitTreeState:"clean",

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

Clustering with Kubernetes Chapter 6

[176]

BuildDate:"2019-02-28T13:37:52Z", GoVersion:"go1.11.5", Compiler:"gc",
Platform:"windows/amd64"}

Now that you have the Kubernetes client configured, we can move on to the server.

The Kubernetes server
There are multiple ways to set up a Kubernetes server. Which one you should use depends
on your needs, but if you are completely new to Kubernetes, then I recommend starting
from a local environment.

The local environment
Even though Kubernetes itself is a complex clustering system, there is a tool called
Minikube, which provides a way to quickly install a single-node Kubernetes environment
inside a VM on your local machine. This is especially useful for testing or if you've just
started your journey with Kubernetes. What's more, if you use macOS or Windows, then
your Docker environment already runs inside a VM, and the Docker Desktop tool has a
feature to enable Kubernetes with literally one click.

Let's start from the Minikube approach, which works for any operating system, and then
we'll look at Docker Desktop, which is dedicated to Mac and Windows.

Minikube
Minikube is a command-line tool that starts a fully functional Kubernetes environment
inside a VM. It is backed up by a VM hypervisor, so you need to have VirtualBox, Hyper-V,
VMware, or a similar tool installed. The instructions to install Minikube depends on your
operating system, and you can find instructions for each at https:/​/​kubernetes.​io/​docs/
tasks/​tools/​install-​minikube/​.

Minikube is an open source tool that you can find on GitHub at https:/​/
github.​com/​kubernetes/​minikube.

After you have successfully installed Minikube, you can start your Kubernetes cluster with
the following command:

$ minikube start

https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://kubernetes.io/docs/tasks/tools/install-minikube/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube
https://github.com/kubernetes/minikube

Clustering with Kubernetes Chapter 6

[177]

Minikube starts a Kubernetes cluster and automatically configures your Kubernetes client
with the cluster URL and credentials so that you can move directly to the Verifying
Kubernetes setup section.

Docker Desktop
Docker Desktop is an application that used to set up a local Docker environment on macOS
or Windows. As you may remember from the previous chapters, the Docker daemon can
only run natively on Linux, so for other operating systems, you need to get it running on a
VM. Docker Desktop provides a super intuitive way to do this, and luckily, it also supports
the creation of Kubernetes clusters.

If you have Docker Desktop installed, then all you need to do is check the Enable
Kubernetes box in the user interface, as shown in the following screenshot. From here, the
Kubernetes cluster will start and kubectl will be configured:

Clustering with Kubernetes Chapter 6

[178]

Minikube and Docker Desktop are very good approaches for local development. They are,
however, not solutions for the real production environment. In the following sections, we'll
take a look at cloud-hosted Kubernetes and the on-premise installation process.

Cloud platforms
Kubernetes became so popular that most cloud computing platforms provide it as a service.
The leader here is the Google Cloud Platform (GCP), which allows you to create a
Kubernetes cluster within a few minutes. Other cloud platforms, such as Microsoft Azure,
Amazon Web Services (AWS), or IBM Cloud, also have Kubernetes in their portfolios. Let's
take a closer look at the three most popular solutions—GCP, Azure, and AWS:

GCP: You can access GCP at https:/​/​cloud.​google.​com/​. After creating an
account, you should be able to open their web console (https:/​/​console.​cloud.
google.​com). One of the services in their portfolio is called Google Kubernetes
Engine (GKE):

You can create a Kubernetes cluster by clicking in the user interface or by using
the GCP command-line tool, called gcloud.

You can read how to install gcloud in your operating system at the
official GCP website: https:/​/​cloud.​google.​com/​sdk/​install.

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://console.cloud.google.com
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install
https://cloud.google.com/sdk/install

Clustering with Kubernetes Chapter 6

[179]

To create a Kubernetes cluster using the command-line tool, it's enough to execute
the following command:

$ gcloud container clusters create rafal-test-cluster --zone us-
central1-a

Apart from creating a Kubernetes cluster, it automatically configures kubectl.

Microsoft Azure: Azure also offers a very quick Kubernetes setup thanks to the
Azure Kubernetes Service (AKS). Like GCP, you can either use a web interface
or a command-line tool to create a cluster.

You can access the Azure web console at https:/​/​portal.​azure.​com/​. To
install the Azure command-line tool, check the installation guide on their
official page at https:/​/​docs.​microsoft.​com/​en-​us/​cli/​azure/​install-
azure-​cli.

To create a Kubernetes cluster using the Azure command-line tool, assuming you
already have an Azure Resource Group created, it's enough to run the following
command:

$ az aks create -n rafal-test-cluster -g rafal-resource-group

After a few seconds, your Kubernetes cluster should be ready. To configure
kubectl, run the following command:

$ az aks get-credentials -n rafal-test-cluster -g rafal-resource-
group

By doing this, you will have successfully set up a Kubernetes cluster and
configured kubectl.

Amazon Web Services: AWS provides a managed Kubernetes service called
Amazon Elastic Container Service for Kubernetes (Amazon EKS). You can start
using it by accessing the AWS web console at https:/​/​console.​aws.​amazon.
com/​eks or using the AWS command-line tool.

You can check all the information (and the installation guide) for the AWS
command-line tool at its official website: https:/​/​docs.​aws.​amazon.​com/
cli/​.

Unfortunately, creating a Kubernetes cluster on AWS is not a one-liner command, but you
can find a guide on how to create an EKS cluster at https:/​/​docs.​aws.​amazon.​com/​eks/
latest/​userguide/​create-​cluster.​html.

https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://console.aws.amazon.com/eks
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

Clustering with Kubernetes Chapter 6

[180]

As you can see, using Kubernetes in the cloud is a relatively simple option. Sometimes,
however, you may need to install an on-premise Kubernetes environment from scratch on
your own server machines. Let's discuss this in the next section.

On-premise
Installing Kubernetes from scratch on your own servers only makes sense if you don't want
to depend on cloud platforms or if your corporate security polices don't allow it. Strange as
it may sound, there is no easy way to set up Kubernetes. You really need to take care of
each component on your own, and that is why installation details are out of the scope of
this book.

The best solution I can recommend would be to walk through the complete tutorial called
Kubernetes The Hard Way, which is available at https:/​/​github.​com/​kelseyhightower/
kubernetes-​the-​hard-​way.

If you want to decide on your Kubernetes installation solution, you can
check the official recommendations, which are available at https:/​/
kubernetes.​io/​docs/​setup/​pick-​right-​solution/​.

Now that we have the Kubernetes environment configured, we can check that kubectl is
connected to the cluster correctly and that we are ready to start deploying our applications.

Verifying the Kubernetes setup
No matter which Kubernetes server installation you choose, you should already have
everything configured, and the Kubernetes client should be filled with the cluster's URL
and credentials. You can check this with the following command:

$ kubectl cluster-info
Kubernetes master is running at https://localhost:6445
KubeDNS is running at
https://localhost:6445/api/v1/namespaces/kube-system/services/kube-dns:dns/
proxy

This is the output for the Docker Desktop scenario, and is why you can see localhost.
Your output may be slightly different and may include more entries. If you see no errors,
then everything is correct and we can start using Kubernetes to run applications.

https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://github.com/kelseyhightower/kubernetes-the-hard-way
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/
https://kubernetes.io/docs/setup/pick-right-solution/

Clustering with Kubernetes Chapter 6

[181]

Using Kubernetes
We have the whole Kubernetes environment ready and kubectl configured. This means
that it's high time to finally present the power of Kubernetes and deploy our first
application. Let's use the Docker image leszko/calculator calculator that we built in the
previous chapters and start it in multiple replicas on Kubernetes.

Deploying an application
In order to start a Docker container on Kubernetes, we need to prepare a deployment
configuration as a YAML file. Let's name it deployment.yaml:

apiVersion: apps/v1
kind: Deployment (1)
metadata:
 name: calculator-deployment (2)
 labels:
 app: calculator
spec:
 replicas: 3 (3)
 selector: (4)
 matchLabels:
 app: calculator
 template: (5)
 metadata:
 labels: (6)
 app: calculator
 spec:
 containers:
 - name: calculator (7)
 image: leszko/calculator (8)
 ports: (9)
 - containerPort: 8080

In this YAML configuration, we have to ensure the following:

We have defined a Kubernetes resource of the Deployment type from the
Kubernetes API version apps/v1
The unique deployment name is calculator-deployment
We have defined that there should be exactly 3 of the same Pods created

Clustering with Kubernetes Chapter 6

[182]

The selector defines how Deployment finds Pods to manage; in this case, just
by the label
The template defines the specification for each created Pod
Each Pod is labeled with app: calculator
Each Pod contains a Docker container named calculator
A Docker container was created from the image called leszko/calculator
The Pod exposes the container port 8080

To install the deployment, run the following command:

$ kubectl apply -f deployment.yaml

You can check that the three Pods, each containing one Docker container, have been
created:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
calculator-deployment-dccdf8756-h2l6c 1/1 Running 0 1m
calculator-deployment-dccdf8756-tgw48 1/1 Running 0 1m
calculator-deployment-dccdf8756-vtwjz 1/1 Running 0 1m

Each Pod runs a Docker container. We can check its logs by using the following command:

$ kubectl logs pods/calculator-deployment-dccdf8756-h2l6c

You should see the familiar Spring logo and the logs of our calculator web service.

To look at an overview of kubectl commands, please check out the
official guide: https:/​/​kubernetes.​io/​docs/​reference/​kubectl/
overview/​.

We have just performed our first deployment to Kubernetes and, with just a few lines of
code, we have three replicas of our Calculator web service application. Now, let's see how
we can use the application we deployed. For this, we'll need to understand the concept of
Kubernetes Service.

Deploying Kubernetes Service
Each Pod has an IP address in the internal Kubernetes network, which means that you can
already access each Calculator instance from another Pod running in the same Kubernetes
cluster. But how do we access our application from outside? That is the role of Kubernetes
Service.

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/

Clustering with Kubernetes Chapter 6

[183]

The idea of Pods and services is that Pods are mortal—they get terminated, and then they
get restarted. The Kubernetes orchestrator only cares about the right number of Pod
replicas, not about the Pod's identity. That's why, even though each Pod has an (internal) IP
address, we should not stick to it or use it. Services, on the other hand, act as a frontend for
Pods. They have IP addresses (and DNS names) that can be used. Let's look at the following
diagram, which presents the idea of Pod and Service:

Pods are physically placed on different nodes, but you don't have to worry about this since
Kubernetes takes care of the right orchestration and introduces the abstraction of Pod and
Service. The user accesses the Service, which load balances the traffic between the Pod
replicas. Let's look at an example of how to create a service for our Calculator application.

Just like we did for deployment, we start from a YAML configuration file. Let's name it
service.yaml:

apiVersion: v1
kind: Service
metadata:
 name: calculator-service
spec:
 type: NodePort
 selector:
 app: calculator
 ports:
 - port: 8080

Clustering with Kubernetes Chapter 6

[184]

This is a configuration for a simple service that load balances the traffic to all the Pods that
meet the criteria we mentioned in selector. To install the service, run the following
command:

$ kubectl apply -f service.yaml

You can then check that the service was correctly deployed by running the following
command:

$ kubectl get service calculator-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
calculator-service NodePort 10.19.248.154 <none> 8080:32259/TCP 13m

To check that the service points to the three Pod replicas we created in the previous section,
run the following command:

$ kubectl describe service calculator-service | grep Endpoints
Endpoints: 10.16.1.5:8080,10.16.2.6:8080,10.16.2.7:8080

From the last two commands we run, we can see that the service is available under the IP
address of 10.19.248.154 and that it load balances the traffic to three Pods with the IPs of
10.16.1.5, 10.16.2.6, and 10.16.2.7. All of these IP addresses, both for service and
Pod, are internal in the Kubernetes cluster network.

To read more about Kubernetes Services, please visit the official
Kubernetes website at https:/​/​kubernetes.​io/​docs/​concepts/
services-​networking/​service/​.

In the next section, we'll take a look at how to access a service from outside the Kubernetes
cluster.

Exposing an application
To understand how your application can be accessed from outside, we need to start with
the types of Kubernetes Services. You can use four different service types, as follows:

ClusterIP (default): The service has an internal IP only.
NodePort: Exposes the service on the same port of each cluster node. In other
words, each physical machine (which is a Kubernetes node) opens a port that is
forwarded to the service. Then, you can access it by using <NODE-IP>:<NODE-
PORT>.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

Clustering with Kubernetes Chapter 6

[185]

LoadBalancer: Creates an external load balancer and assigns a separate external
IP for the service. Your Kubernetes cluster must support external load balancers,
which works fine in the case of cloud platforms, but will not work if you use
Minikube or Docker Desktop.
ExternalName: Exposes the service using a DNS name (specified by
externalName in the spec).

If you use a Kubernetes instance that's been deployed on a cloud platform (for example,
GKE), then the simplest way to expose your service is to use LoadBalancer. By doing this,
GCP automatically assigns an external public IP for your service, which you can check with
the kubectl get service command. If we had used it in our configuration, then you
could have accessed the Calculator service at http://<EXTERNAL-IP>:8080.

While LoadBalancer seems to be the simplest solution, it has two drawbacks:

First, it's not always available, for example, if you deployed on-premise
Kubernetes or used Minikube.
Second, external public IPs are usually expensive. A different solution is to use a
NodePort service, like we did in the previous section.
Now, let's see how we can access it.

We can repeat the same command we ran already:

$ kubectl get service calculator-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
calculator-service NodePort 10.19.248.154 <none> 8080:32259/TCP 13m

You can see that port 32259 was selected as a node port. This means that we can access our
Calculator service using that port and the IP of any of the Kubernetes nodes.

The IP address of your Kubernetes node depends on your installation. If you used Docker
Desktop, then your node IP is localhost. In the case of Minikube, you can check it with
the minikube ip command. In the case of cloud platforms or the on-premise installation,
you can check the IP addresses with the following command:

$ kubectl get nodes -o \
jsonpath='{ $.items[*].status.addresses[?(@.type=="ExternalIP")].address }'
35.192.180.252 35.232.125.195 104.198.131.248

To check that you can access Calculator from the outside, run the following command:

$ curl <NODE-IP>:32047/sum?a=1\&b=2
3

Clustering with Kubernetes Chapter 6

[186]

We made an HTTP request to one of our Calculator container instances and it returned the
right response, which means that we successfully deployed the application on Kubernetes.

The kubectl command offers a shortcut to create a service without using
YAML. Instead of the configuration we used, you could just execute the
following command:
$ kubectl expose deployment calculator-deployment --
type=NodePort --name=calculator-service

What we've just learned gives us the necessary basics about Kubernetes. We can now use it
for the staging and production environments and, therefore, include it in the Continuous
Delivery process. Before we do so, however, let's look at a few more Kubernetes features
that make it a great and useful tool.

Advanced Kubernetes
Kubernetes provides a way to dynamically modify your deployment during runtime. This
is especially important if your application is already running on production and you need
to support zero downtime deployments. First, let's look at how to scale up an application
and then present the general approach Kubernetes takes on any deployment changes.

Scaling an application
Let's imagine that our Calculator application is getting popular. People have started using it
and the traffic is so high that the three Pod replicas are overloaded. What can we do now?

Luckily, kubectl provides a simple way to scale up and down deployments using the
scale keyword. Let's scale our Calculator deployment to 5 instances:

$ kubectl scale --replicas 5 deployment calculator-deployment

That's it—our application is now scaled up:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
calculator-deployment-dccdf8756-h2l6c 1/1 Running 0 19h
calculator-deployment-dccdf8756-j87kg 1/1 Running 0 36s
calculator-deployment-dccdf8756-tgw48 1/1 Running 0 19h
calculator-deployment-dccdf8756-vtwjz 1/1 Running 0 19h
calculator-deployment-dccdf8756-zw748 1/1 Running 0 36s

Clustering with Kubernetes Chapter 6

[187]

Note that, from now on, the service we created load balances the traffic to all 5 Calculator
Pods. Also, note that you don't even need to wonder about which physical machine each
Pod runs on, since this is covered by the Kubernetes orchestrator. All you have to think
about is the your desired number of application instances.

Kubernetes also provides a way to autoscale your Pods, depending on its
metrics. This feature is called the Horizontal Pod Autoscaler, and you can
read more about it at https:/​/​kubernetes.​io/​docs/​tasks/​run-
application/​horizontal-​pod-​autoscale/​.

We have just seen how we can scale applications. Now, let's take a more generic look at
how to update any part of a Kubernetes deployment.

Updating an application
Kubernetes takes care of updating your deployments. Let's make a change to
deployment.yaml and add a new label to the Pod template:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: calculator-deployment
 labels:
 app: calculator
spec:
 replicas: 5
 selector:
 matchLabels:
 app: calculator
 template:
 metadata:
 labels:
 app: calculator
 label: label
 spec:
 containers:
 - name: calculator
 image: leszko/calculator
 ports:
 - containerPort: 8080

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Clustering with Kubernetes Chapter 6

[188]

Now, if we repeat this and apply the same deployment, we can observe what happens with
the Pods:

$ kubectl apply -f
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
pod/calculator-deployment-7cc54cfc58-5rs9g 1/1 Running 0 7s
pod/calculator-deployment-7cc54cfc58-jcqlx 1/1 Running 0 4s
pod/calculator-deployment-7cc54cfc58-lsh7z 1/1 Running 0 4s
pod/calculator-deployment-7cc54cfc58-njbbc 1/1 Running 0 7s
pod/calculator-deployment-7cc54cfc58-pbthv 1/1 Running 0 7s
pod/calculator-deployment-dccdf8756-h2l6c 0/1 Terminating 0 20h
pod/calculator-deployment-dccdf8756-j87kg 0/1 Terminating 0 18m
pod/calculator-deployment-dccdf8756-tgw48 0/1 Terminating 0 20h
pod/calculator-deployment-dccdf8756-vtwjz 0/1 Terminating 0 20h
pod/calculator-deployment-dccdf8756-zw748 0/1 Terminating 0 18m

We can see that Kubernetes terminated all the old Pods and started the new ones.

In our example, we modified the deployment of the YAML configuration,
not the application itself. However, modifying the application is actually
the same. If we make any change to the source code of the application, we
need to build a new Docker image with the new version and then update
this version in deployment.yaml.

Every time you change something and run kubectl apply, Kubernetes checks whether
there is any change between the existing state and the YAML configuration, and then, if
needed, it performs the update operation we described previously.

This is all well and good, but if Kubernetes suddenly terminates all Pods, we may end up in
a situation where all the old Pods are already killed and all the new Pods aren't ready yet.
This would make our application unavailable for a moment. How do we ensure zero downtime
deployments? That's the role of rolling updates.

Rolling updates
A rolling update entails incrementally terminating old instances and starting new ones. In
other words, the workflow is as follows:

Terminate one of the old Pods1.
Start a new Pod2.
Wait until the new Pod is ready3.
Repeat step 1 until all old instances are replaced4.

Clustering with Kubernetes Chapter 6

[189]

The concept of a rolling update works correctly only if the new
application version is backward compatible with the old application
version. Otherwise, we risk having two different incompatible versions at
the same time.

To configure it, we need to add the RollingUpdate strategy to our deployment and
specify readinessProbe, which makes Kubernetes aware when the Pod is ready. Let's
modify deployment.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: calculator-deployment
 labels:
 app: calculator
spec:
 replicas: 5
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 0
 selector:
 matchLabels:
 app: calculator
 template:
 metadata:
 labels:
 app: calculator
 spec:
 containers:
 - name: calculator
 image: leszko/calculator
 ports:
 - containerPort: 8080
 readinessProbe:
 httpGet:
 path: /sum?a=1&b=2
 port: 8080

Clustering with Kubernetes Chapter 6

[190]

Let's explain the parameters we used in our configuration:

maxUnavailable: The maximum number of Pods that can be unavailable during
the update process; in our case, Kubernetes won't terminate at the same time
when there's more than 1 Pod (75% * 5 desired replicas)
maxSurge: The maximum number of Pods that can be created over the desired
number of Pods; in our case, Kubernetes won't create any new Pods before
terminating an old one
path and port: The endpoint of the container to check for readiness; a HTTP
GET request is sent to <POD-IP>:8080/sum?a=1&b=2 and when it finally
returns 200 as the HTTP status code, the Pod is marked as ready

By modifying the maxUnavailable and maxSurge parameters, we can
decide whether Kubernetes first starts new Pods and later terminates old
ones or, as we did in our case, first terminates old Pods and later starts
new ones.

We can now apply the deployment and observe that the Pods are updated one by one:

$ kubectl apply -f deployment.yaml
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
calculator-deployment-78fd7b57b8-npphx 0/1 Running 0 4s
calculator-deployment-7cc54cfc58-5rs9g 1/1 Running 0 3h
calculator-deployment-7cc54cfc58-jcqlx 0/1 Terminating 0 3h
calculator-deployment-7cc54cfc58-lsh7z 1/1 Running 0 3h
calculator-deployment-7cc54cfc58-njbbc 1/1 Running 0 3h
calculator-deployment-7cc54cfc58-pbthv 1/1 Running 0 3h

That's it—we have just configured a rolling update for our Calculator deployment, which
means that we can provide zero downtime releases.

Kubernetes also provides a different way of running applications. You can
use StatefulSet instead of Deployment, and then the rolling update is
always enabled (even without specifying any additional strategy).

Rolling updates are especially important in the context of Continuous Delivery, because if
we deploy very often, then we definitely can't afford any downtime.

Clustering with Kubernetes Chapter 6

[191]

After playing with Kubernetes, it's good to perform the cleanup to remove
all the resources we created. In our case, we can execute the following
commands to remove the service and deployment we created:
$ kubectl delete -f service.yaml
$ kubectl delete -f deployment.yaml

We already presented all the Kubernetes features that are needed for the Continuous
Delivery process. Let's make a short summary and add a few words about other useful
features.

Kubernetes objects and workloads
The execution unit in Kubernetes is always a Pod, which contains one or more (Docker)
containers. There are multiple different resource types to orchestrate Pods:

Deployment: This is the most common workload, which manages the life cycle
of the desired number of replicated Pods.
StatefulSet: This is a specialized Pod controller that guarantees the ordering and
uniqueness of Pods. It is usually associated with data-oriented applications (in
which it's not enough to say my desired number of replicas is 3, like in the case of
Deployment, but rather I want exactly 3 replicas, with always the same predictable
Pod names, and always started in the same order).
DaemonSet: This is a specialized Pod controller that runs a copy of a Pod on
each Kubernetes node.
Job/CronJob: This is a workflow that's dedicated to task-based operations in
which containers are expected to exist successfully.

You may also find a Kubernetes resource called ReplicationController,
which is deprecated and has been replaced by Deployment.

Apart from Pod management, there are other Kubernetes objects. The most useful ones that
you may often encounter are as follows:

Service: A component that acts as an internal load balancer for Pods
ConfigMap: This decouples configuration from the image content; it can be any
data that's defined separately from the image and then mounted onto the
container's filesystem

Clustering with Kubernetes Chapter 6

[192]

Secret: This allows you to store sensitive information, such as passwords
PersistentVolume/PersistentVolumeClaim: These allow you to mount a
persistent volume into a (stateless) container's filesystem

Actually, there are many more objects available, and you can even create your own
resource definitions. However, the ones we've mentioned here are the most frequently used
in practice.

We already have a good understanding of clustering in Kubernetes, but Kubernetes isn't
just about workloads and scaling. It can also help with resolving dependencies between
applications. In the next section, we will approach this topic and describe application
dependencies in the context of Kubernetes and the Continuous Delivery process.

Application dependencies
Life is easy without dependencies. In real life, however, almost every application links to a
database, cache, messaging system, or another application. In the case of (micro) service
architecture, each service needs a bunch of other services to do its work. The monolithic
architecture does not eliminate the issue—an application usually has some dependencies, at
least to the database.

Imagine a newcomer joining your development team; how much time does it take to set up the
entire development environment and run the application with all its dependencies?

When it comes to automated acceptance testing, the dependencies issue is no longer only a
matter of convenience—it becomes a necessity. While, during unit testing, we could mock
the dependencies, the acceptance testing suite requires a complete environment. How do we
set it up quickly and in a repeatable manner? Luckily, Kubernetes can help thanks to its built-in
DNS resolution for services and Pods.

The Kubernetes DNS resolution
Let's present the Kubernetes DNS resolution with a real-life scenario. Let's say we would
like to deploy a caching service as a separate application and make it available for other
services. One of the best in-memory caching solutions is Hazelcast, so let's use it here. In the
case of the Calculator application, we need Deployment and Service. Let's define them
both in one file, hazelcast.yaml:

apiVersion: apps/v1
kind: Deployment

Clustering with Kubernetes Chapter 6

[193]

metadata:
 name: hazelcast
 labels:
 app: hazelcast
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hazelcast
 template:
 metadata:
 labels:
 app: hazelcast
 spec:
 containers:
 - name: hazelcast
 image: hazelcast/hazelcast:3.12
 ports:
 - containerPort: 5701

apiVersion: v1
kind: Service
metadata:
 name: hazelcast
spec:
 selector:
 app: hazelcast
 ports:
 - port: 5701

Similar to what we did previously for the Calculator application, we will now define the
Hazelcast configuration. Let's start it in the same way:

$ kubectl apply -f hazelcast.yaml

After a few seconds, the Hazelcast caching application should start. You can check its Pod
logs with the kubectl logs command. We also created a service of a default type
(ClusterIP, which is only exposed inside the same Kubernetes cluster).

So far, so good—we did nothing different to what we've already seen in the case of the
Calculator application. Now comes the most interesting part. Kubernetes provides a way of
resolving a service IP using the service name. What's even more interesting is that we know
the Service name upfront—in our case, it's always hazelcast. So, if we use this as the
cache address in our application, the dependency will be automatically resolved.

Clustering with Kubernetes Chapter 6

[194]

Actually, Kubernetes DNS resolution is even more powerful and it can
resolve Services in a different Kubernetes namespace. Read more at
https:/​/​kubernetes.​io/​docs/​concepts/​services-​networking/​dns-​pod-
service/​.

Before we show you how to implement caching inside the Calculator application, let's take
a moment to overview the system we will build.

Multi-application system overview
We already have the Hazelcast server deployed on Kubernetes. Before we modify our
Calculator application so that we can use it as a caching provider, let's take a look at the
diagram of the complete system we want to build:

The user uses the Calculator Service, which load balances the traffic to a Calculator Pod.
Then, the Calculator Pod connects to the Hazelcast Service (using its name, hazelcast).
The Hazelcast Service redirects to the Hazelcast Pod.

If you look at the diagram, you can see that we have just deployed the Hazelcast part
(Hazelcast Service and Hazelcast Pod). We also deployed the Calculator part (Calculator
Service and Calculator Pod) in the previous section. The final missing part is the Calculator
code to use Hazelcast. Let's implement it now.

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

Clustering with Kubernetes Chapter 6

[195]

Multi-application system implementation
To implement caching with Hazelcast in our Calculator application, we need to do the
following:

Add the Hazelcast client library to Gradle
Add the Hazelcast cache configuration
Add Spring Boot caching
Build a Docker image

Let's proceed step by step.

Adding the Hazelcast client library to Gradle
In the build.gradle file, add the following configuration to the dependencies section:

implementation 'com.hazelcast:hazelcast-all:3.12'

This adds the Java libraries that take care of communication with the Hazelcast server.

Adding the Hazelcast cache configuration
Add the following parts to the
src/main/java/com/leszko/calculator/CalculatorApplication.java file:

package com.leszko.calculator;
import com.hazelcast.client.config.ClientConfig;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;

/**
 * Main Spring Application.
 */
@SpringBootApplication
@EnableCaching
public class CalculatorApplication {

 public static void main(String[] args) {
 SpringApplication.run(CalculatorApplication.class, args);
 }

 @Bean

Clustering with Kubernetes Chapter 6

[196]

 public ClientConfig hazelcastClientConfig() {
 ClientConfig clientConfig = new ClientConfig();
 clientConfig.getNetworkConfig().addAddress("hazelcast");
 return clientConfig;
 }
}

This is a standard Spring cache configuration. Note that for the Hazelcast server address,
we use hazelcast, which is automatically available thanks to the Kubernetes DNS
resolution.

In real life, if you use Hazelcast, you don't even need to specify the service
name, since Hazelcast provides an auto-discovery plugin dedicated to the
Kubernetes environment. Read more at https:/​/​github.​com/​hazelcast/
hazelcast-​kubernetes.

Next, let's add caching to the Spring Boot service.

Adding Spring Boot caching
Now that the cache is configured, we can finally add caching to our web service. In order to
do this, we need to change the
src/main/java/com/leszko/calculator/Calculator.java file so that it looks as
follows:

package com.leszko.calculator;

import org.springframework.cache.annotation.Cacheable;
import org.springframework.stereotype.Service;

/** Calculator logic */
@Service
public class Calculator {
 @Cacheable("sum")
 public int sum(int a, int b) {
 try {
 Thread.sleep(3000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }

 return a + b;
 }
}

https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes
https://github.com/hazelcast/hazelcast-kubernetes

Clustering with Kubernetes Chapter 6

[197]

We added the @Cacheable annotation to make Spring automatically cache every call of the
sum() method. We also added sleeping for three seconds, just for the purpose of testing, so
that we could see that the cache works correctly.

From now on, the sum calculations are cached in Hazelcast, and when we call the /sum
endpoint of the Calculator web service, it will first try to retrieve the result from the cache.
Now, let's build our application.

Building a Docker image
The next step is to rebuild the Calculator application and the Docker image with a new tag.
Then, we will push it to Docker Hub once more:

$./gradlew build
$ docker build -t leszko/calculator:caching .
$ docker push leszko/calculator:caching

Obviously, you should change leszko to your Docker Hub account.

The application is ready, so let's test it all together on Kubernetes.

Multi-application system testing
We should already have the Hazelcast caching server deployed on Kubernetes. Now, let's
change the deployment for the Calculator application to use the
leszko/calculator:caching Docker image. You need to modify image in the
deployment.yaml file:

image: leszko/calculator:caching

Then, apply the Calculator deployment and service:

$ kubectl apply -f deployment.yaml
$ kubectl apply -f service.yaml

Let's repeat the curl operation we did before:

$ curl <NODE-IP>:<NODE-IP>/sum?a=1\&b=2

The first time you execute it, it should reply in three seconds, but all subsequent calls
should be instant, which means that caching works correctly.

Clustering with Kubernetes Chapter 6

[198]

If you're interested, you can also check the logs of the Calculator Pod. You
should see some logs there that confirm that the application is connected
to the Hazelcast server:

Members [1] {
Member [10.16.2.15]:5701 - 3fca574b-bbdb-4c14-
ac9d-73c45f56b300
}

You can probably already see how we could perform acceptance testing on a multi-
container system. All we need is an acceptance test specification for the whole system.
Then, we could deploy the complete system into the Kubernetes staging environment and
run a suite of acceptance tests against it. We'll talk about this in more detail in Chapter 8,
Continuous Delivery Pipeline.

In our example, the dependent service was related to caching, which
doesn't really change the functional acceptance tests we created in
Chapter 5, Automated Acceptance Testing.

That's all we need to know about how to approach dependent applications that are
deployed on the Kubernetes cluster in the context of Continuous Delivery. Before we close
this chapter, let's also see how we can use clustering systems not only for our application,
but to dynamically scale Jenkins agents.

Scaling Jenkins
The obvious use cases for server clustering is the infrastructure for the staging and
production environments. Here, we can deploy our application, perform a suite of
acceptance testing, and finally make a release. Nevertheless, in the context of Continuous
Delivery, we may also want to improve the Jenkins infrastructure by running Jenkins agent
nodes on a cluster. In this section, we will take a look at two different methods to achieve
this goal;

Dynamic slave provisioning
Jenkins Swarm

Clustering with Kubernetes Chapter 6

[199]

Dynamic slave provisioning
We looked at dynamic slave provisioning in Chapter 3, Configuring Jenkins. With
Kubernetes, the idea is exactly the same. When the build is started, the Jenkins master runs
a container from the Jenkins slave Docker image, and the Jenkinsfile script is executed
inside the container. Kubernetes, however, makes the solution more powerful since we are
not limited to a single Docker host machine and we can provide real horizontal scaling.

To use dynamic Jenkins agent provisioning on Kubernetes, you need to install the
Kubernetes plugin (as always with Jenkins plugins, you can do it in Manage Jenkins |
Manage Plugins). Then, you can add an entry to the Cloud section in Manage Jenkins |
Configure System.

There is also a dedicated Jenkins plugin if you use the Mesos clustering
management system: the Mesos Plugin (https:/​/​plugins.​jenkins.​io/
mesos).

Another method to scale Jenkins agents on Kubernetes is to use Jenkins Swarm.

Jenkins Swarm
If we don't want to use dynamic slave provisioning, then another solution for clustering
Jenkins slaves is to use Jenkins Swarm. We described how to use it in Chapter 3,
Configuring Jenkins. Here, we add the description for Kubernetes.

In Kubernetes, as always, you need to create a deployment YAML configuration that uses
the Jenkins Swarm Docker image. The most popular image is provided as
csanchez/jenkins-swarm-slave. Then, you can horizontally scale Jenkins using the
standard kubectl scale command.

The effect of running Kubernetes Pods with Jenkins Swarm should be exactly the same as
running Jenkins Swarm from the command line (as presented in Chapter 3, Configuring
Jenkins); it dynamically adds a slave to the Jenkins master.

Now, let's compare these two methods of scaling Jenkins agents.

https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos
https://plugins.jenkins.io/mesos

Clustering with Kubernetes Chapter 6

[200]

Comparing dynamic slave provisioning and
Jenkins Swarm
Dynamic slave provisioning and Jenkins Swarm can both be run on a cluster, and results in
the architecture that's presented in the following diagram:

Jenkins slaves are run on the cluster and are, therefore, easily scaled up and down. If we
need more Jenkins resources, we scale up Jenkins slaves. If we need more cluster resources,
we add more physical machines to the cluster.

The difference between these two solutions is that dynamic slave provisioning
automatically adds a Jenkins slave to the cluster before each build. The benefit of such an
approach is that we don't even have to think about how many Jenkins slaves should be
running at the moment since the number automatically adapts to the number of pipeline
builds. This is why, in most cases, dynamic slave provisioning is the first choice.
Nevertheless, Jenkins Swarm also carries a few significant benefits:

Control over the number of slaves: Using Jenkins Swarm, we can explicitly
decide how many Jenkins agents should be running at the moment.
Stateful slaves: Many builds share the same Jenkins slave, which may sound like
a drawback; however, it becomes an advantage when a build requires that you
download a lot of dependent libraries from the internet. In the case of dynamic
slave provisioning, to cache the dependencies, we would need to set up a shared
volume.

Clustering with Kubernetes Chapter 6

[201]

Control over where the slaves are running: Using Jenkins Swarm, we can decide
not to run slaves on the cluster and choose the host machine dynamically; for
example, for many startups, when the cluster infrastructure is costly, slaves can
be dynamically run on the laptop of a developer who is starting the build.

Clustering Jenkins slaves brings a lot of benefits, and it is what the modern Jenkins
architecture should look like. This way, we can provide the dynamic horizontal scaling of
the infrastructure for the Continuous Delivery process.

Before we close this chapter, we need to write just a few words about Kubernetes'
competitors, that is, other popular cluster management systems.

Alternative cluster management systems
Kubernetes is not the only system that can be used to cluster Docker containers. Even
though it's currently the most popular one, there may be some valid reasons to use different
software. Let's walk-through the alternatives.

Docker Swarm
Docker Swarm is a native clustering system for Docker that turns a set of Docker hosts into
one consistent cluster, called a swarm. Each host connected to the swarm plays the role of a
manager or a worker (there must be at least one manager in a cluster). Technically, the
physical location of the machines does not matter; however, it's reasonable to have all
Docker hosts inside one local network, otherwise managing operations (or reaching a
consensus between multiple managers) can take a significant amount of time.

Since Docker 1.12, Docker Swarm is natively integrated into Docker
Engine in swarm mode. In older versions, it was necessary to run the
swarm container on each of the hosts to provide the clustering
functionality.

Clustering with Kubernetes Chapter 6

[202]

Let's look at the following diagram, which presents the terminology and the Docker Swarm
clustering process:

In Docker swarm mode, a running image is called a Service, as opposed to a Container,
which is run on a single Docker host. One service runs a specified number of Tasks. A task
is an atomic scheduling unit of the swarm that holds the information about the container
and the command that should be run inside the container. A replica is each container that is
run on the node. The number of replicas is the expected number of all containers for the
given service.

We start by specifying a service, the Docker image, and the number of replicas. The
manager automatically assigns tasks to worker nodes. Obviously, each replicated container
is run from the same Docker image. In the context of the presented flow, Docker Swarm can
be viewed as a layer on top of the Docker Engine mechanism that is responsible for
container orchestration.

In the first edition of this book, Docker Swarm was used for all the
examples that were provided. So, if Docker Swarm is your clustering
system of choice, you may want to read the first edition.

Another alternative to Kubernetes is Apache Mesos. Let's talk about it now.

Clustering with Kubernetes Chapter 6

[203]

Apache Mesos
Apache Mesos is an open source scheduling and clustering system that was started at the
University of California, Berkeley, in 2009, long before Docker emerged. It provides an
abstraction layer over CPU, disk space, and RAM. One of the great advantages of Mesos is
that it supports any Linux application, but not necessarily (Docker) containers. This is why
it's possible to create a cluster out of thousands of machines and use it for both Docker
containers and other programs, for example, Hadoop-based calculations.

Let's look at the following diagram, which presents the Mesos architecture:

Apache Mesos, similar to other clustering systems, has the master-slave architecture. It uses
node agents that have been installed on every node for communication, and it provides two
types of schedulers:

Chronos: For cron-style repeating tasks
Marathon: To provide a REST API to orchestrate services and containers

Apache Mesos is very mature compared to other clustering systems, and it has been
adopted in a large number of organizations, such as Twitter, Uber, and CERN.

Clustering with Kubernetes Chapter 6

[204]

Comparing features
Kubernetes, Docker Swarm, and Mesos are all good choices for the cluster management
system. All of them are free and open source, and all of them provide important cluster
management features, such as load balancing, service discovery, distributed storage, failure
recovery, monitoring, secret management, and rolling updates. All of them can also be used
in the Continuous Delivery process without huge differences. This is because, in the
Dockerized infrastructure, they all address the same issue—the clustering of Docker
containers. Nevertheless, the systems are not exactly the same. Let's take a look at the
following table, which presents the differences:

Kubernetes Docker Swarm Apache Mesos

Docker
support

Supports Docker as one
of the container types in
the Pod

Native
Mesos agents (slaves) can be
configured to host Docker
containers

Application
types

Containerized
applications (Docker, rkt,
and hyper)

Docker images
Any application that can be
run on Linux (also
containers)

Application
definition

Deployments,
statefulsets, and services

Docker Compose
configuration

Application groups formed
in the tree structure

Setup process

Depending on the
infrastructure, it may
require running one
command or many
complex operations

Very simple

Fairly involved; it requires
configuring Mesos,
Marathon, Chronos,
Zookeeper, and Docker
support

API REST API Docker REST API Chronos and Marathon
REST API

User interface
Console tools, native web
UI (Kubernetes
Dashboard)

Docker console
client and third-
party web
applications, such
as Shipyard

Official web interfaces for
Mesos, Marathon, and
Chronos

Cloud
integration

Cloud-native support
from most providers
(Azure, AWS, GCP, and
others)

Manual
installation
required

Support from most cloud
providers

Maximum
cluster size 1,000 nodes 1,000 nodes 50,000 nodes

Clustering with Kubernetes Chapter 6

[205]

Autoscaling
Horizontal Pod
autoscaling based on the
observed metrics

Not available

Marathon provides
autoscaling based on
resource (CPU/memory)
consumption, number of
requests per second, and
queue length

Obviously, apart from Kubernetes, Docker Swarm, and Apache Mesos, there are other
clustering systems available in the market. Especially in the era of cloud platforms, there
are very popular platform-specific systems, for example, Amazon EC2 Container Service
(AWS ECS) . The good news is that if you understand the idea of clustering Docker
containers, then using another system won't be difficult for you.

Summary
In this chapter, we took a look at the clustering methods for Docker environments that
allow you to set up the complete staging, production, and Jenkins environments. Let's go
over some of the key takeaways from this chapter.

Clustering is a method of configuring a set of machines in a way that, in many respects, can
be viewed as a single system. Kubernetes is the most popular clustering system for Docker.
Kubernetes consists of the Kubernetes server and the Kubernetes client (kubectl).

Kubernetes server can be installed locally (through Minikube or Docker Desktop), on the
cloud platform (AKS, GKE, or EKS), or manually on a group of servers. Kubernetes uses
YAML configurations to deploy applications. Kubernetes provides features such as scaling
and rolling updates out of the box.

Kubernetes provides DNS resolution, which can help when you're deploying systems that
consist of multiple dependent applications. Jenkins agents can be run on a cluster using the
dynamic slave provisioning or the Jenkins Swarm plugin. The most popular clustering
systems that support Docker are Kubernetes, Docker Swarm, and Apache Mesos.

In the next chapter, we will describe the configuration management part of the Continuous
Delivery pipeline.

Clustering with Kubernetes Chapter 6

[206]

Exercises
In this chapter, we have covered Kubernetes and the clustering process in detail. In order to
enhance this knowledge, we recommend the following exercises:

Run a hello world application on the Kubernetes cluster:1.
The hello world application can look exactly the same as the one we1.
described in the exercises for Chapter 2, Introducing Docker
Deploy the application with three replicas2.
Expose the application with the NodePort service3.
Make a request (using curl) to the application4.

Implement a new feature, Goodbye World!, and deploy it using a rolling update:2.
This feature can be added as a new endpoint, /bye, which always
returns Goodbye World!
Rebuild a Docker image with a new version tag
Use the RollingUpdate strategy and readinessProbe
Observe the rolling update procedure
Make a request (using curl) to the application

Questions
To verify your knowledge from this chapter, please answer the following questions:

What is a server cluster?1.
What is the difference between Kubernetes Master and Kubernetes node?2.
Name at least three Cloud platforms that provide a Kubernetes environment out3.
of the box.
What is the difference between Kubernetes deployment and service?4.
What is the Kubernetes command for scaling deployments?5.
What are the two ways of scaling Jenkins agents using Kubernetes?6.
Name at least two cluster management systems other than Kubernetes.7.

Clustering with Kubernetes Chapter 6

[207]

Further reading
To find out more about Kubernetes, please refer to the following resources:

Kubernetes official documentation: https:/​/​kubernetes.​io/​docs/​home/​

Nigel Poulton: The Kubernetes Book (https:/​/​leanpub.​com/
thekubernetesbook)

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook
https://leanpub.com/thekubernetesbook

3
Section 3: Deploying an

Application
In this section, we will cover how to release an application on a Docker production server
using configuration management tools such as Chef and Ansible, as well as crucial parts of
the continuous delivery process. We will also address more difficult real-life scenarios after
building a complete pipeline.

The following chapters are covered in this section:

Chapter 7, Configuration Management with Ansible
Chapter 8, Continuous Delivery Pipeline
Chapter 9, Advanced Continuous Delivery

7
Configuration Management with

Ansible
We have already covered the two most crucial phases of the Continuous Delivery process:
the commit phase and automated acceptance testing. We also explained how to cluster your
environments for both your application and Jenkins agents. In this chapter, we will focus
on configuration management, which connects the virtual containerized environment to the
real server infrastructure.

This chapter will cover the following points:

Introducing configuration management
Installing Ansible
Using Ansible
Deployment with Ansible
Ansible with Docker and Kubernetes

Technical requirements
To follow along with the instructions in this chapter, you'll need the following
hardware/software:

Java 8
Python
Remote machines with the Ubuntu OS and SSH server installed

All the examples and solutions to the exercises can be found on GitHub at https:/​/​github.
com/​PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter07.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter07

Configuration Management with Ansible Chapter 7

[210]

Introducing configuration management
Configuration management is the process of controlling configuration changes in a way
such that the system maintains integrity over time. Even though the term did not originate
in the IT industry, currently, it is broadly used to refer to the software and the hardware. In
this context, it concerns the following aspects:

Application configuration: This involves software properties that decide how
the system works, which are usually expressed in the form of flags or properties
files passed to the application; for example, the database address, the maximum
chunk size for file processing, or the logging level. They can be applied during
different development phases: build, package, deploy, or run.
Infrastructure configuration: This involves server infrastructure and
environment configuration, which takes care of the deployment process. It
defines what dependencies should be installed on each server and specifies the
way applications are orchestrated (which application is run on which server, and
in how many instances).

As an example, we can think of the calculator web service, which uses the Hazelcast server.
Let's look at following diagram, which presents how the configuration management tool
works:

Configuration Management with Ansible Chapter 7

[211]

The configuration management tool reads the configuration file and prepares the
environment, respectively (it installs dependent tools and libraries, and deploys the
applications to multiple instances).

In the preceding example, the Infrastructure Configuration specifies that the Calculator
service should be deployed in two instances, on Server 1 and Server 2, and that the
Hazelcast service should be installed on Server 3. The Calculator Application
Configuration specifies the port and the address of the Hazelcast server, so that the
services can communicate.

The configuration can differ, depending on the type of the environment
(QA, staging, or production); for example, server addresses can be
different.

There are many approaches to configuration management, but before we look into concrete
solutions, let's comment on what characteristics a good configuration management tool
should have.

Traits of good configuration management
What should a modern configuration management solution look like? Let's walk through
the most important factors:

Automation: Each environment should be automatically reproducible, including
the operating system, the network configuration, the software installed, and the
applications deployed. In such an approach, fixing production issues means
nothing more than an automatic rebuild of the environment. What's more, that
simplifies server replications and ensures that the staging and production
environments are exactly the same.
Version control: Every change in the configuration should be tracked, so that we
know who made it, why, and when. Usually, that means keeping the
configuration in the source code repository, either with the code or in a separate
place. The former solution is recommended, because configuration properties
have a different life cycle than the application itself. Version control also helps
with fixing production issues; the configuration can always be rolled back to the
previous version, and the environment automatically rebuilt. The only exception
to the version control based solution is storing credentials and other sensitive
information; these should never be checked in.

Configuration Management with Ansible Chapter 7

[212]

Incremental changes: Applying a change in the configuration should not require
rebuilding the whole environment. On the contrary, a small change in the
configuration should only change the related part of the infrastructure.
Server provisioning: Thanks to automation, adding a new server should be as
quick as adding its address to the configuration (and executing one command).
Security: The access to both the configuration management tool and the
machines under its control should be well-secured. When using the SSH protocol
for communication, the access to the keys or credentials needs to be well-
protected.
Simplicity: Every member of the team should be able to read the configuration,
make a change, and apply it to the environment. The properties themselves
should also be kept as simple as possible, and the ones that are not subject to
change are better off kept hardcoded.

It is important to keep these points in mind while creating the configuration, and even
before hand, while choosing the right configuration management tool.

Overview of configuration management tools
The most popular configuration management tools are Ansible, Puppet, and Chef. Each of
them is a good choice; they are all open source products with free basic versions and paid
enterprise editions. The most important differences between them are as follows:

Configuration language: Chef uses Ruby, Puppet uses its own DSL (based on
Ruby), and Ansible uses YAML.
Agent-based: Puppet and Chef use agents for communication, which means that
each managed server needs to have a special tool installed. Ansible, on the
contrary, is agentless, and uses the standard SSH protocol for communication.

The agentless feature is a significant advantage, because it implies no need to install
anything on servers. What's more, Ansible is quickly trending upwards, which is why it
was chosen for this book. Nevertheless, other tools can also be used successfully for the
Continuous Delivery process.

Configuration Management with Ansible Chapter 7

[213]

Installing Ansible
Ansible is an open source, agentless automation engine for software provisioning,
configuration management, and application deployment. Its first release was in 2012, and
its basic version is free for both personal and commercial use. The enterprise version, called
Ansible Tower, provides GUI management and dashboards, the REST API, role-based
access control, and some more features.

We will present the installation process and a description of how Ansible can be used
separately, as well as in conjunction with Docker.

Ansible server requirements
Ansible uses the SSH protocol for communication and has no special requirements
regarding the machine it manages. There is also no central master server, so it's enough to
install the Ansible client tool anywhere; we can then already use it to manage the whole
infrastructure.

The only requirement for the machines being managed is to have the
Python tool (and obviously, the SSH server) installed. These tools are,
however, almost always available on any server by default.

Ansible installation
The installation instructions will differ depending on the operating system. In the case of
Ubuntu, it's enough to run the following commands:

$ sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa:ansible/ansible
$ sudo apt-get update
$ sudo apt-get install ansible

You can find the installation guides for all the operating systems on the
official Ansible page, at http:/​/​docs.​ansible.​com/​ansible/​intro_
installation.​html.

http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html
http://docs.ansible.com/ansible/intro_installation.html

Configuration Management with Ansible Chapter 7

[214]

After the installation process is complete, we can execute the ansible command to check
that everything was installed successfully:

$ ansible --version
ansible 2.8.0
 config file = /etc/ansible/ansible.cfg
...

The Docker-based Ansible client
It's also possible to use Ansible as a Docker container. We can do it by running the
following command:

$ docker run williamyeh/ansible:ubuntu14.04
ansible-playbook 2.7.2
 config file = /etc/ansible/ansible.cfg
...

The Ansible Docker image is no longer officially supported, so the only
solution is to use the community-driven version. You can read more on its
usage on the Docker Hub page.

Now what we have the Ansible tool in place, let's see how to use it.

Using Ansible
In order to use Ansible, we first need to define the inventory, which represents the
available resources. Then, we will be able to either execute a single command or define a set
of tasks using the Ansible playbook.

Creating an inventory
An inventory is a list of all the servers that are managed by Ansible. Each server requires
nothing more than the Python interpreter and the SSH server installed. By default, Ansible
assumes that the SSH keys are used for authentication; however, it is also possible to use
the username and the password, by adding the --ask-pass option to the Ansible
commands.

Configuration Management with Ansible Chapter 7

[215]

SSH keys can be generated with the ssh-keygen tool, and they are
usually stored in the ~/.ssh directory.

The inventory is defined in the /etc/ansible/hosts file, and it has the following
structure:

[group_name]
<server1_address>
<server2_address>
...

The inventory syntax also accepts ranges of servers; for example,
www[01-22].company.com. The SSH port should also be specified if it's
anything other than 22 (the default). You can read more on the official
Ansible page, at http:/​/​docs.​ansible.​com/​ansible/​intro_​inventory.
html.

There can be many groups in the inventory file. As an example, let's define two machines in
one group of servers:

[webservers]
192.168.0.241
192.168.0.242

We can also create the configuration with server aliases and specify the remote user:

[webservers]
web1 ansible_host=192.168.0.241 ansible_user=admin
web2 ansible_host=192.168.0.242 ansible_user=admin

The preceding file defines a group called webservers, which consists of two servers. The
Ansible client will log in to both of them as the user admin. When we have the inventory
created, let's discover how we can use it to execute the same command on many servers.

Ansible offers the possibility to dynamically pull the inventory from the
cloud provider (for example, Amazon EC2/Eucalyptus), LDAP, or
Cobbler. Read more about dynamic inventories at http:/​/​docs.​ansible.
com/​ansible/​intro_​dynamic_​inventory.​html.

http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html

Configuration Management with Ansible Chapter 7

[216]

Ad hoc commands
The simplest command we can run is a ping on all servers. Assuming that we have two
remote machines (192.168.0.241 and 192.168.0.242) with SSH servers configured and
the inventory file (as defined in the last section), let's execute the ping command:

$ ansible all -m ping
web1 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}
web2 | SUCCESS => {
 "ansible_facts": {
 "discovered_interpreter_python": "/usr/bin/python3"
 },
 "changed": false,
 "ping": "pong"
}

We used the -m <module_name> option, which allows for specifying the module that
should be executed on the remote hosts. The result is successful, which means that the
servers are reachable and the authentication is configured correctly.

A full list of modules available in Ansible can be found at https:/​/​docs.
ansible.​com/​ansible/​latest/​modules/​list_​of_​all_​modules.​html.

Note that we used all, so that all servers would be addressed, but we could also call them
by the group name webservers, or by the single host alias. As a second example, let's
execute a shell command on only one of the servers:

$ ansible web1 -a "/bin/echo hello"
web1 | CHANGED | rc=0 >>
hello

The -a <arguments> option specifies the arguments that are passed to the Ansible
module. In this case, we didn't specify the module, so the arguments are executed as a shell
Unix command. The result was successful, and hello was printed.

https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_all_modules.html

Configuration Management with Ansible Chapter 7

[217]

If the ansible command is connecting to the server for the first time (or if
the server is reinstalled), then we are prompted with the key confirmation
message (the SSH message, when the host is not present in
known_hosts). Since it may interrupt an automated script, we can disable
the prompt message by uncommenting host_key_checking = False
in the /etc/ansible/ansible.cfg file, or by setting the environment
variable, ANSIBLE_HOST_KEY_CHECKING=False.

In its simplistic form, the Ansible ad hoc command syntax looks as follows:

ansible <target> -m <module_name> -a <module_arguments>

The purpose of ad hoc commands is to do something quickly when it is not necessary to
repeat it. For example, we may want to check whether a server is alive or to power off all
the machines for the Christmas break. This mechanism can be seen as a command
execution on a group of machines, with the additional syntax simplification provided by
the modules. The real power of Ansible automation, however, lies in playbooks.

Playbooks
An Ansible playbook is a configuration file that describes how servers should be
configured. It provides a way to define a sequence of tasks that should be performed on
each of the machines. A playbook is expressed in the YAML configuration language, which
makes it human-readable and easy to understand. Let's start with a sample playbook, and
then see how we can use it.

Defining a playbook
A playbook is composed of one or many plays. Each play contains a host group name, tasks
to perform, and configuration details (for example, the remote username or access rights).
An example playbook might look like this:

- hosts: web1
 become: yes
 become_method: sudo
 tasks:
 - name: ensure apache is at the latest version
 apt: name=apache2 state=latest
 - name: ensure apache is running
 service: name=apache2 state=started enabled=yes

Configuration Management with Ansible Chapter 7

[218]

This configuration contains one play, which performs the following:

Only executes on the host web1
Gains root access using the sudo command
Executes two tasks:

Installing the latest version of apache2: The Ansible module, apt
(called with two parameters, name=apache2 and state=latest),
checks whether the apache2 package is installed on the server,
and if it isn't, it uses the apt-get tool to install apache2
Running the apache2 service: The Ansible module service
(called with three parameters, name=apache2, state=started,
and enabled=yes) checks whether the Unix service apache2 is
started, and if it isn't, it uses the service command to start it

While addressing the hosts, you can also use patterns; for example, we
could use web* to address both web1 and web2. You can read more about
Ansible patterns at http:/​/​docs.​ansible.​com/​ansible/​intro_​patterns.
html.

Note that each task has a human-readable name, which is used in the console output, such
that apt and service are Ansible modules and name=apache2, state=latest, and
state=started are module arguments. You already saw Ansible modules and arguments
while using ad hoc commands. In the preceding playbook, we only defined one play, but
there can be many of them, and each can be related to different groups of hosts.

Note that since we used the apt Ansible module, the playbook is
dedicated to Debian/Ubuntu servers.

For example, we could define two groups of servers in the inventory: database and
webservers. Then, in the playbook, we could specify the tasks that should be executed on
all database-hosting machines, and some different tasks that should be executed on all the
web servers. By using one command, we could set up the whole environment.

http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html
http://docs.ansible.com/ansible/intro_patterns.html

Configuration Management with Ansible Chapter 7

[219]

Executing the playbook
When playbook.yml is defined, we can execute it using the ansible-playbook
command:

$ ansible-playbook playbook.yml

PLAY [web1] ***

TASK [setup] **
ok: [web1]

TASK [ensure apache is at the latest version] *****************************
changed: [web1]

TASK [ensure apache is running] ***

ok: [web1]

PLAY RECAP **
web1: ok=3 changed=1 unreachable=0 failed=0

If the server requires entering the password for the sudo command, then
we need to add the --ask-sudo-pass option to the ansible-playbook
command. It's also possible to pass the sudo password (if required) by
setting the extra variable, -e
ansible_become_pass=<sudo_password>.

The playbook configuration was executed, and therefore, the apache2 tool was installed
and started. Note that if the task has changed something on the server, it is marked as
changed. On the contrary, if there was no change, the task is marked as ok.

It is possible to run tasks in parallel by using the -f <num_of_threads>
option.

The playbook's idempotency
We can execute the command again, as follows:

$ ansible-playbook playbook.yml

PLAY [web1] ***

Configuration Management with Ansible Chapter 7

[220]

TASK [setup] **
ok: [web1]

TASK [ensure apache is at the latest version] *****************************
ok: [web1]

TASK [ensure apache is running] ***
ok: [web1]

PLAY RECAP **
web1: ok=3 changed=0 unreachable=0 failed=0

Note that the output is slightly different. This time, the command didn't change anything
on the server. That's because each Ansible module is designed to be idempotent. In other
words, executing the same module many times in a sequence should have the same effect
as executing it only once.

The simplest way to achieve idempotency is to always first check whether the task has been
executed yet, and only execute it if it hasn't. Idempotency is a powerful feature, and we
should always write our Ansible tasks this way.

If all the tasks are idempotent, then we can execute them as many times as we want. In that
context, we can think of the playbook as a description of the desired state of remote
machines. Then, the ansible-playbook command takes care of bringing the machine (or
group of machines) into that state.

Handlers
Some operations should only be executed if some other task changed. For example, imagine
that you copy the configuration file to the remote machine and the Apache server should
only be restarted if the configuration file has changed. How could we approach such a case?

Ansible provides an event-oriented mechanism to notify about the changes. In order to use
it, we need to know two keywords:

handlers: This specifies the tasks executed when notified
notify: This specifies the handlers that should be executed

Configuration Management with Ansible Chapter 7

[221]

Let's look at the following example of how we could copy the configuration to the server
and restart Apache only if the configuration has changed:

tasks:
- name: copy configuration
 copy:
 src: foo.conf
 dest: /etc/foo.conf
 notify:
 - restart apache
handlers:
- name: restart apache
 service:
 name: apache2
 state: restarted

Now, we can create the foo.conf file and run the ansible-playbook command:

$ touch foo.conf
$ ansible-playbook playbook.yml

...
TASK [copy configuration] **
changed: [web1]

RUNNING HANDLER [restart apache] ***
changed: [web1]

PLAY RECAP ***
web1: ok=5 changed=2 unreachable=0 failed=0

Handlers are always executed at the end of the play, and only once, even
if triggered by multiple tasks.

Ansible copied the file and restarted the Apache server. It's important to understand that if
we run the command again, nothing will happen. However, if we change the content of the
foo.conf file and then run the ansible-playbook command, the file will be copied again
(and the Apache server will be restarted):

$ echo "something" > foo.conf
$ ansible-playbook playbook.yml

...

TASK [copy configuration] ***

Configuration Management with Ansible Chapter 7

[222]

changed: [web1]

RUNNING HANDLER [restart apache] **
changed: [web1]

PLAY RECAP **
web1: ok=5 changed=2 unreachable=0 failed=0

We used the copy module, which is smart enough to detect whether the file has changed,
and then make a change on the server.

There is also a publish-subscribe mechanism in Ansible. Using it means
assigning a topic to many handlers. Then, a task notifies the topic to
execute all related handlers. You can read more about it at http:/​/​docs.
ansible.​com/​ansible/​playbooks_​intro.​html.

Variables
While the Ansible automation makes things identical and repeatable for multiple hosts, it is
inevitable that servers may require some differences. For example, think of the application
port number. It can be different, depending on the machine. Luckily, Ansible provides
variables, which are a good mechanism to deal with server differences. Let's create a new
playbook and define a variable:

- hosts: web1
 vars:
 http_port: 8080

The configuration defines the http_port variable with the value 8080. Now, we can use it
by using the Jinja2 syntax:

tasks:
- name: print port number
 debug:
 msg: "Port number: {{http_port}}"

The Jinja2 language allows for doing way more than just getting a
variable. We can use it to create conditions, loops, and much more. You
can find more details on the Jinja page, at http:/​/​jinja.​pocoo.​org/​.

http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://docs.ansible.com/ansible/playbooks_intro.html
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://jinja.pocoo.org/

Configuration Management with Ansible Chapter 7

[223]

The debug module prints the message while executing. If we run the ansible-playbook
command, we can see the variable usage:

$ ansible-playbook playbook.yml

...

TASK [print port number] **
ok: [web1] => {
 "msg": "Port number: 8080"
}

Variables can also be defined in the inventory file. You can read more
about it at http:/​/​docs.​ansible.​com/​ansible/​intro_​inventory.
html#host-​variables.

Apart from user-defined variables, there are also predefined automatic variables. For
example, the hostvars variable stores a map with the information regarding all hosts from
the inventory. Using the Jinja2 syntax, we can iterate and print the IP addresses of all the
hosts in the inventory:

- hosts: web1
 tasks:
 - name: print IP address
 debug:
 msg: "{% for host in groups['all'] %} {{
 hostvars[host]['ansible_host'] }} {% endfor %}"

Then, we can execute the ansible-playbook command:

$ ansible-playbook playbook.yml

...

TASK [print IP address] **
ok: [web1] => {
 "msg": " 192.168.0.241 192.168.0.242 "
}

Note that with the use of the Jinja2 language, we can specify the flow control operations
inside the Ansible playbook file.

http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables
http://docs.ansible.com/ansible/intro_inventory.html#host-variables

Configuration Management with Ansible Chapter 7

[224]

An alternative to the Jinja2 templating language, for the conditionals and
loops, is to use the Ansible built-in keywords: when and with_items. You
can read more about it at http:/​/​docs.​ansible.​com/​ansible/​playbooks_
conditionals.​html.

Roles
We can install any tool on the remote server by using Ansible playbooks. Imagine that we
would like to have a server with MySQL. We could easily prepare a playbook similar to the
one with the apache2 package. However, if you think about it, a server with MySQL is
quite a common case, and someone has surely already prepared a playbook for it, so maybe
can just reuse it. This is where Ansible roles and Ansible Galaxy come into play.

Understanding roles
The Ansible role is a well-structured playbook part prepared to be included in the
playbooks. Roles are separate units that always have the following directory structure:

templates/
tasks/
handlers/
vars/
defaults/
meta/

You can read more about roles and what each directory means on the
official Ansible page at http:/​/​docs.​ansible.​com/​ansible/​playbooks_
roles.​html.

In each of the directories, we can define the main.yml file, which contains the playbook
parts that can be included in the playbook.yml file. Continuing the MySQL case, there is a
role defined on GitHub at https:/​/​github.​com/​geerlingguy/​ansible-​role-​mysql. This
repository contains task templates that can be used in our playbook. Let's look at a part of
the tasks/main.yml file, which installs the mysql package:

...
- name: Ensure MySQL Python libraries are installed.
 apt: "name=python-mysqldb state=installed"

- name: Ensure MySQL packages are installed.
 apt: "name={{ item }} state=installed"

http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_conditionals.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks_roles.html
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql
https://github.com/geerlingguy/ansible-role-mysql

Configuration Management with Ansible Chapter 7

[225]

 with_items: "{{ mysql_packages }}"
 register: deb_mysql_install_packages
...

This is only one of the tasks defined in the tasks/main.yml file. Others are responsible for
the MySQL configuration.

The with_items keyword is used to create a loop over all the items. The
when keyword means that the task is only executed under a certain
condition.

If we use this role, in order to install the MySQL on the server, it's enough to create the
following playbook.yml:

- hosts: all
 become: yes
 become_method: sudo
 roles:
 - role: geerlingguy.mysql
 become: yes

Such a configuration installs the MySQL database to all servers using the
geerlingguy.mysql role.

Ansible Galaxy
Ansible Galaxy is to Ansible what Docker Hub is for Docker—it stores common roles, so
that they can be reused by others. You can browse the available roles on the Ansible Galaxy
page at https:/​/​galaxy.​ansible.​com/​.

To install a role from Ansible Galaxy, we can use the ansible-galaxy command:

$ ansible-galaxy install username.role_name

This command automatically downloads the role. In the case of the MySQL example, we
could download the role by executing the following:

$ ansible-galaxy install geerlingguy.mysql

The command downloads the mysql role, which can later be used in the playbook file.

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Configuration Management with Ansible Chapter 7

[226]

If you need to install a lot of roles at the same time, you can define them in
the requirements.yml file and use ansible-galaxy install -r
requirements.yml. Read more about that approach and about Ansible
Galaxy, at http:/​/​docs.​ansible.​com/​ansible/​galaxy.​html.

Now that you know the basics about Ansible, let's see how we can use it to deploy our own
applications.

Deployment with Ansible
We have covered the most fundamental features of Ansible. Now, let's forget, just for a
little while, about Docker, Kubernetes, and most of the things we've learned so far. Let's
configure a complete deployment step by only using Ansible. We will run the calculator
service on one server and the Hazelcast service on the second server.

Installing Hazelcast
We can specify a play in the new playbook. Let's create the playbook.yml file, with the
following content:

- hosts: web1
 become: yes
 become_method: sudo
 tasks:
 - name: ensure Java Runtime Environment is installed
 apt:
 name: default-jre
 state: present
 update_cache: yes
 - name: create Hazelcast directory
 file:
 path: /var/hazelcast
 state: directory
 - name: download Hazelcast
 get_url:
 url:
https://repo1.maven.org/maven2/com/hazelcast/hazelcast/3.12/hazelcast-3.12.
jar
 dest: /var/hazelcast/hazelcast.jar
 mode: a+r
 - name: copy Hazelcast starting script
 copy:

http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html
http://docs.ansible.com/ansible/galaxy.html

Configuration Management with Ansible Chapter 7

[227]

 src: hazelcast.sh
 dest: /var/hazelcast/hazelcast.sh
 mode: a+x
 - name: configure Hazelcast as a service
 file:
 path: /etc/init.d/hazelcast
 state: link
 force: yes
 src: /var/hazelcast/hazelcast.sh
 - name: start Hazelcast
 service:
 name: hazelcast
 enabled: yes
 state: started

The configuration is executed on the server web1, and it requires root permissions. It
performs a few steps that will lead to a complete Hazelcast server installation. Let's walk
through what we defined:

Prepare the environment: This task ensures that the Java runtime environment is1.
installed. Basically, it prepares the server environment so that Hazelcast will
have all the necessary dependencies. With more complex applications, the list of
dependent tools and libraries can be way longer.
Download Hazelcast tool: Hazelcast is provided in the form of a JAR, which can2.
be downloaded from the internet. We hardcoded the version, but in a real-life
scenario, it would be better to extract it to a variable.
Configure application as a service: We would like to have the Hazelcast running3.
as a Unix service, so that it would be manageable in the standard way. In this
case, it's enough to copy a service script and link it in the /etc/init.d/
directory.
Start the Hazelcast service: When Hazelcast is configured as a Unix service, we4.
can start it in a standard way.

We will create hazelcast.sh, which is a script (shown as follows) that is responsible for
running Hazelcast as a Unix service:

#!/bin/bash

BEGIN INIT INFO
Provides: hazelcast
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Hazelcast server

Configuration Management with Ansible Chapter 7

[228]

END INIT INFO

java -cp /var/hazelcast/hazelcast.jar com.hazelcast.core.server.StartServer
&

After this step, we could execute the playbook and have Hazelcast started on the server
machine web1. However, let's first create a second play to start the calculator service, and
then run it all together.

Deploying a web service
We prepare the calculator web service in two steps:

Change the Hazelcast host address.1.
Add calculator deployment to the playbook.2.

Changing the Hazelcast host address
Previously, we hardcoded the Hazelcast host address as hazelcast, so now, we should
change it in the
src/main/java/com/leszko/calculator/CalculatorApplication.java file, to
192.168.0.241 (the same IP address we have in our inventory, as web1).

In real-life projects, the application properties are usually kept in the
properties file. For example, for the Spring Boot framework, it's a file
called application.properties or application.yml. Then, we could
change them with Ansible and therefore be more flexible.

Adding calculator deployment to the playbook
Finally, we can add the deployment configuration as a new play in the playbook.yml file.
It is similar to the one we created for Hazelcast:

- hosts: web2
 become: yes
 become_method: sudo
 tasks:
 - name: ensure Java Runtime Environment is installed
 apt:
 name: default-jre
 state: present
 update_cache: yes

Configuration Management with Ansible Chapter 7

[229]

 - name: create directory for Calculator
 file:
 path: /var/calculator
 state: directory
 - name: copy Calculator starting script
 copy:
 src: calculator.sh
 dest: /var/calculator/calculator.sh
 mode: a+x
 - name: configure Calculator as a service
 file:
 path: /etc/init.d/calculator
 state: link
 force: yes
 src: /var/calculator/calculator.sh
 - name: copy Calculator
 copy:
 src: build/libs/calculator-0.0.1-SNAPSHOT.jar
 dest: /var/calculator/calculator.jar
 mode: a+x
 notify:
 - restart Calculator
 handlers:
 - name: restart Calculator
 service:
 name: calculator
 enabled: yes
 state: restarted

The configuration is very similar to what we saw in the case of Hazelcast. One difference is
that this time, we don't download the JAR from the internet, but we copy it from our
filesystem. The other difference is that we restart the service using the Ansible handler.
That's because we want to restart the calculator each time a new version is copied.

Before we start it all together, we also need to define calculator.sh:

#!/bin/bash

BEGIN INIT INFO
Provides: calculator
Required-Start: $remote_fs $syslog
Required-Stop: $remote_fs $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: Calculator application
END INIT INFO

java -jar /var/calculator/calculator.jar &

Configuration Management with Ansible Chapter 7

[230]

When everything is prepared, we will use this configuration to start the complete system.

Running the deployment
As always, we can execute the playbook using the ansible-playbook command. Before
that, we need to build the calculator project with Gradle:

$./gradlew build
$ ansible-playbook playbook.yml

After the successful deployment, the service should be available, and we can check that it's
working at http://192.168.0.242:8080/sum?a=1&b=2 (the IP address should be the
same one that we have in our inventory as web2). As expected, it should return 3 as the
output.

Note that we have configured the whole environment by executing one command. What's
more, if we need to scale the service, then it's enough to add a new server to the inventory
and rerun the ansible-playbook command. Also, note that we could package it as an
Ansible role and upload it to GitHub, and from then on, everyone could run the same
system on their Ubuntu servers. That's the power of Ansible!

We have shown how to use Ansible for environmental configuration and application
deployment. The next step is to use Ansible with Docker.

Ansible with Docker and Kubernetes
As you may have noticed, Ansible and Docker (along with Kubernetes) address similar
software deployment issues:

Environmental configuration: Both Ansible and Docker provide a way to
configure the environment; however, they use different means. While Ansible
uses scripts (encapsulated inside the Ansible modules), Docker encapsulates the
whole environment inside a container.
Dependencies: Ansible provides a way to deploy different services on the same
or different hosts, and lets them be deployed together. Kubernetes has a similar
functionality, which allows for running multiple containers at the same time.
Scalability: Ansible helps to scale the services providing the inventory and host
groups. Kubernetes has a similar functionality to automatically increase or
decrease the number of running containers.

Configuration Management with Ansible Chapter 7

[231]

Automation with configuration files: Docker, Kubernetes, and Ansible store the
whole environmental configuration and service dependencies in files (stored in
the source control repository). For Ansible, this file is called playbook.yml. In
the case of Docker and Kubernetes, we have Dockerfile for the environment
and deployment.yml for the dependencies and scaling.
Simplicity: Both tools are very simple to use and provide a way to set up the
whole running environment with a configuration file and just one command
execution.

If we compare the tools, Docker does a little more, since it provides the isolation,
portability, and a kind of security. We could even imagine using Docker/Kubernetes
without any other configuration management tools. Then, why do we need Ansible at all?

Benefits of Ansible
Ansible may seem redundant; however, it brings additional benefits to the delivery process,
which are as follows:

Docker environment: The Docker/Kubernetes hosts themselves have to be
configured and managed. Every container is ultimately running on Linux
machines, which need kernel patching, Docker engine updates, network
configuration, and so on. What's more, there may be different server machines
with different Linux distributions, and the responsibility of Ansible is to make
sure everything is up and running.
Non-Dockerized applications: Not everything is run inside a container. If part of
the infrastructure is containerized and part is deployed in the standard way or in
the cloud, then Ansible can manage it all with the playbook configuration file.
There may be different reasons for not running an application as a container; for
example, performance, security, specific hardware requirements, or working
with the legacy software.
Inventory: Ansible offers a very friendly way to manage the physical
infrastructure by using inventories, which store the information about all the
servers. It can also split the physical infrastructure into different
environments—production, testing, and development.
Cloud provisioning: Ansible can be responsible for provisioning Kubernetes
clusters or installing Kubernetes in the cloud; for example, we can imagine
integration tests in which the first step is to create a Kubernetes cluster on Google
Cloud Platform (only then can we deploy the whole application and perform the
testing process).

Configuration Management with Ansible Chapter 7

[232]

GUI: Ansible offers a (commercial) GUI manager called Ansible Tower, which
aims to improve the infrastructure management for enterprises.
Improving the testing process: Ansible can help with the integration and
acceptance testing, as it can encapsulate testing scripts.

We can look at Ansible as the tool that takes care of the infrastructure, while Docker and
Kubernetes are tools that take care of the environmental configuration and clustering. An
overview is presented in the following diagram:

Ansible manages the infrastructure: Kubernetes clusters, Docker servers, Docker
registries, servers without Docker, and cloud providers. It also takes care of the physical
location of the servers. Using the inventory host groups, it can link the web services to the
databases that are close to their geographic locations.

Let's look at how we can use Ansible to install Docker on a server and deploy a sample
application there.

Configuration Management with Ansible Chapter 7

[233]

The Ansible Docker playbook
Ansible integrates with Docker smoothly, because it provides a set of Docker-dedicated
modules. If we create an Ansible playbook for Docker-based deployment, then the first task
is to make sure that the Docker engine is installed on every machine. Then, it should run a
container using Docker.

There are a few very useful Docker-related modules provided by Ansible:
docker_image (build/manage images), docker_container (run
containers), docker_image_facts (inspect images), docker_login (log
in to Docker registry), docker_network (manage Docker networks), and
docker_service (manage Docker Compose).

First let's install Docker on an Ubuntu server.

Installing Docker
We can install the Docker engine by using the following task in the Ansible playbook:

- hosts: web1
 become: yes
 become_method: sudo
 tasks:
 - name: add Docker apt keys
 apt_key:
 keyserver: hkp://p80.pool.sks-keyservers.net:80
 id: 9DC858229FC7DD38854AE2D88D81803C0EBFCD88
 - name: update apt
 apt_repository:
 repo: deb [arch=amd64] https://download.docker.com/linux/ubuntu
bionic stable
 state: present
 - name: install Docker
 apt:
 name: docker-ce
 update_cache: yes
 state: present
 - name: add admin to docker group
 user:
 name: admin
 groups: docker
 append: yes
 - name: install python-pip
 apt:
 name: python-pip

Configuration Management with Ansible Chapter 7

[234]

 state: present
 - name: install docker-py
 pip:
 name: docker-py

The playbook looks slightly different for each operating system. The one
presented here is for Ubuntu 18.04.

This configuration installs Docker, enables the admin user to work with Docker, and
installs Docker Python tools (needed by Ansible).

Alternatively, you can also use the docker_ubuntu role, as described at
https:/​/​www.​ansible.​com/​2014/​02/​12/​installing-​and-​building-
docker-​with-​ansible.

When Docker is installed, we can add a task that will run a Docker container.

Running Docker containers
Running Docker containers is done with the use of the docker_container module, and it
looks as follows:

- hosts: web1
 become: yes
 become_method: sudo
 tasks:
 - name: run Hazelcast container
 docker_container:
 name: hazelcast
 image: hazelcast/hazelcast
 state: started
 exposed_ports:
 - 5701

You can read more about all of the options of the docker_container
module on the official Ansible page, at https:/​/​docs.​ansible.​com/
ansible/​docker_​container_​module.​html.

https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://www.ansible.com/2014/02/12/installing-and-building-docker-with-ansible
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html
https://docs.ansible.com/ansible/docker_container_module.html

Configuration Management with Ansible Chapter 7

[235]

With the two playbooks presented previously, we configured the Hazelcast server using
Docker. Note that this is very convenient, because we can run the same playbook on
multiple (Ubuntu) servers.

Now, let's take a look at how Ansible can help with Kubernetes.

The Ansible Kubernetes playbook
Similar to Docker, Ansible can help with Kubernetes. Installing the whole Kubernetes
environment on a bare-metal server is out of the scope of this book; however, thanks to the
variety of Ansible modules, we can simply provision a Kubernetes cluster on Google Cloud
Platform or Azure.

If you're interested in details on how to create a Kubernetes cluster on
Google Cloud Platform using Ansible, please read the documentation at
https:/​/​docs.​ansible.​com/​ansible/​latest/​modules/​gcp_​container_
cluster_​module.​html.

After you have a Kubernetes cluster, you can create Kubernetes resources by using the
Ansible k8s module. Here's a sample Ansible task to apply the Kubernetes configuration:

- name: create a Deployment
 k8s:
 state: present
 src: deployment.yaml

The configuration here reads the local file, deployment.yaml, and applies it to the
Kubernetes cluster.

You can find more information about the Ansible k8s module at https:/​/
docs.​ansible.​com/​ansible/​latest/​modules/​k8s_​module.​html.

https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/gcp_container_cluster_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html
https://docs.ansible.com/ansible/latest/modules/k8s_module.html

Configuration Management with Ansible Chapter 7

[236]

Summary
We have covered the configuration management process and its relation to Docker and
Kubernetes. The key takeaway points from the chapter are as follows:

Configuration management is a process of creating and applying the
configurations of the infrastructure and the application.
Ansible is one of the most trending configuration management tools. It is
agentless, and therefore, it requires no special server configuration.
Ansible can be used with ad hoc commands, but the real power lies in Ansible
playbooks.
The Ansible playbook is a definition of how the environment should be
configured.
The purpose of Ansible roles is to reuse parts of playbooks.
Ansible Galaxy is an online service to share Ansible roles.
Ansible integrates well with Docker and provides additional benefits, as
compared to using Docker (and Kubernetes) alone.

In the next chapter, we will wrap up the Continuous Delivery process and complete the
final Jenkins pipeline.

Exercises
In this chapter, we covered the fundamentals of Ansible and the way to use it with Docker
and Kubernetes. As exercises, we propose the following tasks:

Create the server infrastructure and use Ansible to manage it:1.
Connect a physical machine or run a VirtualBox machine to emulate1.
the remote server.
Configure SSH access to the remote machine (SSH keys).2.
Install Python on the remote machine.3.
Create an Ansible inventory with the remote machine.4.
Run the Ansible ad hoc command (with the ping module) to check5.
that the infrastructure is configured correctly.

Configuration Management with Ansible Chapter 7

[237]

Create a Python-based hello world web service and deploy it in a remote2.
machine using Ansible playbook:

The service can look exactly the same as we described in the exercises1.
for the chapter
Create a playbook that deploys the service into the remote machine2.
Run the ansible-playbook command and check whether the service3.
was deployed

Questions
To verify your knowledge from this chapter, please answer the following questions:

What is configuration management?1.
What does it mean that the configuration management tool is agentless?2.
What are the three most popular configuration management tools?3.
What is Ansible inventory?4.
What is the difference between Ansible ad hoc commands and playbooks?5.
What is an Ansible role?6.
What is Ansible Galaxy?7.

Further reading
To read more about configuration management in Ansible, please refer to the following
resources:

Official Ansible Documentation: https:/​/​docs.​ansible.​com/​

Michael T. Nygard, Release It!: (https:/​/​pragprog.​com/​book/​mnee/​release-
it)
Russ McKendrick, Learn Ansible: (https:/​/​www.​packtpub.​com/
virtualization-​and-​cloud/​learn-​ansible)

https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://docs.ansible.com/
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://pragprog.com/book/mnee/release-it
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/virtualization-and-cloud/learn-ansible

8
Continuous Delivery Pipeline

In this chapter, we will focus on the missing parts of the final pipeline, which are the
environments and infrastructure, application versioning, and nonfunctional testing.

This chapter covers the following points:

Environments and infrastructure
Nonfunctional testing
Application versioning
Complete Continuous Delivery pipeline

Technical requirements
To follow along with the instructions in this chapter, you'll need the following
requirements:

Jenkins instance (with Java 8, Docker, and kubectl installed on Jenkins agents)
Docker registry (for example, account on Docker Hub)
Two Kubernetes clusters

All the examples and solutions to the exercises can be found on GitHub at https:/​/​github.
com/​PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter08.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter08

Continuous Delivery Pipeline Chapter 8

[239]

Environments and infrastructure
So far, we have deployed our applications to some servers, which were Docker hosts,
Kubernetes clusters, or even pure Ubuntu servers (in case of Ansible). However, when we
think deeper about the Continuous Delivery process (or the software delivery process in
general), we need to make a logical grouping of our resources. There are two main reasons
why it's so important:

The physical location of machines matters
No testing should be done on the production machines

Taking these facts into consideration, in this section, we will discuss different types of
environment, their role in the Continuous Delivery process, and the security aspect of our
infrastructure.

Types of environment
There are four common environment types—production, staging, QA (testing), and
development. Let's discuss each of them one by one.

Production
The production environment is the environment that is used by the end user. It exists in
every company and, of course, it is the most important environment.

Let's look at the following diagram and see how most production environments are
organized:

Continuous Delivery Pipeline Chapter 8

[240]

Users access the service through the load balancer, which chooses the exact machine. If the
application is released in multiple physical locations, then the (first) device is usually a
DNS-based geographic load balancer. In each location, we have a cluster of servers. If we
use Docker and Kubernetes, it means that in each location we have at least one Kubernetes
cluster.

The physical location of machines matters because the request-response time can differ
significantly depending on the physical distance. Moreover, the database and other
dependent services should be located on a machine that is close to where the service is
deployed. What's even more important is that the database should be sharded in a way that
minimizes the replication overhead between different locations; otherwise, we may end up
waiting a lot for the databases to reach consensus between their instances located far away
from each other. Further details on the physical aspects are beyond the scope of this book,
but it's important to remember that Docker and Kubernetes themselves do not solve this
problem.

Containerization and virtualization allow you to think about servers as an
infinite resource; however, some physical aspects such as location are still
relevant.

Staging
The staging environment is the place where the release candidate is deployed in order to
perform the final tests before going live. Ideally, this environment is a mirror of the
production.

Let's look at the following to see how such an environment should look in the context of the
delivery process:

Continuous Delivery Pipeline Chapter 8

[241]

Note that the staging environment is an exact production clone. If the application is
deployed in multiple locations, then the staging should also have multiple locations.

In the Continuous Delivery process, all automated acceptance functional and nonfunctional
tests are run against this environment. While most functional tests don't usually require
identical production-like infrastructure, in the case of nonfunctional (especially
performance) tests, it is a must.

It is not uncommon that, for the purpose of saving costs, the staging infrastructure differs
from the production (usually it contains fewer machines). Such an approach can, however,
lead to many production issues. Michael T. Nygard, in one of his books, gives an example of
a real-life scenario in which fewer machines were used in the staging environment than in
production.

The story goes like this: in one company, the system was stable until a certain code change
caused the production to be extremely slow, even though all stress tests were passed. How
was it possible? It so happened because there was a synchronization point, in which each
server communicated with the other. In the case of the staging, there was one server, so
there was actually no blocker. In production, however, there were many servers, which
resulted in servers waiting for each other. This example is just the tip of the iceberg and
many production issues may fail to be tested by acceptance tests if the staging environment
is different from the production.

QA
The QA environment (also called the testing environment) is intended for the QA team to
perform exploratory testing and for external applications (which depend on our service) to
perform integration testing. The use cases and the infrastructure of the QA environment are
presented in the following diagram:

Continuous Delivery Pipeline Chapter 8

[242]

While staging does not need to be stable (in the case of Continuous Delivery, it is changed
after every code change committed to the repository), the QA instance needs to provide a
certain stability and expose the same (or backward-compatible) API as the production. In
contrast to the staging environment, the infrastructure can be different from the production,
since its purpose is not to ensure that the release candidate works properly.

A very common case is to allocate fewer machines (for example, only from one location) for
the purpose of the QA instance.

Deploying to the QA environment is usually done in a separate pipeline,
so that it would be independent from the automatic release process. Such
an approach is convenient, because the QA instance has a different life
cycle than production (for instance, the QA team may want to perform
testing on the experimental code branched from the trunk).

Development
The development environment can be created as a shared server for all developers or each
developer can have his/her own development environment. A simple diagram is presented
here:

The development environment always contains the latest version of the code. It is used to
enable integration between developers and can be treated the same way as the QA
environment, but is used by developers, not QAs.

When we presented all the environments, let's see how they fit into the Continuous
Delivery process.

Environments in Continuous Delivery
For the purpose of the Continuous Delivery process, the staging environment is
indispensable. In some very rare cases, when the performance is not important and the
project doesn't have many dependencies, we could perform the acceptance tests on the local
(development) Docker host, but that should be an exception, not a rule. In such cases, we
always risk some production issues related to the environment.

Continuous Delivery Pipeline Chapter 8

[243]

The other environments are usually not important with regard to Continuous Delivery. If
we would like to deploy to the QA or development environment with every commit, then
we can create separate pipelines for that purpose (being careful not to obscure the main
release pipeline). In many cases, deployment to the QA environment is triggered manually,
because it has different life cycle from production.

Securing environments
All environments need to be well secured—that's clear. What's even more obvious is that
the most important requirement is to keep the production environment secure because our
business depends on it and the consequences of any security flaw can be the highest there.

Security is a broad topic. In this section, we focus only on the topics
related to the Continuous Delivery process. Nevertheless, setting up a
complete server infrastructure requires much more knowledge about
security.

In the Continuous Delivery process, Jenkins agent must have access to servers, so that it can
deploy the application.

There are different approaches for providing agents with the server's credentials:

Put SSH key into the agent: If we don't use dynamic Docker slave provisioning,
then we can configure Jenkins agent machines to contain private SSH keys.
Put SSH key into the agent image: If we use dynamic Docker slave
provisioning, we could add the SSH private key into the Docker agent image;
however, this creates a possible security hole, since anyone who has access to
that image would have access to the production servers.
Jenkins credentials: We can configure Jenkins to store credentials and use them
in the pipeline.
Copy to the Slave Jenkins plugin: We can copy the SSH key dynamically into
the slave while starting the Jenkins build.

Each solution has some advantages and drawbacks. While using any of them, we have to
take extra caution since, when an agent has access to the production, then anyone breaking
into that agent breaks into the production.

The most risky solution is to put SSH private keys into the Jenkins agent image, since then
all the places where the image is stored (the Docker registry or Docker host with Jenkins)
need to be well secured.

Continuous Delivery Pipeline Chapter 8

[244]

We covered the infrastructure part, let's now have a look at the topic that we haven't
touched in any chapter yet, nonfunctional testing.

Nonfunctional testing
We learned a lot about functional requirements and automated acceptance testing in the
previous chapters. But, what should we do with nonfunctional requirements? Or even more
challenging, what if there are no requirements? Should we skip them at all in the Continuous
Delivery process? We will answer these questions throughout this section.

Nonfunctional aspects of the software are always important, because they can cause a
significant risk to the operation of the system.

For example, many applications fail, because they are unable to bear the load of a sudden
increase in the number of users. In one of his books, Jakob Nielsen, writes that one second is
about the limit for the user's flow of thought to stay uninterrupted. Imagine that our
system, with the growing load, starts to exceed that limit. Users can stop using the service
just because of its performance. Taking it into consideration, nonfunctional testing is as
important as functional testing.

To cut a long story short, we should always take the following steps for nonfunctional
testing:

Decide which nonfunctional aspects are crucial to our business1.
For each of them, we do the following:2.

Specify the tests the same way we did for acceptance testing
Add a stage to the Continuous Delivery pipeline (after acceptance
testing, while the application is still deployed on the staging
environment)

The application comes to the release stage only after all nonfunctional tests pass3.

Irrespective of the type of the nonfunctional test, the idea is always the same. The approach,
however, may slightly differ. Let's examine different test types and the challenges they
pose.

Continuous Delivery Pipeline Chapter 8

[245]

Types of nonfunctional test
Functional test are always related to the same aspect—the behavior of the system. In
contrast, nonfunctional tests concern a lot of different aspects. Let's discuss the most
common system properties and how they can be tested inside the Continuous Delivery
process.

Performance testing
Performance tests are the most widely used nonfunctional tests. They measure the
responsiveness and stability of the system. The simplest performance test we could create is
to send a request to the web service and measure its round-trip time (RTT).

There are different definitions of performance testing. They are often meant to include load,
stress, and scalability testing. Sometimes, they are also described as white-box tests. In this
book, we define performance testing as the most basic form of black-box test in order to
measure the latency of the system.

For the purpose of performance testing, we can use a dedicated framework (for Java the
most popular is JMeter) or just use the same tool we used for acceptance tests. A simple
performance test is usually added as a pipeline stage, just after acceptance tests. Such a test
should fail if the RTT exceeds the given limit and it detects bugs that definitely slow down
our service.

The JMeter plugin for Jenkins can show performance trends over the time.

Load testing
Load tests are used to check how the system functions when there are a lot of concurrent
requests. While a system can be very fast with a single request, it doesn't mean that it works
fast enough with 1,000 requests at the same time. During load testing, we measure the
average request-response time of many concurrent calls, which are performed usually from
many machines. Load testing is a very common QA phase in the release cycle. To automate
it, we can use the same tools as with the simple performance test; however, in the case of
larger systems, we may need a separate client environment to perform a large number of
concurrent requests.

Continuous Delivery Pipeline Chapter 8

[246]

Stress testing
Stress testing, also called capacity testing or throughput testing, is a test that determines
how many concurrent users can access our service. It may sound the same as load testing;
however, in the case of load testing, we set the number of concurrent users (throughput) to
a given number, check the response time (latency), and make the build fail if the limit is
exceeded. During stress testing, however, we keep the latency constant and increase the
throughput to discover the maximum number of concurrent calls when the system is still
operable. Therefore, the result of a stress test may be notification that our system can
handle 10,000 concurrent users, which helps us prepare for the peak usage time.

Stress testing is not well suited for the Continuous Delivery process because it requires long
tests with an increasing number of concurrent requests. It should be prepared as a separate
script of a separate Jenkins pipeline and triggered on demand, when we know that the code
change can cause performance issues.

Scalability testing
Scalability testing explains how latency and throughput change when we add more servers
or services. The perfect characteristic would be linear, which means if we have one server
and the average request-response time is 500 ms when used by 100 parallel users, then
adding another server would keep the response time the same and allow us to add another
100 parallel users. In reality, it's often hard to achieve this because of the need to
keep data consistent between servers.
Scalability testing should be automated and should provide a graph that shows the
relationship between the number of machines and the number of concurrent users. Such
data is helpful in determining the limits of the system and the point at which adding more
machines doesn't help.

Scalability tests, similar to stress tests, are hard to put into the Continuous Delivery pipeline
and should be kept separate.

Endurance testing
Endurance tests, also called longevity tests, run the system for a long time to see if the
performance drops after a certain period of time. They detect memory leaks and stability
issues. Since they require a system to run for a long time, it doesn't make sense to run them
inside the Continuous Delivery pipeline.

Continuous Delivery Pipeline Chapter 8

[247]

Security testing
Security testing deals with different aspects related to security mechanisms and data
protection. Some security aspects are purely functional requirements, such as
authentication, authorization, or role assignment. These elements should be checked the
same way as any other functional requirement—during the acceptance test phase. There are
also other security aspects that are nonfunctional; for example, the system should be
protected against SQL injection. No client would probably specify such a requirement, but
it's implicit.

Security tests should be included in Continuous Delivery as a pipeline stage. They can be
written using the same frameworks as the acceptance tests or with dedicated security
testing frameworks—for example, behavior-driven development
(BDD) security.

Security should also always be a part of the explanatory testing process, in
which testers and security experts detect security holes and add new
testing scenarios.

Maintainability testing
Maintainability tests explain how simple a system is to maintain. In other words, they judge
code quality. We have already described stages in the commit phase that check test
coverage and perform static-code analysis. The Sonar tool can also give some overview of
the code quality and the technical debt.

Recovery testing
Recovery testing is a technique to determine how quickly the system can recover after it
crashed because of a software or hardware failure. The best case would be if the system
doesn't fail at all, even if a part of its services is down. Some companies even perform
production failures on purpose to check if they can survive a disaster. The best known
example is Netflix and their Chaos Monkey tool, which randomly terminates random
instances of the production environment. Such an approach forces engineers to write code
that makes systems resilient to failures.

Recovery testing is obviously not part of the Continuous Delivery process, but rather a
periodic event to check the overall health.

Continuous Delivery Pipeline Chapter 8

[248]

You can read more about Chaos Monkey at https:/​/​github.​com/
Netflix/​chaosmonkey.

There are many more nonfunctional test types that are closer to or further from the code
and the Continuous Delivery process. Some of them relate to the law such as compliance
testing; others are related to the documentation or internationalization. There are also
usability testing and volume testing (which check whether the system behaves well when
handling large amounts of data). Most of these tests, however, have no part in the
Continuous Delivery process.

Nonfunctional challenges
Nonfunctional aspects pose new challenges to the software development and delivery. Let's
go over some of them now:

Long test runs: The tests can take a long time to run and may need a special
execution environment.
Incremental nature: It's hard to set the limit value when the test should fail
(unless SLA is well defined). Even if the edge limit is set, the application would
probably incrementally approach the limit. In most cases, actually, no one code
changes will cause the test to fail.
Vague requirements: Users usually don't have much input when it comes to
nonfunctional requirements. They may provide some guidelines concerning the
request-response time or the number of users; however, they probably won't
know much about maintainability, security, or scalability.
Multiplicity: There are a lot of different nonfunctional tests and choosing which
should be implemented means making some compromises.

The best approach to address nonfunctional aspects is to take the following steps:

Make a list of all nonfunctional test types.1.
Explicitly cross out the tests you don't need for your system . There may be a lot2.
of reasons you don't need one kind of test, for example:

The service is super small and a simple performance test is enough
The system is internal only and exclusively available for read-only, so
it may not need any security checks

https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey

Continuous Delivery Pipeline Chapter 8

[249]

The system is designed for one machine only and does not need any
scaling
The cost of creating certain tests is too high

Split your tests into two groups:3.
Continuous Delivery: It is possible to add it to the pipeline
Analysis: It is not possible to add to the pipeline because of their
execution time, their nature, or the associated cost

For the Continuous Delivery group, implement the related pipeline stages.4.
For the Analysis group:5.

Create automated tests
Schedule when they should be run
Schedule meetings to discuss their results and take action points

A very good approach is to have a nightly build with the long tests that
don't fit the Continuous Delivery pipeline. Then, it's possible to schedule a
weekly meeting to monitor and analyze the trends of system performance.

As presented, there are many types of nonfunctional test and they pose additional
challenges to the delivery process. Nevertheless, for the sake of the stability of our system,
these tests should never be blankly skipped. The technical implementation differs
depending on the test type, but in most cases they can be implemented in a similar manner
to functional acceptance tests and should be run against the staging environment.

If you're interested in the topic of nonfunctional testing, system properties
and system stability, then read the book Release It! by Michael T. Nygard.

After we discussed the nonfunctional testing, let's move to another aspect which we haven't
completely covered yet, the application versioning.

Continuous Delivery Pipeline Chapter 8

[250]

Application versioning
So far, throughout every Jenkins build, we have created a new Docker image, pushed it into
the Docker registry, and used the latest version throughout the process. However, such a
solution has at least three disadvantages:

If, during the Jenkins build, after the acceptance tests, someone pushes a new
version of the image, then we can end up releasing the untested version
We always push an image named in the same way; so that, effectively, it is
overwritten in the Docker registry
It's very hard to manage images without versions just by their hashed-style IDs

What is the recommended way of managing Docker image versions together with the Continuous
Delivery process? In this section, we get to see different versioning strategies and learn
different ways of creating versions in the Jenkins pipeline.

Versioning strategies
There are different ways to version applications.

Let's discuss the most popular solutions that can be applied together with the Continuous
Delivery process (when each commit creates a new version).

Semantic versioning: The most popular solution is to use sequence-based
identifiers (usually in the form of x.y.z). This method requires a commit to the
repository done by Jenkins in order to increase the current version number,
which is usually stored in the build file. This solution is well supported by
Maven, Gradle, and other build tools. The identifier usually consists of three
numbers:

x: This is the major version; the software does not need to be
backward compatible when this version is incremented
y: This is the minor version; the software needs to be backward
compatible when the version is incremented
z: This is the build number (also called the patch version); this is
sometimes also considered as a backward-and forward-compatible
change

Timestamp: Using the date and time of the build for the application version is
less verbose than sequential numbers, but very convenient in the case of the
Continuous Delivery process because it does not require Jenkins to commit it
back to the repository.

Continuous Delivery Pipeline Chapter 8

[251]

Hash: A randomly generated hash version shares the benefit of the date-time and
is probably the simplest solution possible. The drawback is that it's not possible
to look at two versions and tell which is the latest one.
Mixed: There are many variations of the solutions described earlier, for example,
major and minor versions with the date-time.

All solutions are fine to use with the Continuous Delivery process. Semantic versioning,
however, requires a commit to the repository from the build execution so that the version is
increased in the source code repository.

Maven (and the other build tools) popularized version snapshotting,
which added a SNAPSHOT suffix to the versions that are not released, but
kept just for the development process. Since Continuous Delivery means
releasing every change, there are no snapshots.

Let's now have a look how we can adapt versioning in the Jenkins pipeline.

Versioning in the Jenkins pipeline
As described earlier, there are different possibilities when it comes to using software
versioning, and each of them can be implemented in Jenkins.

As an example, let's use the date-time.

In order to use the timestamp information from Jenkins, you need to
install the Build Timestamp Plugin and set the timestamp format in the
Jenkins configuration (for example, you can set it to yyyyMMdd-HHmm).

In every place where we use the Docker image, we need to add the ${BUILD_TIMESTAMP}
tag suffix.

For example, the Docker build stage should look like this:

sh "docker build -t leszko/calculator:${BUILD_TIMESTAMP} ."

After the changes, when we run the Jenkins build, we should have the image tagged with
the timestamp version in our Docker registry.

With versioning completed, we are finally ready to complete the Continuous Delivery
pipeline.

Continuous Delivery Pipeline Chapter 8

[252]

Completing the Continuous Delivery
pipeline
After discussing all the aspects of Ansible, environments, nonfunctional testing, and
versioning, we are ready to extend the Jenkins pipeline and finalize a simple, but complete,
Continuous Delivery pipeline.

We will do it in a the following few steps:

Create the inventory of staging and production environments
Use version in the Kubernetes deployment
Use remote Kubernetes cluster as the staging environment
Update acceptance tests to use the staging Kubernetes cluster
Release the application to the production environment
Add a smoke test that makes sure that the application was successfully released

Inventory
We have seen the inventory file in the previous chapter while describing Ansible. To
generalize this concept, an inventory is a list of environments with the description of how
to access them. In this example, we'll use Kubernetes directly, so the Kubernetes
configuration file, usually stored in .kube/config, will mean for as the inventory.

As explained in the previous chapter, depending on your needs you may
use kubectl directly or via Ansible. Both approaches are suitable for the
Continuous Delivery pipeline.

Let's configure two Kubernetes clusters, staging and production. Your .kube/config
file should look similar to the following one.

apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: LS0tLS1CR...
 server: https://35.238.191.252
 name: staging
- cluster:
 certificate-authority-data: LS0tLS1CR...
 server: https://35.232.61.210
 name: production

Continuous Delivery Pipeline Chapter 8

[253]

contexts:
- context:
 cluster: staging
 user: staging
 name: staging
- context:
 cluster: production
 user: production
 name: production
users:
- name: staging
 user:
 token: eyJhbGciOiJSUzI1NiIsImtpZCI6I...
- name: production
 user:
 token: eyJ0eXAiOiJKV1QiLCJhbGciOiJSU...

The Kubernetes configuration stores for each cluster the following information:

cluster: Address of the cluster (Kubernetes master endpoint) and its CA
certificate
context: Binding of the cluster and user
user: Authorization data to access the Kubernetes cluster

The simplest way to create two Kubernetes cluster is to use Google
Kubernetes Engine (GKE), then configure kubectl using gcloud
container clusters get-credentials , and finally rename the
cluster context with kubectl config rename-context <original-
context-name> staging.

You also need to make sure that the Kubernetes configuration is available on the Jenkins
agent nodes. As mentioned in the previous sections, think carefully about the security, so
that no unauthorized people could access your environments via the Jenkins agent.

Having the inventory defined, we can prepare the Kubernetes deployment configuration to
work with the application versioning.

Continuous Delivery Pipeline Chapter 8

[254]

Versioning
Kubernetes YAML files are exactly the same as we defined in the previous chapters. The
only difference is that we need to introduce a template variable for the application version.
Let's make one change in the calculator.yaml file.

image: leszko/calculator:{{VERSION}}

Then, we can fill the version in Jenkinsfile.

stage("Update version") {
 steps {
 sh "sed -i 's/{{VERSION}}/${BUILD_TIMESTAMP}/g' calculator.yaml"
 }
}

Having it defined, we can change acceptance testing to use the remote staging
environment.

Remote staging environment
Depending on our needs, we could test the application by running it on the local Docker
host (like we did previously) or using the remote (and clustered) staging environment. The
former solution is closer to what happens in the production, so it can be considered as a
better one.

In order to do this, we need to change the command we use from docker into kubectl.
Let's modify the related part of our Jenkinsfile:

stage("Deploy to staging") {
 steps {
 sh "kubectl config use-context staging"
 sh "kubectl apply -f hazelcast.yaml"
 sh "kubectl apply -f calculator.yaml"
 }
}

We first switched kubectl to use the staging context. Then, we deployed the Hazelcast
server. Finally, we used sed to fill our application version and then deployed Calculator
into the Kubernetes server. At this point we have a fully functional application on our
staging environment. Let's see how we need to modify the acceptance testing stage.

Continuous Delivery Pipeline Chapter 8

[255]

Acceptance testing environment
The Acceptance test stage looks exactly the same as in the previous chapter. The only
adjustment is to change the IP and port of our service to the one from the remote
Kubernetes cluster. As explained in Chapter 6, Clustering with Kubernetes, the way to do it
depends on your Kubernetes Service type. We used NodePort, so we need the following
change in Jenkinsfile.

stage("Acceptance test") {
 steps {
 sleep 60
 sh "chmod +x acceptance-test.sh && ./acceptance-test.sh"
 }
}

The acceptance-test.sh script looks as follows:
#!/bin/bash
set -x

NODE_IP=$(kubectl get nodes -o jsonpath='{ $.items[0].status.addresses[?
 (@.type=="ExternalIP")].address }')
NODE_PORT=$(kubectl get svc calculator-service -
o=jsonpath='{.spec.ports[0].nodePort}')
./gradlew acceptanceTest -Dcalculator.url=http://${NODE_IP}:${NODE_PORT}

First, we used sleep to wait for our application to get deployed. Then, using kubectl, we
fetch the IP address (NODE_IP) and the port (NODE_PORT) of our service. Finally, we execute
the acceptance testing suite.

If you use Minishift for your Kubernetes cluster, then you can fetch
NODE_IP using minishift ip. If you use Docker for Desktop, then your
IP is localhost.

When we have all our tests in place, it's high time to release the application.

Release
The production environment should be as close to the staging environment as possible. The
Jenkins stage for the release should also be as close as possible to the Deploy to staging
step.

Continuous Delivery Pipeline Chapter 8

[256]

In the simplest scenario, the only difference is the Kubernetes configuration context and the
application configuration (for example, in the case of a Spring Boot application, we would
set a different Spring profile, which results in taking a different
application.properties file). In our case, there are no application properties, so the
only difference is the kubectl context.

stage("Release") {
 steps {
 sh "kubectl config use-context production"
 sh "kubectl apply -f hazelcast.yaml"
 sh "kubectl apply -f calculator.yaml"
 }
}

Now after the release is done, we might think that everything is complete; however, there is
one more missing stage—smoke testing.

Smoke testing
A smoke test is a very small subset of acceptance tests whose only purpose is to check that
the release process is completed successfully; otherwise, we could have a situation in which
the application is perfectly fine, but where there is an issue in the release process, so we
may end up with a non-working production.

The smoke test is usually defined in the same way as the acceptance test. So the Smoke
test stage in the pipeline should look like this:

stage("Smoke test") {
 steps {
 sleep 60
 sh "chmod +x smoke-test.sh && ./smoke-test.sh"
 }
}

After everything is set up, the Continuous Delivery build should run automatically and the
application should be released to production. With this step, we have completed our
analysis of the the Continuous Delivery pipeline in its simplest, but fully productive, form.

Continuous Delivery Pipeline Chapter 8

[257]

Complete Jenkinsfile
To sum up, throughout the recent chapters we have gone through quite a few stages that
have resulted in a complete Continuous Delivery pipeline that could be successfully used in
many projects.

Next, we see the complete Jenkinsfile for the calculator project:

pipeline {
 agent any

 triggers {
 pollSCM('* * * * *')
 }

 stages {
 stage("Compile") { steps { sh "./gradlew compileJava" } }
 stage("Unit test") { steps { sh "./gradlew test" } }

 stage("Code coverage") { steps {
 sh "./gradlew jacocoTestReport"
 sh "./gradlew jacocoTestCoverageVerification"
 } }

 stage("Static code analysis") { steps {
 sh "./gradlew checkstyleMain"
 } }

 stage("Build") { steps { sh "./gradlew build" } }

 stage("Docker build") { steps {
 sh "docker build -t leszko/calculator:${BUILD_TIMESTAMP} ."
 } }

 stage("Docker push") { steps {
 sh "docker push leszko/calculator:${BUILD_TIMESTAMP}"
 } }

 stage("Update version") { steps {
 sh "sed -i 's/{{VERSION}}/${BUILD_TIMESTAMP}/g' calculator.yaml"
 } }

 stage("Deploy to staging") { steps {
 sh "kubectl config use-context staging"
 sh "kubectl apply -f hazelcast.yaml"
 sh "kubectl apply -f calculator.yaml"
 } }

Continuous Delivery Pipeline Chapter 8

[258]

 stage("Acceptance test") { steps {
 sleep 60
 sh "chmod +x acceptance-test.sh && ./acceptance-test.sh"
 } }

 // Performance test stages

 stage("Release") { steps {
 sh "kubectl config use-context production"
 sh "kubectl apply -f hazelcast.yaml"
 sh "kubectl apply -f calculator.yaml"
 } }

 stage("Smoke test") { steps {
 sleep 60
 sh "chmod +x smoke-test.sh && ./smoke-test.sh"
 } }
 }
}

You can find this Jenkinsfile on GitHub at https:/​/​github.​com/​leszko/
calculator/​blob/​master/​Jenkinsfile.

Summary
In this chapter, we have completed the Continuous Delivery pipeline and now we can
finally release the application. The following are the key takeaways from the chapter:

For the purpose of Continuous Delivery, two environments are indispensable:
staging and production.
Nonfunctional tests are an essential part of the Continuous Delivery process and
should always be considered as pipeline stages.
Nonfunctional tests that don't fit the Continuous Delivery process should be
used as periodic tasks in order to monitor the overall performance trends.
Applications should always be versioned; however, the versioning strategy
depends on the type of the application.
A minimal Continuous Delivery pipeline can be implemented as a sequence of
scripts that ends with two stages: release and smoke test.
The smoke test should always be added as the last stage of the Continuous
Delivery pipeline in order to check whether the release was successful.

https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile
https://github.com/leszko/calculator/blob/master/Jenkinsfile

Continuous Delivery Pipeline Chapter 8

[259]

In the next chapter, we will have a look at some of the advanced aspects of the Continuous
Delivery pipeline.

Exercises
In this chapter, we have covered a lot of new aspects for the Continuous Delivery pipeline;
to better understand the concept, we recommend you complete the following exercises:

Add a performance test, which tests the hello world service:1.
The hello world service can be taken from the previous chapter1.
Create a performance-test.sh script that makes 100 calls and2.
checks whether the average request-response time is less than 1 second
You can use Cucumber or the curl command for the script3.

Create a Jenkins pipeline that builds the hello world web service as a2.
versioned Docker image and performs performance test:

Create a Docker build (and Docker push) stage that builds the1.
Docker image with the hello world service and adds a timestamp as
a version tag
Use the Kubernetes deployment from the previous chapters to deploy2.
the application
Add the Deploy to staging stage that deploys the image into the3.
remote machine
Add the Performance testing stage that executes performance-4.
test.sh

Run the pipeline and observe the results5.

Continuous Delivery Pipeline Chapter 8

[260]

Questions
To verify the knowledge from this chapter, please answer the following questions:

Name at least three types of different software environments.1.
What is the difference between staging and QA environments?2.
Name at least five types of nonfunctional tests.3.
Should all nonfunctional tests be part of the Continuous Delivery pipeline?4.
Name at least two types of application versioning strategies.5.
What is a smoke test?6.

Further reading
To read more about the Continuous Delivery pipeline, please refer to the following
resources:

Sameer Paradkar: Mastering Non-Functional Requirements: https:/​/​www.
packtpub.​com/​application-​development/​mastering-​non-​functional-
requirements.​

Sander Rossel: Continuous Integration, Delivery, and Deployment: https:/​/
www.​packtpub.​com/​application-​development/​continuous-​integration-
delivery-​and-​deployment.

https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/mastering-non-functional-requirements
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment
https://www.packtpub.com/application-development/continuous-integration-delivery-and-deployment

9
Advanced Continuous Delivery

Throughout all previous chapters, we came from zero to the complete Continuous Delivery
pipeline. Now it's time to present a mixture of different aspects that are also very important
in the Continuous Delivery process, but which haven't been described yet.

This chapter covers the following points:

Managing database changes
Pipeline patterns
Release patterns
Working with legacy systems

Technical requirements
To follow along with the instructions in this chapter, you'll need the following
requirements:

Java 8
Jenkins instance

All the examples and solutions to the exercises can be found on GitHub at https:/​/​github.
com/​PacktPublishing/​Continuous-​Delivery-​with-​Docker-​and-​Jenkins-​Second-​Edition/
tree/​master/​Chapter09.

https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09
https://github.com/PacktPublishing/Continuous-Delivery-with-Docker-and-Jenkins-Second-Edition/tree/master/Chapter09

Advanced Continuous Delivery Chapter 9

[262]

Managing database changes
So far, we have focused on a Continuous Delivery process that was applied to a web
service. A simple factor in this was that web services are inherently stateless. This fact
means that they can easily be updated, restarted, cloned in many instances, and recreated
from the given source code. A web service, however, is usually linked to its stateful part: a
database that poses new challenges to the delivery process. These challenges can be
grouped into the following categories:

Compatibility: The database schema, and the data itself, must be compatible
with the web service all the time
Zero-downtime deployment: In order to achieve zero-downtime deployment,
we use rolling updates, which means that a database must be compatible with
two different web service versions at the same time
Rollback: A rollback of a database can be difficult, limited, or sometimes even
impossible, because not all operations are reversible (for example, removing a
column that contains data)
Test data: Database-related changes are difficult to test, because we need test
data that is very similar to production

In this section, I will explain how to address these challenges so that the Continuous
Delivery process will be as safe as possible.

Understanding schema updates
If you think about the delivery process, it's not really the data itself that causes difficulties,
because we don't usually change the data when we deploy an application. The data is
something that is collected while the system is live in the production; whereas, during
deployment, we only change the way we store and interpret this data. In other words, in
the context of the Continuous Delivery process, we are interested in the structure of the
database, not exactly in its content. This is why this section concerns mainly relational
databases (and their schemas), and focuses less on other types of storage such as NoSQL
databases, where there is no structure definition.

To better understand this think of Hazelcast, which we have already used in this book. It
stored the cached data, so effectively, it was a database. Nevertheless, it required zero effort
from the Continuous Delivery perspective, since it didn't have any data structure. All it
stored were the key-value entries, which does not evolve over time.

Advanced Continuous Delivery Chapter 9

[263]

NoSQL databases usually don't have any restricting schema, and
therefore, they simplify the Continuous Delivery process, because there is
no additional schema update step required. This is a huge benefit;
however, it doesn't necessarily mean that writing applications with
NoSQL databases is simpler, because we have to put more effort into data
validation in the source code.

Relational databases have static schemas. If we would like to change it (for example, to add
a new column to the table), we need to write and execute an SQL data definition language
(DDL) script. Doing this manually for every change requires a lot of work and leads to
error-prone solutions, in which the operations team has to keep in sync the code and the
database structure. A much better solution is to automatically update the schema in an
incremental manner. Such a solution is called database migration.

Introducing database migrations
Database schema migration is a process of incremental changes to the relational database
structure. Let's take a look at the following diagram to understand it better:

The database in the version v1 has the schema defined by the V1_init.sql file. Additionally,
it stores the metadata related to the migration process, for example, its current schema
version and the migration changelog. When we want to update the schema, we provide the
changes in the form of an SQL file, such as V2_add_table.sql. Then, we need to run the
migration tool that executes the given SQL file on the database (it also updates the
metatables). In effect, the database schema is a result of all subsequently executed SQL
migration scripts. Next, we will see an example of migration.

Advanced Continuous Delivery Chapter 9

[264]

Migration scripts should be stored in the version control system, usually
in the same repository as the source code.

Migration tools and the strategies they use can be divided into two categories:

Upgrade and downgrade: This approach, for example, used by the Ruby on Rails
framework, means that we can migrate up (from v1 to v2) and down (from v2 to
v1). It allows the database schema to roll back, which may sometimes end in data
loss (if the migration is logically irreversible).
Upgrade only: This approach, for example, used by the Flyway tool, only allows
us to migrate up (from v1 to v2). In many cases, the database updates are not
reversible; for example, when removing a table from the database. Such a change
cannot be rolled back, because even if we recreate the table, we have already lost
all the data.

There are many database migration tools available on the market, the most popular of
which are Flyway, Liquibase, and Rail Migrations (from the Ruby on Rails framework).
As a next step to understanding how such tools work, we will see an example based on the
Flyway tool.

There are also commercial solutions provided for the particular databases;
for example, Redgate (for SQL Server) and Optim Database Administrator
(for DB2).

Using Flyway
Let's use Flyway to create a database schema for the calculator web service. The database
will store the history of all operations that were executed on the service: the first parameter,
the second parameter, and the result.

We show how to use the SQL database and Flyway in three steps:

Configuring the Flyway tool to work with Gradle.1.
Defining the SQL migration script to create the calculation history table.2.
Using the SQL database inside the Spring Boot application code.3.

Advanced Continuous Delivery Chapter 9

[265]

Configuring Flyway
In order to use Flyway with Gradle, we need to add the following content to the
build.gradle file:

buildscript {
 dependencies {
 classpath('com.h2database:h2:1.4.199')
 }
}
…
plugins {
 id "org.flywaydb.flyway" version "4.2.0"
}
…
flyway {
 url = 'jdbc:h2:file:/tmp/calculator'
 user = 'sa'
}

Here are some quick comments on the configuration:

We used the H2 database, which is an in-memory (and file-based) database
We store the database in the /tmp/calculator file
The default database user is called sa (system administrator)

In the case of other SQL databases (for example, MySQL), the
configuration would be very similar. The only difference is in the Gradle
dependencies and the JDBC connection.

After this configuration is applied, we should be able to run the Flyway tool by executing
the following command:

$./gradlew flywayMigrate -i

The command created the database in the file /tmp/calculator.mv.db. Obviously, it has
no schema, since we haven't defined anything yet.

Flyway can be used as a command-line tool, via Java API, or as a plugin
for the popular building tools Gradle, Maven, and Ant.

Advanced Continuous Delivery Chapter 9

[266]

Defining the SQL migration script
The next step is to define the SQL file that adds the calculation table to the database
schema. Let's create the
src/main/resources/db/migration/V1__Create_calculation_table.sql file,
with the following content:

create table CALCULATION (
 ID int not null auto_increment,
 A varchar(100),
 B varchar(100),
 RESULT varchar(100),
 primary key (ID)
);

Note the migration file naming convention, <version>__<change_description>.sql.
The SQL file creates a table with four columns, ID, A, B, RESULT. The ID column is an
automatically incremented primary key of the table. Now, we are ready to run the flyway
command to apply the migration:

$./gradlew flywayMigrate -i
…
Successfully applied 1 migration to schema "PUBLIC" (execution time
00:00.028s).
:flywayMigrate (Thread[Daemon worker Thread 2,5,main]) completed. Took
1.114 secs.

The command automatically detected the migration file and executed it on the database.

The migration files should be always kept in the version control system,
usually with the source code.

Accessing database
We have executed our first migration, so the database is prepared. To see the complete
example, we should also adapt our project so that it would access the database.

Let's first configure the Gradle dependencies to use the h2database from the Spring Boot
project. We can do this by adding the following lines to the build.gradle file:

dependencies {
 implementation 'org.springframework.boot:spring-boot-starter-data-jpa'
 implementation 'com.h2database:h2'
}

Advanced Continuous Delivery Chapter 9

[267]

The next step is to set up the database location and the start up behavior in the
src/main/resources/application.properties file:

spring.datasource.url=jdbc:h2:file:/tmp/calculator;DB_CLOSE_ON_EXIT=FALSE
spring.jpa.hibernate.ddl-auto=validate

The second line means that Spring Boot will not try to automatically generate the database
schema from the source code model. On the contrary, it will only validate if the database
schema is consistent with the Java model.

Now, let's create the Java ORM entity model for the calculation in the new
src/main/java/com/leszko/calculator/Calculation.java file:

package com.leszko.calculator;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Calculation {
 @Id
 @GeneratedValue(strategy= GenerationType.IDENTITY)
 private Integer id;
 private String a;
 private String b;
 private String result;

 protected Calculation() {}

 public Calculation(String a, String b, String result) {
 this.a = a;
 this.b = b;
 this.result = result;
 }
}

The Entity class represents the database mapping in the Java code. A table is expressed as
a class, with each column as a field. The next step is to create the repository for loading and
storing the Calculation entities.

Let's create the
src/main/java/com/leszko/calculator/CalculationRepository.java file:

package com.leszko.calculator;
import org.springframework.data.repository.CrudRepository;

Advanced Continuous Delivery Chapter 9

[268]

public interface CalculationRepository extends CrudRepository<Calculation,
Integer> {}

Finally, we can use the Calculation and CalculationRepository classes to store the
calculation history. Let's add the following code to the
src/main/java/com/leszko/calculator/CalculatorController.java file:

...
class CalculatorController {
 ...

 @Autowired
 private CalculationRepository calculationRepository;

 @RequestMapping("/sum")
 String sum(@RequestParam("a") Integer a, @RequestParam("b") Integer b) {
 String result = String.valueOf(calculator.sum(a, b));
 calculationRepository.save(new Calculation(a.toString(),
b.toString(), result));
 return result;
 }
}

Now, when we start the service and execute the /sum endpoint, each summing operation is
logged into the database.

If you would like to browse the database content, you can add
spring.h2.console.enabled=true to the application.properties
file, and then browse the database via the /h2-console endpoint.

We explained how the database schema migration works and how to use it inside a Spring
project built with Gradle. Now, let's take a look at how it integrates within the Continuous
Delivery process.

Changing database in Continuous Delivery
The first approach to use database updates inside the Continuous Delivery pipeline would
be to add a stage within the migration command execution. This simple solution would
work correctly for many cases; however, it has two significant drawbacks:

Rollback: As mentioned before, it's not always possible to roll back the database
change (Flyway doesn't support downgrades at all). Therefore, in the case of
service rollback, the database becomes incompatible.

Advanced Continuous Delivery Chapter 9

[269]

Downtime: The service update and the database update are not executed exactly
at the same time, which causes downtime.

This leads us to two constraints that we will need to address:

The database version needs to be compatible with the service version all the time
The database schema migration is not reversible

We will address these constraints for two different cases—backwards-compatible updates
and non-backwards-compatible updates.

Backwards-compatible changes
Backwards-compatible changes are simpler. Let's look at the following figure to see how
they work:

Suppose that the schema migration Database v10 is backwards-compatible. If we need to
roll back the Service v1.2.8 release, then we deploy Service v1.2.7, and there is no need to
do anything with the database (database migrations are not reversible, so we keep Database
v11). Since the schema update is backwards-compatible, Service v.1.2.7 works perfectly fine
with Database v11. The same applies if we need to roll back to Service v1.2.6, and so on.
Now, suppose that Database v10 and all other migrations are backwards-compatible, then
we could roll back to any service version, and everything would work correctly.

There is also no problem with the downtime. If the database migration is zero-downtime
itself, then we can execute it first, and then use the rolling updates for the service.

Advanced Continuous Delivery Chapter 9

[270]

Let's look at an example of a backwards-compatible change. We will create a schema
update that adds a created_at column to the calculation table. The migration file
src/main/resources/db/migration/V2__Add_created_at_column.sql looks as
follows:

alter table CALCULATION
add CREATED_AT timestamp;

Aside from the migration script, the calculator service requires a new field in the
Calculation class:

...
private Timestamp createdAt;
...

We also need to adjust its constructor, and then its usage in the CalculatorController
class:

calculationRepository.save(new Calculation(a.toString(), b.toString(),
result, Timestamp.from(Instant.now())));

After running the service, the calculation history is stored with the created_at column.
Note that the change is backwards-compatible, because even if we reverted the Java code
and left the created_at column in the database, everything would work perfectly fine (the
reverted code does not address the new column at all).

Non-backwards-compatible changes
Non-backwards-compatible changes are way more difficult. Looking at the previous
diagram, if the database change v11 was backwards-incompatible, it would be impossible
to roll back service back to 1.2.7. In this case, how can we approach non-backwards-compatible
database migrations so that rollbacks and zero-downtime deployments would be possible?

To make a long story short, we can address this issue by converting a non-backwards-
compatible change into a change that is backwards-compatible for a certain period of time.
In other words, we need to put in the extra effort and split the schema migration into two
parts:

Backwards-compatible update executed now, which usually means keeping
some redundant data
Non-backwards-compatible update executed after the rollback period time that
defines how far back we can revert our code

Advanced Continuous Delivery Chapter 9

[271]

To better illustrate this, let's look at the following diagram:

Let's consider an example of dropping a column. A proposed method would include two
steps:

Stop using the column in the source code (v1.2.5, backwards-compatible update,1.
executed first).
Drop the column from the database (v11, non-backwards-compatible update,2.
executed after the rollback period).

All service versions until Database v11 can be rolled back to any previous version, the
services starting from Service v1.2.8 can only be rolled back within the rollback period.
Such approach may sound trivial, because all we did was delay the column removal from
the database. However, it addresses both the rollback issue and the zero-downtime
deployment issue. As a result, it reduces the risk associated with the release. If we adjust
the rollback period to a reasonable amount of time; (for example, in the case of multiple
releases per day to two weeks), then the risk is negligible. We don't usually roll many
versions back.

Dropping a column was a very simple example. Let's take a look at a more difficult scenario
and rename the result column in our calculator service. We present how to do this in a few
steps:

Adding a new column to the database.1.
Changing the code to use both columns.2.

Advanced Continuous Delivery Chapter 9

[272]

Merging the data in both columns.3.
Removing the old column from the code.4.
Dropping the old column from the database.5.

Adding a new column to the database
Let's suppose that we need to rename the result column to sum. The first step is to add a
new column that will be a duplicate. We must create a
src/main/resources/db/migration/V3__Add_sum_column.sql migration file:

alter table CALCULATION
add SUM varchar(100);

As a result, after executing the migration, we will have two columns: result and sum.

Changing the code to use both columns
The next step is to rename the column in the source code model and to use both database
columns for the set and get operations. We can change it in the Calculation class:

public class Calculation {
 ...
 private String sum;
 ...
 public Calculation(String a, String b, String sum, Timestamp createdAt)
{
 this.a = a;
 this.b = b;
 this.sum = sum;
 this.result = sum;
 this.createdAt = createdAt;
 }

 public String getSum() {
 return sum != null ? sum : result;
 }
}

To be 100% accurate, in the getSum() method, we should compare
something like the last modification column date. (it's not exactly
necessary to always take the new column first.)

Advanced Continuous Delivery Chapter 9

[273]

From now on, every time we add a row into the database, the same value is written to both
the result and sum columns. While reading sum, we first check whether it exists in the
new column, and if not, we read it from the old column.

The same result can be achieved with the use of database triggers that
would automatically write the same values into both columns.

All the changes that we made so far were backwards-compatible, so we can roll back the
service anytime we want, to any version we want.

Merging the data in both columns
This step is usually done after some time, when the release is stable. We need to copy the
data from the old result column into the new sum column. Let's create a migration file
called V4__Copy_result_into_sum_column.sql:

update CALCULATION
set CALCULATION.sum = CALCULATION.result
where CALCULATION.sum is null;

We still have no limits for the rollback; however, if we need to deploy the version before the
change in step 2, then this database migration needs to be repeated.

Removing the old column from the code
At this point, we already have all data in the new column, so we can start to use it without
the old column in the data model. In order to do this, we need to remove all code related to
result in the Calculation class so that it would look as follows:

public class Calculation {
 ...
 private String sum;
 ...
 public Calculation(String a, String b, String sum, Timestamp createdAt)
{
 this.a = a;
 this.b = b;
 this.sum = sum;
 this.createdAt = createdAt;
 }

 public String getSum() {
 return sum;

Advanced Continuous Delivery Chapter 9

[274]

 }
}

After this operation, we will no longer use the result column in the code. Note that this
operation is only backwards-compatible up to step 2. If we need to rollback to step 1, then
we could lose the data stored after this step.

Dropping the old column from the database
The last step is to drop the old column from the database. This migration should be
performed after the rollback period, when we are sure we won't need to roll back before
step 4.

The rollback period can be very long, since we aren't using the column
from the database anymore. This task can be treated as a cleanup task, so
even though it's non-backwards-compatible, there is no associated risk.

Let's add the final migration, V5__Drop_result_column.sql:

alter table CALCULATION
drop column RESULT;

After this step, we will have finally completed the column renaming procedure. Note that
all we did complicated the operation a little bit, in order to stretch it in time. This reduced
the risk of backwards-incompatible database changes and allowed for zero-downtime
deployments.

Separating database updates from code changes
So far, in all figures, we presented that database migrations are run with service releases. In
other words, each commit (which implies each release) took both database changes and
code changes. However, the recommended approach is to make a clear separation that a
commit to the repository is either a database update or a code change. This method is
presented in the following image:

Advanced Continuous Delivery Chapter 9

[275]

The benefit of database-service change separation is that we get the backwards-
compatibility check for free. Imagine that the changes v11 and v1.2.7 concern one logical
change, for example, adding a new column to the database. Then, we first commit
Database v11, so the tests in the Continuous Delivery pipeline check if Database v11 works
correctly with Service v.1.2.6. In other words, they check if database update v11 is
backwards-compatible. Then, we commit the v1.2.7 change, so the pipeline checks whether
Database v11 works with Service v1.2.7.

The database-code separation does not mean that we must have two
separate Jenkins pipelines. The pipeline can always execute both, but we
should keep it as a good practice that a commit is either a database update
or a code change.

To sum up, the database schema changes should be never done manually. Instead, we
should always automate them using a migration tool, executed as a part of the Continuous
Delivery pipeline. We should also avoid non-backwards-compatible database updates and
the best way to assure this is to commit separately the database and code changes into the
repository.

Avoiding shared database
In many systems, we can spot that the database becomes the central point that is shared
between multiple services. In such a case, any update to the database becomes much more
challenging, because we need to coordinate it between all services.

Advanced Continuous Delivery Chapter 9

[276]

For example, imagine we are developing an online shop, and we have a Customers table
that contains the following columns: first name, last name, username, password, email, and
discount. There are three services that are interested in the customer's data:

Profile manager: This enables editing user's data
Checkout processor: This processes the checkout (reads username and email)
Discount manager: This analyzes the customer's orders and applies the suitable
discount

Let's look at the following image that presents this situation:

They are dependent on the same database schema. There are at least two issues with such
an approach:

When we want to update the schema, it must be compatible with all three
services. While all backwards-compatible changes are fine, any non-backwards-
compatible update becomes way more difficult or even impossible.
Each service has a separate delivery cycle and a separate Continuous Delivery
pipeline. Then, which pipeline should we use for the database schema migrations?
Unfortunately, there is no good answer to this question.

For the reasons mentioned previously, each service should have its own database and the
services should communicate via their APIs. Following our example, we could apply the
following refactoring:

The checkout processor should communicate with the profile manager's API to
fetch the customer's data
The discount column should be extracted to a separate database (or schema), and
the discount manager should take the ownership

Advanced Continuous Delivery Chapter 9

[277]

The refactored version is presented in the following image:

Such an approach is consistent with the principles of the microservice architecture and
should always be applied. The communication over APIs is way more flexible than the
direct database access.

In the case of monolithic systems, a database is usually the integration
point. Since such an approach causes a lot of issues, it's considered as an
anti-pattern.

Preparing test data
We have already presented database migrations that keep the database schema consistent
between the environments as a side effect. This is due to the fact that if we run the same
migration scripts on the development machine, in the staging environment, or in the
production, then we would always get the result in the same schema. However, the data
values inside the tables differ. How can we prepare the test data so that it would effectively
test our system? This will be the focus of the next section.

The answer to this question depends on the type of test, and it is different for unit testing,
integration/acceptance testing, and performance testing. Let's examine each case.

Advanced Continuous Delivery Chapter 9

[278]

Unit testing
In the case of unit testing, we don't use the real database. We either mock the test data on
the level of the persistence mechanism (repositories and data access objects) or we fake the
real database with an in-memory database (for example, H2 database). Since unit tests are
created by developers, the exact data values are usually invented by developers and they
don't matter much.

Integration/acceptance testing
Integration and acceptance tests usually use the test/staging database, which should be as
similar to the production as possible. One approach, adapted by many companies, is to
snapshot the production data into staging that guarantees that it is exactly the same. This
approach, however, is treated as an anti-pattern, for the following reasons:

Test isolation: Each test operates on the same database, so the result of one test
may influence the input of the others
Data security: Production instances usually store sensitive information, and are
therefore better secured
Reproducibility: After every snapshot, the test data is different, which may
result in flaky tests

For the preceding reasons, the preferred approach is to manually prepare the test data by
selecting a subset of the production data with the customer or the business analyst. When
the production database grows, it's worth revisiting its content to see if there are any
reasonable cases that should be added.

The best way to add data to the staging database is to use the public API of a service. This
approach is consistent with acceptance tests, which are usually black-box. Furthermore,
using the API guarantees that the data itself is consistent and simplifies database
refactoring by limiting direct database operations.

Performance testing
The test data for the performance testing is usually similar to acceptance testing. One
significant difference is the amount of data. In order to test the performance correctly, we
need to provide sufficient volume of input data, at least as large as available on the
production (during the peak time). For this purpose, we can create data generators, which
are usually shared between acceptance and performance tests.

Advanced Continuous Delivery Chapter 9

[279]

We have covered a lot about databases in the Continuous Delivery process. Now, let's
move to something completely different. Let's move to the topic of improving our Jenkins
pipeline using well-known pipeline patterns.

Pipeline patterns
We already know everything that's necessary to start a project and set up the Continuous
Delivery pipeline with Jenkins, Docker, Kubernetes, and Ansible. This section is intended to
extend this knowledge with a few of the recommended Jenkins pipeline practices.

Parallelizing pipelines
Throughout this book, we have always executed the pipeline sequentially, stage by stage,
step by step. This approach makes it easy to reason the state and the result of the build. If
there is first the acceptance test stage and then the release stage, it means that the release
won't ever happen until the acceptance tests are successful. Sequential pipelines are simple
to understand and usually do not cause any surprises. That's why the first method to solve
any problem is to do it sequentially.

However, in some cases, the stages are time-consuming and it's worth to run them in
parallel. A very good example is performance tests. They usually take a lot of time, so,
assuming that they are independent and isolated, it makes sense to run them in parallel. In
Jenkins, we can parallelize the pipeline on two different levels:

Parallel steps: Within one stage, parallel processes run on the same agent. This
method is simple, because all Jenkins workspace-related files are located on one
physical machine, however, as always, with the vertical scaling, the resources are
limited to that single machine.
Parallel stages: Each stage can be run in parallel, on a separate agent machine
that provides horizontal scaling of resources. We need to take care of the file
transfer between the environments (using the stash Jenkinsfile keyword) if a file
created in the previous stage is needed on the other physical machine.

Advanced Continuous Delivery Chapter 9

[280]

Let's see how this looks in practice. If we would like to run two steps in parallel, the
Jenkinsfile script should look as follows:

pipeline {
 agent any
 stages {
 stage('Stage 1') {
 steps {
 parallel (
 one: { echo "parallel step 1" },
 two: { echo "parallel step 2" }
)
 }
 }
 stage('Stage 2') {
 steps {
 echo "run after both parallel steps are completed"
 }
 }
 }
}

In Stage 1, with the use of the parallel keyword, we execute two parallel steps, one and
two. Note that Stage 2 is only executed after both parallel steps are completed. That's why
such solutions are perfectly safe to run tests in parallel; we can always be sure that the
deployment stage only runs after all parallelized tests have already passed.

There is a very useful plugin called Parallel Test Executor that helps
to automatically split tests and run them in parallel. Read more at https:/
/​jenkins.​io/​doc/​pipeline/​steps/​parallel-​test-​executor/​.

The preceding description concerned the parallel steps level. The other solution would be
to use parallel stages, and therefore, run each stage on a separate agent machine. The
decision on which type of parallelism to use usually depends on two factors:

How powerful the agent machines are
How much time the given stage takes

As a general recommendation, unit tests are fine to run in parallel steps, but performance
tests are usually better off on separate machines.

https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/
https://jenkins.io/doc/pipeline/steps/parallel-test-executor/

Advanced Continuous Delivery Chapter 9

[281]

Reusing pipeline components
When the Jenkinsfile script grows in size and becomes more complex, we may want to
reuse its parts between similar pipelines.

For example, we may want to have separate, (but similar) pipelines for different
environments (dev, QA, prod). Another common example in the microservice world is that
each service has a very similar Jenkinsfile. Then, how do we write Jenkinsfile scripts
so that we don't repeat the same code all over again? There are two good patterns for this
purpose, parameterized builds and shared libraries. Let's go over them one by one.

Build parameters
We already mentioned in Chapter 4, Continuous Integration Pipeline, that a pipeline can
have input parameters. We can use them to provide different use cases with the same
pipeline code. As an example, let's create a pipeline parameterized with the environment
type:

pipeline {
 agent any

 parameters {
 string(name: 'Environment', defaultValue: 'dev', description: 'Which
 environment (dev, qa, prod)?')
 }

 stages {
 stage('Environment check') {
 steps {
 echo "Current environment: ${params.Environment}"
 }
 }
 }
}

The build takes one input parameter, Environment. Then, all we do in this step is print the
parameter. We can also add a condition to execute different code for different
environments.

Advanced Continuous Delivery Chapter 9

[282]

With this configuration, when we start the build, we will see a prompt for the input
parameter, as follows:

Parameterized build can help us reuse the pipeline code for scenarios which differ just a
little bit. However, this feature should not be overused, because too many conditions can
make the Jenkinsfile difficult to understand.

Shared libraries
The other solution to reuse the pipeline is to extract its parts into a shared library.

A shared library is a Groovy code that is stored as a separate, source-controlled project.
This code can later be used in many Jenkinsfile scripts as pipeline steps. To make it
clear, let's take a look at an example. A shared library technique always requires three
steps:

Create a shared library project1.
Configure the shared library in Jenkins2.
Use the shared library in Jenkinsfile3.

Creating a shared library project
We start by creating a new Git project, in which we put the shared library code. Each
Jenkins step is expressed as a Groovy file located in the vars directory.

Let's create a sayHello step that takes the name parameter and echoes a simple message.
This should be stored in the vars/sayHello.groovy file:

/**
* Hello world step.
*/
def call(String name) {

Advanced Continuous Delivery Chapter 9

[283]

 echo "Hello $name!"
}

Human-readable descriptions for shared library steps can be stored in the
*.txt files. In our example, we could add the vars/sayHello.txt file
with the step documentation.

When the library code is done, we need to push it to the repository; for example, as a new
GitHub project.

Configure the shared library in Jenkins
The next step is to register the shared library in Jenkins. We open Manage Jenkins |
Configure System, and find the Global Pipeline Libraries section. There, we can add the
library giving it a name chosen, as follows:

Advanced Continuous Delivery Chapter 9

[284]

We specified the name under which the library is registered and the library repository
address. Note that the latest version of the library will automatically be downloaded during
the pipeline build.

We presented importing the Groovy code as Global Shared Library, but
there are also other solutions. Read more at https:/​/​jenkins.​io/​doc/
book/​pipeline/​shared-​libraries/​.

Using the shared library in Jenkinsfile
Finally, we can use the shared library in Jenkinsfile.

pipeline {
 agent any
 stages {
 stage("Hello stage") {
 steps {
 sayHello 'Rafal'
 }
 }
 }
}

If Load implicitly hadn't been checked in the Jenkins configuration, then
we would need to add @Library('example') _ at the beginning of the
Jenkinsfile script.

As you can see, we can use the Groovy code as a pipeline step sayHello. Obviously, after
the pipeline build completes, in the console output, we should see Hello Rafal!.

Shared libraries are not limited to one step. Actually, with the power of
the Groovy language, they can even act as templates for entire Jenkins
pipelines.

https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/
https://jenkins.io/doc/book/pipeline/shared-libraries/

Advanced Continuous Delivery Chapter 9

[285]

Rolling back deployments
I remember the words of my colleague, a senior architect—You don't need more QAs, you
need a faster rollback. While this statement is oversimplified and the QA team is often of
great value, there is a lot of truth in this sentence. Think about it; if you introduce a bug in
the production but roll it back soon after the first user reports an error, then usually,
nothing bad happens. On the other hand, if production errors are rare but no rollback is
applied, then the process to debug the production usually ends in long, sleepless nights and
a number of dissatisfied users. That's why we need to think about the rollback strategy
upfront while creating the Jenkins pipeline.

In the context of Continuous Delivery, there are two moments when the failure can happen:

During the release process, in the pipeline execution
After the pipeline build is completed, in production

The first scenario is pretty simple and harmless. It concerns a case when the application is
already deployed to production, but the next stage fails; for example, the smoke test. Then,
all we need to do is execute a script in the post pipeline section for the failure case,
which downgrades the production service to the older Docker image version. If we use
blue-green deployment (as we will describe later in this chapter), the risk of any downtime
is minimal, since we usually execute the load-balancer switch as the last pipeline stage,
after the smoke test.

The second scenario, in which we notice a production bug after the pipeline is successfully
completed, is more difficult, and requires a few words of comment. Here, the rule is that we
should always release the rolled back service using exactly the same process as the
standard release. Otherwise, if we try to do something manually and in a faster way, we are
asking for trouble. Any nonrepetitive task is risky, especially under stress, when the
production is out of order.

As a side note, if the pipeline completes successfully but there is a
production bug, then it means that our tests are not good enough. So, the
first thing after the rollback is to extend the unit/acceptance test suites
with the corresponding scenarios.

The most common Continuous Delivery process is one fully automated pipeline that starts
by checking out the code, and ends with release to the production.

Advanced Continuous Delivery Chapter 9

[286]

The following diagram presents how this works:

We already presented the classic Continuous Delivery pipeline throughout this book. If the
rollback should use exactly the same process, then all we need to do is revert the latest code
change from the repository. As a result, the pipeline automatically builds, tests, and finally,
releases the right version.

Repository reverts and emergency fixes should never skip the testing
stages in the pipeline. Otherwise, we may end up with a release that is still
not working correctly, due to another issue that makes debugging even
harder.

The solution is very simple and elegant. The only drawback is the downtime that we need
to spend on the complete pipeline build. This downtime can be avoided if we use blue-
green deployment or canary releases, in which cases, we only change the load balancer
setting to address the healthy environment.

The rollback operation becomes way more complex in the case of orchestrated releases,
during which many services are deployed at the same time. This is one of the reasons why
orchestrated releases are treated as an anti-pattern, especially in the microservice world.
The correct approach is to always maintain backwards compatibility, at least for some time
(like we presented for the database at the beginning of this chapter). Then, it's possible to
release each service independently.

Adding manual steps
In general, the Continuous Delivery pipelines should be fully automated, triggered by a
commit to the repository, and end after the release. Sometimes, however, we can't avoid
having manual steps. The most common example is the release approval, which means that
the process is fully automated, but there is a manual step to approve the new release.
Another common example is manual tests. Some of them may exist because we operate on
a legacy system; some others may occur when a test simply cannot be automated. No
matter what the reason is, sometimes, there is no choice but to add a manual step.

Advanced Continuous Delivery Chapter 9

[287]

Jenkins syntax offers a keyword input for manual steps:

stage("Release approval") {
 steps {
 input "Do you approve the release?"
 }
}

The pipeline will stop execution on the input step and wait until it's manually approved.

Remember that manual steps quickly become a bottleneck in the delivery process, and this
is why they should always be treated as a solution that's inferior to the complete
automation.

It is sometimes useful to set a timeout for the input, in order to avoid
waiting forever for the manual interaction. After the configured time is
elapsed, the whole pipeline is aborted.

Release patterns
In the last section, we discussed the Jenkins pipeline patterns used to speed up the build
execution (parallel steps), help with the code reuse (shared libraries), limit the risk of
production bugs (rollback), and deal with manual approvals (manual steps). This section
will present the next group of patterns, this time, related to the release process. They are
designed to reduce the risk of updating the production to a new software version.

We already described one of the release patterns, rolling updates, in Chapter 6, Clustering
with Kubernetes. Here, we will present two more: blue-green deployment and canary
releases.

A very convenient way to use the release patterns in Kubernetes is to use
the Istio service mesh. Read more at: https:/​/​istio.​io/​.

https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/
https://istio.io/

Advanced Continuous Delivery Chapter 9

[288]

Blue-green deployment
Blue-green deployment is a technique to reduce the downtime associated with the release.
It concerns having two identical production environments—one called green, the other
called blue—as presented in the following diagram:

In the figure, the currently accessible environment is blue. If we want to make a new
release, then we deploy everything to the green environment, and, at the end of the release
process, change the load balancer to the green environment. As a result, a user all of a
sudden starts using the new version. The next time we want to make a release, we make
changes to the blue environment, and, at the end, we change the load balancer to blue. We
proceed the same every time, switching from one environment to another.

The blue-green deployment technique works correctly with two
assumptions: environmental isolation and no orchestrated releases.

This solution provides the following benefits:

Zero downtime: All the downtime, from the user perspective, is a moment of
changing the load balance switch, which is negligible
Rollback: In order to roll back one version, it's enough to change back the load
balance switch

Advanced Continuous Delivery Chapter 9

[289]

Note that the blue-green deployment must include:

Database: Schema migrations can be tricky in case of a rollback, so it's worth
using the patterns presented at the beginning of this chapter
Transactions: Running database transactions must be handed over to the new
database
Redundant infrastructure/resources: We need to have double the resources

There are techniques and tools to overcome these challenges, so the blue-green deployment
pattern is highly recommended and is widely used in the IT industry.

You can read more about the blue-green deployment technique on the
excellent blog from Martin Fowler, at https:/​/​martinfowler.​com/​bliki/
BlueGreenDeployment.​html.

Canary release
Canary releasing is a technique to reduce the risk associated with introducing a new
version of the software. Similar to blue-green deployment, it uses two identical
environments, as presented in the following diagram:

https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

Advanced Continuous Delivery Chapter 9

[290]

Also, similar to the blue-green deployment technique, the release process starts by
deploying a new version in the environment that is currently unused. Here, however, the
similarities end. The load balancer, instead of switching to the new environment, is set to
link only a selected group of users to the new environment. All the rest still use the old
version. This way, a new version can be tested by some users, and in case of a bug, only a
small group will be affected. After the testing period, all users are switched to the new
version.

This approach has some great benefits:

Acceptance and performance testing: If the acceptance and performance testing
are difficult to run in the staging environment, then it's possible to test it in
production, minimizing the impact on a small group of users.
Simple rollback: If a new change causes a failure, then rolling back is done by
switching all users back to the old version.
A/B testing: If we are not sure whether the new version is better from the UX or
the performance perspective, then it's possible to compare it with the old version.

Canary releasing shares the same drawbacks as the blue-green deployment. The additional
challenge is that we have two production systems running at the same time. Nevertheless,
canary releasing is an excellent technique used in most companies to help with the
releasing and testing.

You can read more about the canary releasing technique on Martin
Fowler's excellent blog, at https:/​/​martinfowler.​com/​bliki/
CanaryRelease.​html.

Working with legacy systems
All we have described so far applies to greenfield projects, for which setting up a
Continuous Delivery pipeline is relatively simple.

Legacy systems are, however, way more challenging, because they usually depend on
manual tests and manual deployment steps. In this section, we will walk through the
recommended scenario to incrementally apply Continuous Delivery to a legacy system.

As step zero, I recommend reading an excellent book by Michael Feathers, Working
Effectively with Legacy Code. His ideas on how to deal with testing, refactoring, and adding
new features address most of the concerns about how to automate the delivery process for
legacy systems.

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

Advanced Continuous Delivery Chapter 9

[291]

For many developers, it may be tempting to completely rewrite a legacy
system, rather than refactor it. While the idea is interesting from a
developer's perspective, it is usually a bad business decision that results in
a product failure. You can read more about the history of rewriting the
Netscape browser in an excellent blog post by Joel Spolsky, Things You
Should Never Do, at https:/​/​www.​joelonsoftware.​com/​2000/​04/​06/
things-​you-​should-​never-​do-​part-​i.

The way to apply the Continuous Delivery process depends a lot on the current project's
automation, the technology used, the hardware infrastructure, and the current release
process. Usually, it can be split into three steps:

Automating build and deployment1.
Automating tests2.
Refactoring and introducing new features3.

Let's look at these in detail.

Automating build and deployment
The first step includes automating the deployment process. The good news is that in most
legacy systems that I have worked with, there was already some automation in place; for
example, in the form of shell scripts.

In any case, the activities for automated deployment includes the following:

Build and package: Some automation usually already exists, in the form of
Makefile, Ant, Maven, any other build tool configuration, or a custom script.
Database migration: We need to start managing the database schema in an
incremental manner. It requires putting the current schema as an initial
migration and making all the further changes with tools such as Flyway or
Liquibase, as already described in this chapter.
Deployment: Even if the deployment process is fully manual, then there is
usually a text/wiki page description that needs to be converted into an
automated script.
Repeatable configuration: In legacy systems, configuration files are usually
changed manually. We need to extract the configuration and use a configuration
management tool, as described in Chapter 7, Configuration Management with
Ansible.

https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i
https://www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i

Advanced Continuous Delivery Chapter 9

[292]

After the preceding steps, we can put everything into a deployment pipeline and use it as
an automated phase after a manual user acceptance testing (UAT) cycle.

From the process perspective, it's worth already starting releasing more often. For example,
if the release is yearly, try to do it quarterly, then monthly. The push for that factor will
later result in faster-automated delivery adoption.

Automating tests
The next step, usually much more difficult, is to prepare the automated tests for the system.
It requires communicating with the QA team in order to understand how they currently
test the software, so that we can move everything into an automated acceptance test suite.
This phase requires two steps:

Acceptance/sanity test suite: We need to add automated tests that replace some
of the regression activities of the QA team. Depending on the system, they can be
provided as a black-box Selenium test or a Cucumber test.
(Virtual) test environments: At this point, we should already be thinking of the
environments in which our tests would be run. Usually, the best solution to save
resources and limit the number of machines required is to virtualize the testing
environment using Vagrant or Docker.

The ultimate goal is to have an automated acceptance test suite that will replace the whole
UAT phase from the development cycle. Nevertheless, we can start with a sanity test that
will shortly check if the system is correct, from the regression perspective.

While adding test scenarios, remember that the test suite should execute
in a reasonable time. For sanity tests, it is usually less than 10 minutes.

Refactoring and introducing new features
When we have the fundamental regression testing suite (at a minimum), we are ready to
add new features and refactor the old code. It's always better to do it in small pieces, step
by step because refactoring everything at once usually ends up in a chaos that leads to
production failures (not clearly related to any particular change).

Advanced Continuous Delivery Chapter 9

[293]

This phase usually includes the following activities:

Refactoring: The best place to start refactoring the old code is where the new
features are expected. Starting this way, we will be prepared for the new feature
requests to come.
Rewrite: If we plan to rewrite parts of the old code, we should start from the
code that is the most difficult to test. This way, we can constantly increase the
code coverage in our project.
Introducing new features: During the new feature implementation, it's worth
using the feature toggle pattern. Then, if anything bad happens, we can quickly
turn off the new feature. Actually, the same pattern should be used during
refactoring.

For this phase, it's worth reading an excellent book by Martin Fowler,
Refactoring: Improving the Design of Existing Code.

While touching on the old code, it's good to follow the rule to always add a passing unit
test first, and only then change the code. With this approach, we can depend on automation
to check that we don't change the business logic by accident.

Understanding the human element
While introducing the automated delivery process to a legacy system, it's possible you will
feel, more than anywhere else, the human factor. In order to automate the build process, we
need to communicate well with the operations team, and they must be willing to share their
knowledge. The same story applies to the manual QA team; they need to be involved in
writing automated tests, because only they know how to test the software. If you think
about it, both the operations and QA teams need to contribute to the project that will later
automate their work. At some point, they may realize that their future in the company is
not stable and become less helpful. Many companies struggle with introducing the
Continuous Delivery process, because teams do not want to get involved enough.

In this section, we discussed how to approach legacy systems, and the challenges they pose.
If you are in the process of converting your project and organization to the Continuous
Delivery approach, then you may want to take a look at the Continuous Delivery Maturity
Model, which aims to give some structure to the process of adopting the automated
delivery.

Advanced Continuous Delivery Chapter 9

[294]

A good description of the Continuous Delivery Maturity Model can be
found at https:/​/​developer.​ibm.​com/​urbancode/​docs/​continuous-
delivery-​maturity-​model/​.

Summary
This chapter was a mixture of various Continuous Delivery aspects that were not covered
before. The key takeaways from the chapter are as follows:

Databases are an essential part of most applications, and should therefore be
included in the Continuous Delivery process.
Database schema changes are stored in the version control system and managed
by database migration tools.
There are two types of database schema changes: backwards-compatible and
backwards-incompatible. While the first type is simple, the second requires a bit
of overhead (split to multiple migrations spread over time).
A database should not be the central point of the whole system. The preferred
solution is to provide each service with its own database.
The delivery process should always be prepared for a rollback scenario.
Three release patterns should always be considered: rolling updates, blue-green
deployment, and canary releasing
Legacy systems can be converted to the Continuous Delivery process in small
steps, rather than all at once.

Exercises
In this chapter, we covered various aspects of the Continuous Delivery process. Since
practice makes perfect, we recommend the following exercises:

Use Flyway to create a non-backwards-compatible change in the MySQL1.
database:

Use the official Docker image, mysql, to start the database1.
Configure Flyway with proper database address, username, and2.
password
Create an initial migration that creates a USERS table with three3.
columns: ID, EMAIL, and PASSWORD

https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/

Advanced Continuous Delivery Chapter 9

[295]

Add sample data to the table4.
Change the PASSWORD column to HASHED_PASSWORD, which will store5.
the hashed passwords
Split the non-backwards-compatible change into three migrations as6.
described in this chapter
You can use MD5 or SHA for hashing7.
Check that as a result, the database doesn't store any passwords in8.
plain text

Create a Jenkins shared library with steps to build and unit test Gradle projects:2.
Create a separate repository for the library1.
Create two files in the library: gradleBuild.groovy and2.
gradleTest.groovy

Write the appropriate call methods3.
Add the library to Jenkins4.
Use the steps from the library in a pipeline5.

Questions
To verify the knowledge from this chapter, please answer the following questions:

What are database (schema) migrations?1.
Name at least three database migration tools.2.
What are the main two types of changes of the database schema?3.
Why one database should not be shared between multiple services?4.
What is the difference between the test data for unit tests and for5.
integration/acceptance tests?
What Jenkins pipeline keyword do you use to make the steps run in parallel?6.
What are different methods to reuse Jenkins pipeline components?7.
What Jenkins pipeline keyword do you use to make a manual step?8.
What are the three release patterns mentioned in this chapter?9.

Advanced Continuous Delivery Chapter 9

[296]

Further reading
To read more about the advanced aspects of the Continuous Delivery process, please refer
to the following resources:

Databases as a Challenge for Continuous Delivery: https:/​/​phauer.​com/​2015/
databases-​challenge-​continuous-​delivery/​

Zero Downtime Deployment with a Database: https:/​/​spring.​io/​blog/​2016/
05/​31/​zero-​downtime-​deployment-​with-​a-​database

Canary Release: https:/​/​martinfowler.​com/​bliki/​CanaryRelease.​html

Blue Green Deployment: https:/​/​martinfowler.​com/​bliki/
BlueGreenDeployment.​html

https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://phauer.com/2015/databases-challenge-continuous-delivery/
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://spring.io/blog/2016/05/31/zero-downtime-deployment-with-a-database
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html

Best practices
Thank you for reading this book. I hope you are ready to introduce
the Continuous Delivery approach to your IT projects. As the last section of this book, I
propose a list of the top 10 Continuous Delivery practices. Enjoy!

Practice 1 – own process within the team!
Own the entire process within the team, from receiving requirements to monitoring the
production. As once said: A program running on the developer's machine makes no money. This
is why it's important to have a small DevOps team that takes complete ownership of a
product. Actually, that is the true meaning of DevOps: Development and Operations, from
the beginning to the end:

Own every stage of the Continuous Delivery pipeline: how to build the software,
what the requirements are in acceptance tests, and how to release the product.
Avoid having a pipeline expert! Every member of the team should be involved in
creating the pipeline.
Find a good way to share the current pipeline state (and the production
monitoring) among team members. The most effective solution is big screens in
the team space.
If a developer, QA, and IT Operations engineer are separate experts, then make
sure they work together in one agile team. Separate teams based on expertise
result in no one taking responsibility for the product.
Remember that autonomy given to the team results in high job satisfaction and
exceptional engagement. This leads to great products!

Best practices

[298]

Practice 2 – automate everything!
Automate everything, from business requirements (in the form of acceptance tests) to the
deployment process. Manual descriptions, wiki pages with instruction steps, they all
quickly become out of date and lead to tribal knowledge that makes the process slow,
tedious, and unreliable. This, in turn, leads to a need for release rehearsals, and makes
every deployment unique. Don't go down this path! As a rule, if you do anything for the
second time, automate it:

Eliminate all manual steps; they are a source of errors! The whole process must
be repeatable and reliable.
Don't ever make any changes directly in production! Use configuration
management tools instead.
Use precisely the same mechanism to deploy to every environment.
Always include an automated smoke test to check if the release completed
successfully.
Use database schema migrations to automate database changes.
Use automatic maintenance scripts for backup and cleanup. Don't forget to
remove unused Docker images!

Practice 3 – version everything!
Version everything: software source code, build scripts, automated tests, configuration
management files, Continuous Delivery pipelines, monitoring scripts, binaries, and
documentation; simply everything. Make your work task-based, where each task results in
a commit to the repository, no matter whether it's related to requirement gathering,
architecture design, configuration, or the software development. A task starts on
the agile board and ends up in the repository. This way, you maintain a single point of
truth with the history and reasons for the changes:

Be strict about the version control. Everything means everything!
Keep the source code and configuration in the code repository, the binaries in the
artifact repository, and the tasks in the agile issue tracking tool.
Develop the Continuous Delivery pipeline as a code.
Use database migrations and store them in a repository.
Store documentation in the form of markdown files that can be version-
controlled.

Best practices

[299]

Practice 4 – use business language for
acceptance tests
Use business-facing language for acceptance tests to improve the mutual communication
and the common understanding of the requirements. Work closely with the product owner
to create what Eric Evan called the ubiquitous language, a common dialect between the
business and technology. Misunderstandings are the root cause of most project failures:

Create a common language and use it inside the project.
Use an acceptance testing framework, such as Cucumber or FitNesse, to help the
business team understand and get them involved.
Express business values inside acceptance tests, and don't forget about them
during development. It's easy to spend too much time on unrelated topics!
Improve and maintain acceptance tests so that they always act as regression tests.
Make sure everyone is aware that a passing acceptance test suite means a green
light from the business to release the software.

Practice 5 – be ready to roll back
Be ready to roll back; sooner or later you will need to do it. Remember, You don't need
more QAs you need a faster rollback. If anything goes wrong in production, the first thing
you want to do is to play safe and come back to the last working version:

Develop a rollback strategy and the process of what to do when the system is
down
Split non-backwards-compatible database changes into compatible ones
Always use the same process of delivery for rollbacks and for standard releases
Consider introducing blue-green deployments or canary releases
Don't be afraid of bugs; the user won't leave you if you react quickly!

Best practices

[300]

Practice 6 – don't underestimate the impact
of people
Don't underestimate the impact of people. They are usually way more important than tools.
You won't automate the delivery if the IT Operations team won't help you. After all, they
have the knowledge about the current process. The same applies to QAs, business, and
everyone involved. Make them important and involved:

Let QAs and IT operations be a part of the DevOps team. You need their
knowledge and skills!
Provide training to members that are currently doing manual activities so that
they can move to automation.
Favor informal communication and a flat structure of organization over
hierarchy and orders. You won't do anything without goodwill!

Practice 7 – build in traceability
Build in traceability for the delivery process and working system. There is nothing worse
than a failure without any log messages. Monitor the number of requests, the latency, the
load of production servers, the state of the Continuous Delivery pipeline, and everything
you can think of that could help you to analyze your current software. Be proactive! At
some point, you will need to check the stats and logs:

Log pipeline activities! In the case of failure, notify the team with an informative
message.
Implement proper logging and monitoring of the running system.
Use specialized tools for system monitoring such as Kibana, Grafana, or
Logmatic.io.
Integrate production monitoring into your development ecosystem. Consider
having big screens with the current production stats in the common team space.

Best practices

[301]

Practice 8 – integrate often
Integrate often; actually, all the time! As someone said: Continuous is more often than you
think. There is nothing more frustrating than resolving merge conflicts. Continuous
Integration is less about the tool, and more about the team practice. Integrate the code into
one code base at least a few times a day. Forget about long-lasting feature branches and a
huge number of local changes. Trunk-base development and feature toggles for the win!

Use trunk-based development and feature toggles instead of feature branches.
If you need a branch or local changes, make sure that you integrate with the rest
of the team at least once a day.
Always keep the trunk healthy; make sure you run tests before you merge into
the baseline.
Run the pipeline after every commit to the repository for a faster feedback cycle.

Practice 9 – only build binaries once
Build binaries only once, and run the same one on each of the environments. No matter if
they are in a form of Docker images or JAR packages; building only once eliminates the risk
of differences introduced by various environments. It also saves time and resources:

Build once, and pass the same binary between environments.
Use artifact repository to store and version binaries. Don't ever use the source
code repository for that purpose.
Externalize configurations and use a configuration management tool to introduce
differences between environments.

Best practices

[302]

Practice 10 – release often
Release often, preferably after each commit to the repository. As the saying goes, If it hurts,
do it more often. Releasing as a daily routine makes the process predictable and calm. Stay
away from being trapped in the rare release habit. That will only get worse and you will
end up with releasing once a year, having a three months' preparation period!

Rephrase your definition of done to, Done means released. Take ownership of the
whole process!
Use feature toggles to hide features that are still in progress from users.
Use canary releases and quick rollback to reduce the risk of bugs in the
production.
Adopt a zero-downtime deployment strategy to enable frequent releases.

Assessment

Chapter 1: Introducing Continuous Delivery
 Development, Quality Assurance, Operations.1.
Continuous Integration, Automated Acceptance Testing, Configuration2.
Management.
Fast delivery, fast feedback cycle, low-risk releases, flexible release options.3.
Unit Tests, Integration Tests, Acceptance Tests, Non-functional Tests4.
(performance, security, scalability, and so on).
Unit tests, because they are cheap to create/maintain and quick to execute.5.
DevOps is the idea of combining the area of Development, Quality Assurance,6.
and Operations into one team (or person). Thanks to automation, it's possible to
provide the product from A to Z.
Docker, Jenkins, Ansible, Git, Java, Spring Boot, Gradle, Cucumber, Kubernetes.7.

Chapter 2: Introducing Docker
 Containerization does not emulate the whole operating system; it uses the host1.
operating system instead. The benefits of providing an application as a Docker
image
The benefits of providing an application as a Docker image are as follows:2.

No issues with dependencies: The application is provided together1.
with its dependencies
Isolation: The application is isolated from the other applications2.
running on the same machine
Portability: The application runs everywhere, no matter which3.
environment dependencies are present

Assessment

[304]

No, Docker Daemon can run natively only on the Linux machines. However,3.
there are well-integrated virtual environments for both Windows and Mac.
Docker image is a stateless serialized collection of files and the recipe of how to4.
use them; Docker container is a running instance of the Docker image.
A Docker image is built on top of another Docker image, which makes the5.
layered structure. This mechanism is user-friendly and saves bandwidth and
storage.
Docker commit and Dockerfile.6.
docker build7.
 docker run8.
Publishing a port means that the host's port is forwarded to the container's port.9.
A Docker volume is the Docker host's directory mounted inside the container.10.

Chapter 3: Configuring Jenkins
Yes and the image name is: jenkins/jenkins1.
A Jenkins master is the main instance that schedules tasks and provides the web2.
interface, while a Jenkins agent (slave) is the additional instance that's only
dedicated to executing jobs.
Vertical scaling means adding more resources to the machine while the load3.
increases. Horizontal scaling means adding more machines while the load
increases.
SSH and Java Web Start.4.
A Permanent Agent is the simplest solution, and it means creating a static server5.
with all the environment prepared to execute a Jenkins Job. On the other hand, a
Permanent Docker Agent is more flexible; provides the Docker Daemon, and all
the jobs are executed inside Docker containers.
In the case that you use Dynamically Provisioned Docker agents and the6.
standard ones (available on the internet) do not provide the execution
environment you need.
 When your organization needs some templated Jenkins to be used by different7.
teams.
 Blue Ocean is a Jenkins plugin that provides a more modern Jenkins web8.
interface

Assessment

[305]

Chapter 4: Continuous Integration Pipeline
A pipeline is a sequence of automated operations that usually represents a part of1.
the software delivery and quality assurance process.
Step is a single automated operation, while stage is a logical grouping of steps2.
used to visualize the Jenkins pipeline process.
The post section defines a series of one or more step instructions that are run at3.
the end of the pipeline build.
Checkout, Compile, and Unit test.4.
 Jenkinsfile is a file with the Jenkins pipeline definition (usually stored together5.
with the source code in the repository).
The code coverage stage is responsible for checking whether the source code is6.
well covered with (unit) tests.
An External trigger is a call from an external repository (such as GitHub) to the7.
Jenkins master, while Polling SCM is a periodic call from the Jenkins master to
the external repository.
Email, Group Chat, Build Radiators, SMS, RSS Feed.8.
Trunk-based workflow, Branching workflow, and Forking workflow.9.
A feature toggle is a technique that is used to disable the feature for users, but10.
enable it for developers while testing. Feature toggles are essentially variables
used in conditional statements.

Chapter 5: Automated Acceptance Testing
Docker registry is a stateless application server that stores Docker images.1.
Docker Hub is the best-known public Docker registry.2.
The convention is <registry_address>/<image_name>:<tag>.3.
The staging environment is the pre-production environment dedicated to4.
integration and acceptance testing.
The following commands: docker build, docker login, docker push.5.
They allow us to specify tests in a human-readable format, which helps with6.
collaboration between business and developers.
Acceptance Criteria (feature scenario specification), Step Definitions, Test7.
Runner.
Acceptance test-driven development is a development methodology (seen as an8.
extension of TDD) that says to always start the development process from the
(failing) acceptance tests.

Assessment

[306]

Chapter 6: Clustering with Kubernetes
A server cluster is a set of connected computers that work together in such a way1.
that they can be used similarly within a single system.
Kubernetes node is just a worker, that is, a Docker host that runs containers.2.
Kubernetes Master is responsible for everything else (providing Kubernetes API,
Pod orchestration, and more).
Microsoft Azure, Google Cloud Platform, and Amazon Web Services.3.
Deployment is a Kubernetes resource that's responsible for Pod orchestration4.
(creating, terminating, and more). Service is an (internal) load balancer that
provides a way to expose Pods.
kubectl scale5.
Dynamic slave provisioning (with the Jenkins Kubernetes plugin) and Jenkins6.
Swarm.
Docker Swarm and Mesos.7.

Chapter 7: Configuration Management with
Ansible

Configuration management is the process of controlling the configuration1.
changes in a way such that the system maintains integrity over time.
 Agentless means that you don't need to install any special tool (an agent or2.
daemon) in the server that is being managed.
Ansible, Chef, and Puppet.3.
An inventory is a file that contains a list of servers that are managed by Ansible.4.
An ad hoc command is a single command that is executed on servers, and5.
playbooks are the whole configurations (sets of scripts) that are executed on
servers.
An Ansible role is a well-structured playbook prepared to be included in the6.
playbooks.
Ansible Galaxy is a store (repository) for Ansible roles.7.

Assessment

[307]

Chapter 8: Continuous Delivery Pipeline
Production, staging, QA, development.1.
 Staging is the pre-production environment used to test software before the2.
release; QA is a separate environment used by the QA team and the
dependent applications.
Performance, load, stress, scalability, endurance, security, maintainability,3.
recovery.
No, but it should be explicit which are part of the pipeline and which are not4.
(and for those that are not, there still should be some automation and monitoring
around).
Semantic versioning, timestamp-based, hash-based.5.
Smoke test is a very small subset of acceptance tests whose only purpose is to6.
check that the release process is completed successfully.

Chapter 9: Advanced Continuous Delivery
 Database schema migration is a process of incremental changes to the relational1.
database structure.
 Flyway, Liquibase, Rail Migrations (from Ruby on Rails), Redgate, Optim2.
Database Administrator.
 Backwards-compatible and non-backwards-compatible.3.
If one database is shared between multiple services, then each database change4.
must be compatible with all services, which makes changes very difficult to
make.
 Unit tests do not require preparing any special data; data is in the memory and5.
prepared by developers; integration/acceptance tests require preparing special
data which is similar to the production.
parallel6.
Build parameters and shared libraries.7.
input8.
Rolling updates, blue-green deployment, and canary release.9.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Effective DevOps with AWS - Second Edition
Nathaniel Felsen, Giuseppe Borgese, Et al

ISBN: 978-1-78953-997-4

Implement automatic AWS instance provisioning using CloudFormation
Deploy your application on a provisioned infrastructure with Ansible
Manage infrastructure using Terraform
Build and deploy a CI/CD pipeline with Automated Testing on AWS
Understand the container journey for a CI/CD pipeline using AWS ECS
Monitor and secure your AWS environment

https://www.packtpub.com/virtualization-and-cloud/effective-devops-aws-second-edition

Other Books You May Enjoy

[309]

DevOps with Kubernetes - Second Edition
Hideto Saito, Hui-Chuan Chloe Lee, Et al

ISBN: 978-1-78953-399-6

Learn fundamental and advanced DevOps skills and tools
Get a comprehensive understanding of containers
Dockerize an application
Administrate and manage Kubernetes cluster
Extend the cluster functionality with custom resources
Understand Kubernetes network and service mesh
Implement Kubernetes logging and monitoring
Manage Kubernetes services in Amazon Web Services, Google Cloud
Platform,and Microsoft Azure

https://www.packtpub.com/virtualization-and-cloud/devops-kubernetes-second-edition

Other Books You May Enjoy

[310]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
acceptance testing environment 255
acceptance testing
 about 16, 147
 drawbacks 147
acceptance tests, Docker build stage
 about 157
 Docker build, adding to pipeline 158, 159
 Dockerfile, adding 157
acceptance tests
 Docker push stage 159
 in pipeline 156, 157
 writing 161
acceptance-test-driven development 166
acceptance-testing framework
 acceptance criteria, creating 163
 step definitions, creating 164, 165
 using 163
acceptance-testing stage
 about 159
 acceptance test. adding to pipeline 160
 cleaning stage environment, adding 161
 staging deployment, adding to pipeline 160
Ad hoc commands 216, 217
advanced CD 31
advanced Kubernetes
 about 186
 application, scaling 186
 application, updating 187, 188
 update, rolling 188, 191
agents
 configuring 84
 dynamically provisioned Docker agents 91
 Jenkins Swarm agents 89
 permanent agents 86
 permanent Docker agents 88

 setting 85
 testing 95, 96
Agile testing matrix 16, 17
Amazon EC2 Container Service (AWS ECS) 205
Amazon Elastic Container Service 179
Amazon Web Services (AWS) 178
Ansible Docker playbook
 about 233
 Docker containers, running 234
 Docker, installing 233, 234
Ansible Galaxy
 about 225
 reference 225
Ansible installation
 about 213, 214
 reference 213
Ansible Kubernetes playbook 235
Ansible patterns
 reference 218
Ansible roles 224
Ansible Tower 213
Ansible, models
 reference 216
Ansible
 about 24
 Ad hoc commands 216, 217
 benefits 231, 232
 installing 213
 inventory, creating 214, 215
 playbooks 217
 server requirements 213
 using 214
 using, for configuration management 30
 using, with Docker 230, 231
 using, with Kubernetes 230, 231
Apache Mesos 203
application configuration 210

[312]

application dependencies
 about 192
 Kubernetes DNS resolution 192, 194
 multi-application system 194
 multi-application system implementation 195
 multi-application system, testing 197, 198
application versioning
 about 250
 disadvantages 250
 hash 251
 in Jenkins pipeline 251
 mixed 251
 semantic versioning 250
 strategies 250
 timestamp 250
artifact repository 148, 150
automated acceptance test
 running 165
automated acceptance testing
 about 15, 28
 Agile testing matrix 16, 17
 testing pyramid 17
automated deployment pipeline
 about 11, 13, 14
 automated acceptance testing 15
 configuration management 18
 Continuous Integration (CI) 15
automatic port assignment 60
Azure command-line tool, installation guide
 reference 179
Azure Kubernetes Service (AKS) 179
Azure web console
 reference 179

B
Backup Plugin 102
backwards-compatible changes 269, 270
behavior-driven development (BDD) 247
Blue Ocean UI 102
blue-green deployment
 about 288
 reference 289
branching workflow 136, 137
build parameters 281
build radiators 135

C
canary release
 about 289, 290
 reference 290
capacity testing 246
cattle 39
CD pipeline 31
CD process
 building 22
 tools 23
certificate authority (CA) 151
challenges, database
 about 262
 compatibility 262
 rollback 262
 test data 262
 zero-downtime deployment 262
challenges, nonfunctional testing
 about 248
 incremental 248
 long test runs 248
 multiplicity 248
 vague requisites 248
Chaos Monkey
 reference 248
checkout, commit pipeline
 about 114
 checkout stage, creating 115
 GitHub repository, creating 114
checkstyle
 reference 128
CI pipeline 27
cloud
 Jenkins, using 77
CloudBees
 reference 77
cluster management systems
 about 201
 Apache Mesos 203
 Docker Swarm 201
 features, comparing 204
clustering
 with Kubernetes 29
code coverage

[313]

 about 124
 JaCoCo, adding to Gradle 124
code-quality stages
 about 124
 code coverage 124
 code-coverage report, publishing 126
 code-coverage stage, adding 125
 SonarQube 129
 static code analysis 127
 static-code analysis reports, pushing 129
 static-code analysis stage, adding 129
commit pipeline
 about 113, 114
 compile stage, creating 118
 Jenkinsfile, creating 122
 running, from Jenkinsfile 122, 123
 unit test stage, creating 120, 121
 unit test, writing 120
communication protocols 85
communication protocols, options
 Java web start 85
 SSH 85
compile, commit pipeline
 about 115
 code, pushing to GitHub 117, 118
 Java Spring Boot project, creating 115, 116
complete CD system
 creating 25
 Docker 26
components, Docker Engine
 Docker Client 45
 Docker Daemon 45
configuration management tools
 overview 212
configuration management
 about 18, 210, 211, 212
 application configuration 210
 infrastructure configuration 210
 with Ansible 30
container networks 58, 59
container ports
 exposing 60
containerization
 about 39
 versus virtualization 35, 36

containers
 about 46, 47
 cleaning up 65, 66
 naming 63
Continuous Delivery (CD), case studies
 reference 13
Continuous Delivery (CD)
 about 7, 12, 13, 34
 benefits 11
 environments 242
 environments, securing 243, 244
Continuous Delivery Maturity Model
 reference 293
Continuous Delivery pipeline
 about 252
 acceptance testing environment 255
 inventory file 252, 253
 Jenkinsfile 257
 release 255
 remote staging environment 254
 smoke testing 256
 versioning 254
Continuous Delivery process
 environment 239
 infrastructure 239
Continuous Integration (CI), approaches
 about 139
 in branching workflow 139
 in forking workflow 139
 in trunk-based workflow 139
Continuous Integration (CI)
 about 15
 adopting 139
 non-technical requisites 142, 143
cron
 reference 133
custom Jenkins images 97

D
data definition language (DDL) 263
database changes
 managing 262
 schema updates 262
 shared database, avoiding 275, 277
 test data, preparing 277

[314]

database migration 263
database migration, tools
 Flyway 264
 Liquibase 264
 Rail Migrations 264
database, changing in Continuous Delivery
 about 268
 backwards-compatible changes 269, 270
 drawbacks 268
 non-backwards-compatible changes 270, 271
deployment, with Ansible
 about 226
 Hazelcast, installing 226, 228
 running 230
 web service, deploying 228
development environment 239, 242
development workflows
 about 136
 branching workflow 137, 138
 forking workflow 138
 reference 136
 trunk-based workflow 137
directives, pipeline syntax
 triggers 112
Docker application
 about 47, 49
 completing 52
 environment, preparing 52
 images, building 53
 running 53
 writing 52
Docker cleanup 64
Docker commands
 overview 67, 68
 reference 68
Docker commit
 used, for building Docker images 49, 50
Docker components
 about 44
 containers 46, 47
 Docker client 45
 Docker images 46, 47
 Docker server 45
Docker container states 54, 56
Docker daemon socket, security

 reference 43
Docker ecosystem 23
Docker Engine architecture 45
Docker hello world
 running 43, 44
Docker host installation, on Linux/Ubuntu
 steps 74
Docker Hub 150
Docker images
 about 46
 building 49
 building, with Docker commit 49, 50
 building, with Dockerfile 51, 52
 cleaning 66, 67
 tagging 64
Docker installation
 testing 42
Docker networking
 about 56
 automatic port assignment 60
 container networks 58, 59
 container ports, exposing 60
 Tomcat server, running 56, 58
Docker registry application
 installing 151
Docker registry, types
 cloud-based registries 153
 custom registries 153
 general-purpose repositories 153
Docker registry
 about 148, 150
 access restriction, adding 152
 Docker Hub 150
 domain certificate, adding 151, 152
 installing 150
 used, for building images 154
 used, for pulling images 155
 used, for pushing images 154, 155
 using 154
Docker Swarm 201
Docker volumes
 reference 62
 using 61, 62
Docker-based Ansible client 214
Docker-in-Docker

[315]

 reference 157
Docker
 about 26, 35
 environment 37
 installing 39
 installing, for Linux 41
 installing, for macOS 41
 installing, for Ubuntu 41
 installing, for Windows 41
 installing, on dedicated server 42, 43
 installing, on local machine 40
 installing, on server 42
 isolation 38
 Jenkins, installing 74
 names, using 63
 need for 37
 organizing applications 38
 portability 38
 prerequisites 40
docker_container module
 reference 234
Dockerfile
 preparing, with environment variables 53, 54
 used, for building Docker images 51, 52
domain-specific language (DSL) 162
Dynamic Inventory
 reference 215
dynamic slave provisioning
 about 199
 versus Jenkins Swarm 200, 201
dynamically provisioned Docker agents
 about 91, 94, 95
 configuring 91, 93

E
EKS cluster
 reference 179
Elastic Block Storage (EBS) 175
endurance testing 246
environment types, Continuous Delivery process
 about 239
 development environment 242
 production environment 239, 240
 QA environment 241
 staging environment 240, 241

environment
 using 181
Exploratory Testing 16

F
feature toggle 140
Fixtures 162
Flyway 264
forking workflow 136, 138
FreeBSD Jails 39

G
GitHub 24
Google Cloud Platform (GCP)
 about 178
 reference 178
Google Compute Engine (GCE) 175
Google Kubernetes Engine (GKE) 178
Gradle
 about 24
 reference 117

H
Hazelcast
 installing 226
Hello World pipeline
 extending 109, 110
Horizontal Pod Autoscaler
 reference 187
horizontal scaling 83
human element 293

I
infrastructure configuration 210
integration/acceptance testing 278
inventory file, variables
 reference 223
inventory file
 about 252, 253
 creating 214, 215
 reference 215

[316]

J
Java 24
Jenkins agents 80, 82
Jenkins architecture
 about 80, 83, 84
 Jenkins agents 80, 82
 Jenkins master 80, 82
 production instances 83
 scalability 82
 test instances 83
Jenkins backup 102
Jenkins configuration 100
Jenkins Hello World 78, 80
Jenkins installation
 about 73
 requirements 73
Jenkins management 100
Jenkins master
 about 80, 82
 building 99, 100
Jenkins multi-branch 140, 142
Jenkins plugins
 about 101
 reference 101
Jenkins security 101
Jenkins slave
 building 97, 98
Jenkins Swarm agents
 about 89, 91
 configuring 90
Jenkins Swarm
 about 199
 versus dynamic slave provisioning 200, 201
Jenkins, Docker-based installation
 advantages 73
Jenkins, installing with Docker
 reference 75
Jenkins
 about 24, 72, 73
 characteristics 72
 configuring 26
 dynamic slave provisioning 199
 initial configuration 76, 77
 installing link 75

 installing, on Docker 74
 installing, without Docker 75
 scaling 198
 using, in cloud 77
Jenkinsfile
 commit pipeline 121
 reference 257
JFrog Artifactory 149

K
k8s module
 reference 235
kittens 39
kompose 173
kubectl command
 configuration link 175
 installation link 175
 reference 182
Kubelet 174
Kubernetes client
 installing 175
Kubernetes DNS resolution
 reference 194
Kubernetes installation 175
Kubernetes server
 about 176
 cloud platforms 178, 179
 Docker Desktop, installing 177
 installing 176
 Minikube, installing 176
 on-premise environment, installing 180
Kubernetes Service
 deploying 182, 184
Kubernetes setup
 verifying 180
Kubernetes
 about 173, 174
 application, deploying 181, 182
 application, exposing 184, 186
 features overview 174
 objects 191, 192
 used, for clustering 29
 workloads 191, 192

[317]

L
legacy systems
 build, automating 291
 deployment, automating 291
 human element 293
 new features, introducing 292
 new features, refactoring 292
 tests, automating 292
 working with 290
Linux Containers (LXC) 39
Linux
 Docker, installing 41
Liquibase 264
load testing 245
LoadBalancer 185
longevity tests 246

M
macOS
 Docker, installing 41
maintainability testing 247
master-slave interaction 81
memory management unit (MMU) 40
Mesos Plugin
 reference 199
Minikube
 about 176
 installation link 176
multi-application system implementation
 about 195
 Docker image, building 197
 Hazelcast cache configuration, adding 195
 Hazelcast Client library to Gradle, adding 195
 Spring Boot caching, adding 196
multi-application system
 overview 194
 testing 197, 198
mutation testing
 reference 126

N
names
 using, in Docker 63
non-backwards-compatible changes

 about 270, 271
 code, changing to use both columns 272, 273
 data, merging in columns 273
 database updates, separating from code

changes 274
 new column, adding to database 272
 old column, dropping from database 274
 old column, removing from code 273
nonfunctional testing 16, 244
notifications 131
notifications, types
 about 134
 email 134
 group chats 135
 team spaces 135
notifier 131

O
OpenVZ 39
organizational prerequisites, Continuous Delivery

(CD)
 business decisions 21
 client 21
 DevOps culture 20, 21

P
patch version 250
performance testing 245, 278
permanent agents
 about 86, 88
 configuring 86, 87
permanent Docker agents
 about 88, 89
 configuring 88
pipeline components
 build parameters 281
 reusing 281
 shared libraries 282
pipeline patterns
 about 279
 deployments, rolling back 285, 286
 manual steps, adding 286
pipeline structure 108, 109
pipeline structure, elements
 stage 109

[318]

 step 109
pipeline syntax
 about 110, 112
 directives 112
 reference 112
 sections 112
 steps 113
pipeline triggers 131
pipelines
 about 108
 parallelizing 279, 280
playbooks
 about 217
 defining 217, 218
 executing 219
 handlers 220, 222
 idempotency 219, 220
 reference 222
 variables 222, 223
poll SCM
 configuration 133
prerequisites, Continuous Delivery (CD)
 about 19
 development prerequisites 22
 organizational prerequisites 19
 technical prerequisites 22
private Docker registry 150
production environment 239, 240
production instances 83
promotion 149

Q
QA environment 239, 241

R
Rail Migrations 264
recovery testing 247
release candidate 149
release patterns
 about 287
 blue-green deployment 288, 289
 canary release 289, 290
remote staging environment 254
ReplicationController 191
round-trip time (RTT) 245

S
scalability testing 246
scalability, methods
 about 82
 horizontal scaling 83
 vertical scaling 82
schema updates, database changes
 about 262
 database migrations 263, 264
 database, accessing 266, 268
 Flyway, configuring 265
 Flyway, using 264
 SQL migration script, defining 266
Second Level Address Translation (SLAT) 40
security testing 247
Self-Organizing Swarm Plug-in Modules 90
server clustering 172
shared database
 avoiding 275, 277
shared libraries
 about 282
 configuring, in Jenkins 283
 reference 284
 using, in Jenkins 284
shared library project
 creating 282
smoke testing 256
Solaris Containers 39
SonarQube
 about 129
 reference 129
Sonatype Nexus 148, 149
Source Control Management (SCM) 131
Spring Boot, with Docker
 reference 159
Spring framework 24
SSH daemon (sshd) 85
staging environment 239, 240, 241
static code analysis
 Checkstyle configuration, adding 127, 128
stress testing 246
swarm 201
systemd configuration
 reference 43

T
team-development strategies
 about 136
 Continuous Integration (CI), adopting 139
 development workflows 136
 Jenkins multi-branch 140, 142
test data
 preparing 277
test instances 83
test-driven development (TDD) 166
testing pyramid 17, 18
throughput testing 246
Tomcat server
 running 56, 58
tools, CD process
 Ansible 24
 Boot/Gradle 24
 Docker ecosystem 23
 GitHub 24
 Java/Spring 24
 Jenkins 24
 tools 25
traditional delivery process
 about 8, 9
 disadvantages 10
triggers, types
 about 131
 external triggers 131, 132
 scheduled trigger 133
 SCM trigger, polling 132, 133
trunk 137
trunk-based workflow 136, 137
types, nonfunctional testing
 about 245
 endurance testing 246

 load testing 245
 maintainability testing 247
 performance testing 245
 recovery testing 247
 scalability testing 246
 security testing 247
 stress testing 246

U
Ubuntu
 Docker, installing 41
UI Blue Ocean 77
unit testing 16, 278
unit tests, commit pipeline
 about 118
 business logic, creating 119
user acceptance testing (UAT) 9, 147, 292
user-facing tests
 writing 161, 163

V
versioning 254
vertical scaling 82
virtualization
 versus containerization 35, 36

W
web application archive (WAR) 72
web service
 calculator deployment, adding to playbook 228,

230

 deploying 228
 Hazelcast host address, changing 228
Windows
 Docker, installing 41

	Cover

	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Setting Up the Environment
	Chapter 1: Introducing Continuous Delivery
	Understanding CD
	The traditional delivery process
	Introducing the traditional delivery process
	Shortcomings of the traditional delivery process

	Benefits of CD
	Success stories

	The automated deployment pipeline
	Continuous Integration (CI)
	Automated acceptance testing
	The Agile testing matrix
	The testing pyramid

	Configuration management

	Prerequisites to CD
	Organizational prerequisites
	DevOps culture
	Client in the process
	Business decisions

	Technical and development prerequisites

	Building the CD process
	Introducing tools
	Docker ecosystem
	Jenkins
	Ansible
	GitHub
	Java/Spring Boot/Gradle
	The other tools

	Creating a complete CD system
	Introducing Docker
	Configuring Jenkins
	The CI pipeline
	Automated acceptance testing
	Clustering with Kubernetes
	Configuration management with Ansible
	The CD pipeline/advanced CD

	Summary
	Questions
	Further reading

	Chapter 2: Introducing Docker
	Technical requirements
	What is Docker?
	Containerization versus virtualization
	The need for Docker
	Environment
	Isolation
	Organizing applications
	Portability

	Kittens and cattle
	Alternative containerization technologies

	Installing Docker
	Prerequisites for Docker
	Installing on a local machine
	Docker for Ubuntu
	Docker for Windows, macOS, and Linux
	Testing the Docker installation

	Installing on a server
	Dedicated server

	Running Docker hello world
	Docker components
	Docker client and server
	Docker images and containers

	Docker applications
	Building images
	Docker commit
	Dockerfile
	Completing the Docker application
	Writing the application
	Preparing the environment
	Building the image
	Running the application

	Environment variables

	Docker container states
	Docker networking
	Running services
	Container networks
	Exposing container ports
	Automatic port assignment

	Using Docker volumes
	Using names in Docker
	Naming containers
	Tagging images

	Docker cleanup
	Cleaning up containers
	Cleaning up images

	Docker commands overview
	Summary
	Exercises
	Questions
	Further reading

	Chapter 3: Configuring Jenkins
	Technical requirements
	What is Jenkins?
	Installing Jenkins
	Requirements for installation
	Installing Jenkins on Docker
	Installing without Docker
	Initial configuration
	Jenkins in the cloud

	Jenkins Hello World
	Jenkins architecture
	Master and slaves
	Scalability
	Vertical scaling
	Horizontal scaling

	Test and production instances
	Sample architecture

	Configuring agents
	Communication protocols
	Setting agents
	Permanent agents
	Configuring permanent agents
	Understanding permanent agents

	Permanent Docker agents
	Configuring permanent Docker agents
	Understanding permanent Docker agents

	Jenkins Swarm agents
	Configuring Jenkins Swarm agents
	Understanding Jenkins Swarm agents

	Dynamically provisioned Docker agents
	Configuring dynamically provisioned Docker agents
	Understanding dynamically provisioned Docker agents

	Testing agents

	Custom Jenkins images
	Building the Jenkins slave
	Building the Jenkins master

	Configuration and management
	Plugins
	Security
	Backup
	The Blue Ocean UI

	Summary
	Exercises
	Questions
	Further reading

	Section 2: Architecting and Testing an Application
	Chapter 4: Continuous Integration Pipeline
	Technical requirements
	Introducing pipelines
	The pipeline structure
	Multi-stage Hello World
	The pipeline syntax
	Sections
	Directives
	Steps

	The commit pipeline
	Checkout
	Creating a GitHub repository
	Creating a checkout stage

	Compile
	Creating a Java Spring Boot project
	Pushing code to GitHub
	Creating a compile stage

	Unit tests
	Creating business logic
	Writing a unit test
	Creating a unit test stage

	Jenkinsfile
	Creating the Jenkinsfile
	Running the pipeline from Jenkinsfile

	Code-quality stages
	Code coverage
	Adding JaCoCo to Gradle
	Adding a code coverage stage
	Publishing the code coverage report

	Static code analysis
	Adding the Checkstyle configuration
	Adding a static code analysis stage
	Publishing static code analysis reports

	SonarQube

	Triggers and notifications
	Triggers
	External
	Polling SCM
	Scheduled builds

	Notifications
	Email
	Group chats
	Team spaces

	Team development strategies
	Development workflows
	The trunk-based workflow
	The branching workflow
	The forking workflow

	Adopting Continuous Integration
	Branching strategies
	Feature toggles

	Jenkins multi-branch
	Non-technical requirements

	Summary
	Exercises
	Questions
	Further reading

	Chapter 5: Automated Acceptance Testing
	Technical requirements
	Introducing acceptance testing
	Docker registry
	The artifact repository
	Installing Docker registry
	Docker Hub
	Private Docker registry
	Installing the Docker registry application
	Adding a domain certificate
	Adding an access restriction

	Other Docker registries

	Using Docker registry
	Building an image
	Pushing the image
	Pulling the image

	Acceptance tests in the pipeline
	The Docker build stage
	Adding Dockerfile
	Adding the Docker build to the pipeline

	The Docker push stage
	The acceptance testing stage
	Adding a staging deployment to the pipeline
	Adding an acceptance test to the pipeline
	Adding a cleaning stage environment

	Writing acceptance tests
	Writing user-facing tests
	Using the acceptance testing framework
	Creating acceptance criteria
	Creating step definitions
	Running an automated acceptance test

	Acceptance test-driven development

	Summary
	Exercises
	Questions
	Further reading

	Chapter 6: Clustering with Kubernetes
	Technical requirements
	Server clustering
	Introducing server clustering

	Introducing Kubernetes
	Kubernetes features overview
	Kubernetes installation
	The Kubernetes client
	The Kubernetes server
	The local environment
	Minikube
	Docker Desktop
	Cloud platforms
	On-premise

	Verifying the Kubernetes setup
	Using Kubernetes
	Deploying an application
	Deploying Kubernetes Service
	Exposing an application

	Advanced Kubernetes
	Scaling an application
	Updating an application
	Rolling updates
	Kubernetes objects and workloads

	Application dependencies
	The Kubernetes DNS resolution
	Multi-application system overview
	Multi-application system implementation
	Adding the Hazelcast client library to Gradle
	Adding the Hazelcast cache configuration
	Adding Spring Boot caching
	Building a Docker image

	Multi-application system testing

	Scaling Jenkins
	Dynamic slave provisioning
	Jenkins Swarm
	Comparing dynamic slave provisioning and Jenkins Swarm

	Alternative cluster management systems
	Docker Swarm
	Apache Mesos
	Comparing features

	Summary
	Exercises
	Questions
	Further reading

	Section 3: Deploying an Application
	Chapter 7: Configuration Management with Ansible
	Technical requirements
	Introducing configuration management
	Traits of good configuration management
	Overview of configuration management tools

	Installing Ansible
	Ansible server requirements
	Ansible installation
	The Docker-based Ansible client

	Using Ansible
	Creating an inventory
	Ad hoc commands
	Playbooks
	Defining a playbook
	Executing the playbook
	The playbook's idempotency
	Handlers
	Variables

	Roles
	Understanding roles
	Ansible Galaxy

	Deployment with Ansible
	Installing Hazelcast
	Deploying a web service
	Changing the Hazelcast host address
	Adding calculator deployment to the playbook

	Running the deployment

	Ansible with Docker and Kubernetes
	Benefits of Ansible
	The Ansible Docker playbook
	Installing Docker
	Running Docker containers

	The Ansible Kubernetes playbook

	Summary
	Exercises
	Questions
	Further reading

	Chapter 8: Continuous Delivery Pipeline
	Technical requirements
	Environments and infrastructure
	Types of environment
	Production
	Staging
	QA
	Development

	Environments in Continuous Delivery
	Securing environments

	Nonfunctional testing
	Types of nonfunctional test
	Performance testing
	Load testing
	Stress testing
	Scalability testing
	Endurance testing
	Security testing
	Maintainability testing
	Recovery testing

	Nonfunctional challenges

	Application versioning
	Versioning strategies
	Versioning in the Jenkins pipeline

	Completing the Continuous Delivery pipeline
	Inventory
	Versioning
	Remote staging environment
	Acceptance testing environment
	Release
	Smoke testing
	Complete Jenkinsfile

	Summary
	Exercises
	Questions
	Further reading

	Chapter 9: Advanced Continuous Delivery
	Technical requirements
	Managing database changes
	Understanding schema updates
	Introducing database migrations
	Using Flyway
	Configuring Flyway
	Defining the SQL migration script
	Accessing database

	Changing database in Continuous Delivery
	Backwards-compatible changes
	Non-backwards-compatible changes
	Adding a new column to the database
	Changing the code to use both columns
	Merging the data in both columns
	Removing the old column from the code
	Dropping the old column from the database
	Separating database updates from code changes

	Avoiding shared database
	Preparing test data
	Unit testing
	Integration/acceptance testing
	Performance testing

	Pipeline patterns
	Parallelizing pipelines
	Reusing pipeline components
	Build parameters
	Shared libraries
	Creating a shared library project
	Configure the shared library in Jenkins
	Using the shared library in Jenkinsfile

	Rolling back deployments
	Adding manual steps

	Release patterns
	Blue-green deployment
	Canary release

	Working with legacy systems
	Automating build and deployment
	Automating tests
	Refactoring and introducing new features
	Understanding the human element

	Summary
	Exercises
	Questions
	Further reading

	Appendix A: Best practices
	Practice 1 – own process within the team!
	Practice 2 – automate everything!
	Practice 3 – version everything!
	Practice 4 – use business language for acceptance tests
	Practice 5 – be ready to roll back
	Practice 6 – don't underestimate the impact of people
	Practice 7 – build in traceability
	Practice 8 – integrate often
	Practice 9 – only build binaries once
	Practice 10 – release often

	Assessment
	Other Books You May Enjoy
	Index

